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Abstract In this article we discuss recent work on coarse-graining methods for microscopic
stochastic lattice systems. We emphasize the numerical analysis of the schemes, focusing on
error quantification as well as on the construction of improved algorithms capable of oper-
ating in wider parameter regimes. We also discuss adaptive coarse-graining schemes which
have the capacity of automatically adjusting during the simulation if substantial deviations
are detected in a suitable error indicator. The methods employed in the development and the
analysis of the algorithms rely on a combination of statistical mechanics methods (renormal-
ization and cluster expansions), statistical tools (reconstruction and importance sampling)
and PDE-inspired analysis (a posteriori estimates). We also discuss the connections and
extensions of our work on lattice systems to the coarse-graining of polymers.

Keywords Coarse-graining · Relative entropy · Lattice spin systems · Polymeric systems ·
Monte Carlo method · Gibbs measure · Cluster expansion · Multi-body interactions ·
Renormalization group map · Adaptivity · A posteriori error analysis · Importance sampling

1 Introduction

In this paper we provide an overview of mathematical techniques, developed in a series of
papers [3, 27–29, 31–35, 49], for the construction and the numerical analysis of coarse-
graining schemes for stochastic, many-body microscopic systems, primarily motivated from
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problems in materials science and chemical engineering. We focus on mathematical formu-
lation and give only brief summaries of our results; we refer the reader to the cited works
for more technical details.

Modelling and simulation of materials properties at small spatio-temporal scales pri-
marily relies on detailed microscopic models such as Molecular Dynamics (MD) or Monte
Carlo methods (MC) that typically account for atomistic or molecular information. On the
other hand, understanding large-scale, macroscopic properties of materials requires simula-
tions with microscopic systems at prohibitively large spatial, as well as temporal scales. In
the direction of such considerations, an important class of computational tools developed
in recent years, in the physics, applied sciences and engineering literature, is the method
of coarse-graining. The idea behind this approach is to reduce the complexity of molecular
systems by lumping together degrees of freedom into coarse-grained variables, thus yielding
accelerated simulation methods capable of reaching mesoscopic length scales. Such coarse-
grained models have been developed for the study and simulation of crystal growth, surface
processes, polymers, proteins and complex fluids, among others [12, 38, 44, 45]. At the
same time the importance of coarse-graining in industrial processes has also been recently
recognized, [8]. The existing approaches can give unprecedented speed-up to molecular sim-
ulations and can work well in certain parameter regimes, for instance at high temperatures or
low density. On the other hand, they can also give wrong predictions on important features
such as diffusion, crystallization and phase transitions. Along these lines, some relevant
mathematical and statistical goals are:

(a) to derive coarse-graining schemes in a systematic manner,
(b) to understand the validity regimes of existing coarse-graining methods by developing a

mathematical and statistical error analysis, and
(c) to develop adaptive algorithms, which have the capacity to automatically adjust if sub-

stantial deviations are detected during simulation.

From a mathematical point of view, a (perfect) coarse-graining can be understood, in
a natural way, as a renormalization group map such as the ones widely used in statistical
physics [20, 26]. One of our point of view is that a numerical coarse-graining scheme is
an approximate computation of a renormalization group map. The strategy we use in this
context is to expand around a properly chosen first coarse-grained guess; for this task the
techniques of cluster expansions turn out to be a very useful and powerful tool. On one hand,
cluster expansions can be used to derive systematically a hierarchy of schemes of increasing
accuracy, and, on the other hand, they provide both a priori error estimates, usually expressed
in terms of relative entropy, and also a posteriori error estimates, as used in the numerical
analysis of PDE’s.

We also develop a complementary statistical point of view, by viewing and analyzing the
coarse-graining schemes as a version of importance sampling. The coarse-graining scheme
is viewed as a proposal used in the sampling of the Monte Carlo method. It appears that these
two strategies have complementary strengths and their synergy has the potential to provide
a fairly systematic framework for developing flexible coarse-grained (CG) algorithms for
microscopic systems. The common theme behind both approaches is the observation that
long-range interactions can be handled very efficiently by coarse-grained MC developed
recently [27, 32, 35]. On the other hand short-range interactions are relatively inexpensive
and can be handled by Direct Numerical Simulation (DNS), provided there is a suitable
splitting of the algorithm into short and long-range parts.

Furthermore, even if coarse-grained simulators are available, in many applications such
as the simulation of polymer melts, it is necessary to obtain genuinely microscopic informa-
tion. This amounts to essentially reversing the coarse-graining by carrying out a microscopic
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reconstruction. Here we discuss how to mathematically formulate this issue, as well as we
demonstrate some probabilistic reconstruction methodologies.

Based on these distinct points of view, we have developed a systematic way to assess
properties of coarse-graining algorithms from a numerical analysis perspective, focusing on
error quantification. In this paper we primarily discuss two classes of models: (i) Stochastic
lattice systems with combinations of short and long range interactions, and (ii) Coarse-
graining and reconstruction in off-lattice macromolecular systems, such as polymers. The
paper is organized as follows. In Sect. 2 we introduce equilibrium and non-equilibrium sto-
chastic lattice models and discuss a first set of coarse-grainings. In Sect. 2.2 we present
error estimates and develop higher order coarse-graining schemes, in the analytically more
tractable case of lattice systems with long/intermediate range interactions. In Sect. 2.3 we
discuss coarse-grained models for lattice systems with combined short and long range in-
teractions. In Sect. 3 we focus on the issue of microscopic reconstruction. In Sect. 4 we
combine importance sampling and coarse-graining methods using the example of short and
long range interactions as a paradigm. In Sect. 6 we discuss the connections and extensions
of our work on lattice systems to the extensive engineering literature on coarse-graining of
polymer systems. Finally, in Sect. 5 we present recent progress towards developing adaptive
coarse-graining schemes based on a posteriori error estimates.

2 Coarse-Graining Schemes for Extended Lattice Systems

We discuss the coarse-graining of stochastic lattice systems such as Ising-type models.
These models are more accessible both mathematically and computationally as there is a
vast related literature that includes analytical methods and explicitly solvable models that
serve as benchmarks for the numerics. The direct numerical simulation in such models is
usually carried out using Monte Carlo methods. This class of stochastic models is employed
in simulations of adsorption, desorption, reaction and diffusion of chemical species in nu-
merous applied science areas such as catalysis, microporous materials, biological systems,
etc. [4, 39]. The fundamental principle on which this type of modeling is based can be easily
formulated as follows: when the binding of species on a surface or within a pore is relatively
strong, these physical processes can be described as jump processes from one site to another
or to an adjacent gas-phase (see Fig. 1(a)) with a transition probability that is expected to be
calculated from even smaller scales using quantum-mechanical calculations, and transition
state theory, or from detailed experiments, see for instance [4].

2.1 Mathematical Formulation

We consider Ising-type systems on a periodic lattice �N which is a discretization of the
interval I = [0,1). We divide I in N (micro-)cells and consider the microscopic grid
�N = 1

N
Z ∩ I in Fig. 1(a). Throughout this discussion we concentrate on one-dimensional

models, however, our results readily extend to higher dimensions, [32]. With each x ∈ �N

we associate an order parameter σ(x); for instance, when taking values 0 and 1, it describes
vacant and occupied sites. The energy H of a configuration σ ∈ � = {σ(x) : x ∈ �N } is
given by the Hamiltonian,

H(σ) = −1

2

∑

x∈�N

∑

y �=x

J (x − y)σ (x)σ (y) +
∑

x∈�N

hσ(x), (2.1)
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Fig. 1 Schematics of coarse-graining for lattice and off-lattice systems: (a) an example of a lattice system
coarse-grained by using block-spins, (b) coarse-grained polymer chains: starting from united atom model
three particles are grouped into a meta-particle

where h is the external field and J (·) is the inter-particle potential. The equilibrium states at
temperature T are described by the (canonical) Gibbs measures

μN(dσ) = Z−1
N exp

(−βH(σ)
)
PN(dσ), (2.2)

where β = 1/kT (k is the Boltzmann constant), ZN is the partition function, and the product
Bernoulli distribution PN(σ) is the uniform prior distribution on �. The interparticle po-
tentials J account for interactions between occupied sites. In Sect. 2.2 we consider systems
with intermediate or long-range interactions. Such systems are more tractable analytically,
while at the same time they pose a serious challenge to conventional MC methods due to the
large number of neighbors involved in each MC step. More general potentials with combi-
nations of short and long-range interactions are discussed in Sect. 2.3.

2.1.1 Microscopic Lattice Dynamics

The dynamics of Ising-type models consists of order parameter flips and/or exchanges that
correspond to different physical processes, [39]. More specifically a flip at the site x ∈ �N

is a spontaneous change in the order parameter, 1 being converted to 0 and vice versa, while
a spin exchange between the neighboring sites x, y ∈ �N is a spontaneous exchange of the
order parameters at the two locations. For instance, a spin flip can model the desorption of
a particle from a surface described by the lattice to the gas phase above and conversely the
adsorption of a particle to the surface [2, 53]. Such a model has also been proposed recently
for modeling unresolved features of tropical convection [42].

For a configuration σ we denote by σx the configuration which differs from σ by an order
parameter flip at site x. The dynamics is described by a continuous time Markov Chain with
state space �: the configuration update σ → σx occurs with a rate c(x,σ ), i.e., the order
parameter at x changes over the time interval [t, t + �t] with the probability c(x,σ )�t +
o(�t). The resulting stochastic process {σt }t≥0 is a continuous time jump Markov process
with a generator defined in terms of the rate c(x,σ ), [37]. The condition of detailed balance,

c(x,σ )e−βH(σ) = c(x,σ x)e−βH(σx), (2.3)

imposed on the rates implies that the jump dynamics leaves the Gibbs states invariant.
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The simplest example is the Metropolis-type dynamics [18], which define a Monte Carlo
(MC) relaxation algorithm for sampling from the Gibbs measure (2.2). However, in non-
equilibrium chemical applications one also considers Arrhenius dynamics. Such dynamics
is justified when the binding of species on a surface or within a pore is relatively strong,
desorption and diffusion can be modeled as a hopping process from one site to another or
to the gas phase, with a transition probability that depends on the potential energy surface,
e.g., [2]. The Arrhenius rate for the adsorption/desorption mechanism is

c(x,σ ) = d0
(
1 − σ(x)

) + d0σ(x) exp
[−βU(x,σ )

]
, (2.4)

where the potential

U(x,σ ) =
∑

z �=x,z∈�N

J (x − z)σ (z) − h(x),

is the total energy of a particle located at the lattice site x ∈ �N . Typically, an additional
term corresponding to the energy associated with the surface binding of the particle at x,
can be also included into the external field h in U ; the rate constant d0 is related to the
pre-exponential factor of the microscopic processes. Similarly, one can define Arrhenius
particle diffusion [52], where the configuration updates are carried out via spin exchange
dynamics, i.e., σx,y is the new configuration that resulted from the exchange between the
order parameter at the sites x and y.

2.1.2 Coarse-Grained Stochastic Processes

In the series of papers [27, 28, 35] the authors initiated the development of mathematical
strategies for the coarse-graining (CG) of stochastic lattice dynamics. One constructs the
coarse grid �̄M by dividing I = [0,1) in M coarse cells, each of which contains q (micro-)
cells, see Fig. 1(a). Each coarse cell is denoted by Ck, k = 1, . . . ,M . A typical choice for
the coarse variable in the context of Ising-type models is the block-spin over each coarse
cell Ck . We consider the process

(Tσt )(k) :=
∑

y∈Ck

σt (y), k = 1, . . . ,M. (2.5)

If Tσt is a Markov process then {σt }t≥0 is called lumpable. However, in general, Tσt is not
a Markov process, which creates serious mathematical and computational difficulties in the
study and the usefulness of the coarse-grained process.

The perspective in [27, 28, 35] is to derive an approximating Markov process {ηt }t≥0, for
the true microscopic average Tσt and control the ensuing numerical errors. For example,
for the microscopic Arrhenius dynamics (2.4), we obtain a birth-death Markov process with
states η = {η(k) ≡ ∑

x∈Ck
σ (x) : k ∈ �̄M} as a Markovian coarse-grained approximations of

(2.5). The process is defined by adsorption and desorption rates of a single particle in the
coarse cell Ck

ca(k, η) = d0

(
q − η(k)

)
, cd(k, η) = d0η(k) exp

[−βŪ(k)
]
, (2.6)

where the CG interaction potential is given by

Ū (l) =
∑

k �=l,k∈�̄M

J̄ (l, k)η(k) + J̄ (0,0)(η(l) − 1) − h̄(l),
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and the two-body CG potential J̄ is defined by the local average

J̄ (k, l) = 1

q2

∑

x∈Ck

∑

y∈Cl

J
(|x − y|) and J̄ (k, k) − 1

q(q − 1)

∑

x∈Ck

∑

y∈Ck

J
(|x − y|). (2.7)

The potential J̄ can be interpreted as a local mean-field approximation as it describes in-
teractions between the cells Ck and Cl under the assumption that fluctuations of individual
spins in the cells are small. The effective external field h̄ is defined by a similar averaging.
While such choice may appear natural from the physical point of view we show later that
it also can be used as a suitable starting point for an error expansion. The CG diffusion
dynamics can be derived in a similar way, see [35].

Computationally, the CG Markov process {ηt }t≥0 is advantageous over the underlying
microscopic {σt }t≥0, since it has a smaller state space and can be simulated much more
efficiently. An added computational advantage of the CG process is that the long-range
interaction potential (2.10) is compressed through the CG procedure into the potential (2.7).
We refer to all such CG algorithms as Coarse-Grained Monte Carlo (CGMC) methods. It is
important to note that, by construction, the invariant measure for the CG process {ηt }t≥0 is
again a Gibbs measure given by

μ̄
(0)
M (dη) = 1

Z̄
(0)
M

exp
(−βH̄ (0)(η)

)
P̄M(dη), (2.8)

where the product binomial distribution P̄M(dη) is the exact coarse-graining of the prior
measure PN(dσ), and the associated CG Hamiltonian H̄ (0) is derived from the microscopic
Hamiltonian H ,

H̄ (0)(η) = −1

2

∑

l∈�̄M

∑

k �=l,k∈�̄M

J̄ (k, l)η(k)η(l) − 1

2
J̄ (0,0)

∑

l∈�̄M

η(l)(η(l) − 1)

+
∑

k∈�̄M

h̄η(k). (2.9)

Note that (2.9) defines a hierarchy of MC models spanning from Ising (q = 1) to the mean-
field (q = N ) models.

A closely related coarse-grained Hamiltonian was suggested independently in [24, 25],
where it was constructed in an equilibrium context using a wavelet expansion. A different
CGMC version of (2.9) was proposed in [11] for the CG of the nearest-neighbor Ising model.
There the authors replaced the local mean field type approximations in the coarse cells with a
quasi-chemical approximation, equivalent to a local Bethe approximation of the Ising model.

2.2 Lattice Systems with Intermediate/Long-Range Interactions

Coarse-graining methods can provide a powerful computational tool in molecular simula-
tions, however, it has been observed that in some regimes important macroscopic properties
may not be captured properly. For instance, (over-)coarse graining in polymer systems may
yield wrong predictions in the melt structure [1]; similarly wrong predictions on crystalliza-
tion were also observed in the CG of complex fluids, [45]. In CGMC for lattice systems,
hysteresis and critical behavior may not be captured properly for short and intermediate
range potentials, [28], see also Fig. 2. On the other hand, it has also been demonstrated
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Fig. 2 Comparison of CG
schemes for L = 8: the direct
numerical simulation (DNS)
q = 1, q = 8 (CGMC without
corrections), q = 8 (CGMC with
corrections) and the mean-field
Curie-Weiss model L = N (solid
line). Note the agreement of the
(higher-order) CGMC with
corrections and the DNS

computationally that CGMC performs well in the case of long-range interactions, where
traditional MC methods experience a serious slow-down.

Motivated by such observations, in our recent work we analyzed under what conditions
CG methods perform satisfactorily, and how to quantify the CG approximations from a
numerical analysis perspective. We focus here on systems with intermediate or long range
interactions, i.e., we consider symmetric potentials such that a particle at a given site on �N

interacts with neighboring sites at the distance less or equal to L and J has the form

J (x − y) = 1

L
V

(
N(x − y)

L

)
, x, y ∈ �N, (2.10)

where V (r) = V (−r), and V (r) = 0, |r| ≥ 1. The interaction length L along with the inverse
temperature β and properties of V will impose restriction on the coarse-graining size q .
A similar analysis can be carried out also for long-range potentials with specific decay/blow-
up conditions, see [3]. However, the assumption of a fixed potential length L simplifies the
presentation of the estimates, see the definition of the parameter in (2.12).

Lattice systems characterized by (2.10) are good test cases for analyzing coarse-graining
strategies since on one hand they exhibit complex behaviors such as phase transitions, nu-
cleation and hysteresis, while on the other they present a serious challenge to conventional
MC methods due to the large number of interacting neighbors involved in each MC step.
A key point though is that systems with long-range interactions are usually more tractable
analytically hence we are able to carry out detailed error analysis for coarse-graining approx-
imations from a number of different perspectives. Next we review some of these results.

2.2.1 Error Quantification in CGMC Approximations

In [34] we studied CGMC algorithms from a numerical analysis perspective in the non-
equilibrium context, by estimating the error between microscopic, (2.4) and coarse-grained,
(2.6), adsorption/desorption lattice dynamics. The key step in this direction was to use the
concept of relative entropy. We obtained an estimate between the time-dependent probability
measures on the path space between CGMC, {ηt }t≥0, and the exact projection on the coarse
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variables of the microscopic probability measure, Tσt

R
(
DTσ,ρ

[0,T ] | Dη,ρ

[0,T ]
) = OT (ε), t ∈ [0, T ], (2.11)

where Dη,ρ

[0,T ] (resp. DTσ,ρ

[0,T ]) is the distribution of {ηt }t∈[0,T ] (resp. {Tσt }t∈[0,T ]) with fixed
initial condition ρ. The specific relative entropy is defined as

R
(
DTσ,ρ

[0,T ] | Dη,ρ

[0,T ]
) = 1

N

∫
log

(
dDTσ,ρ

[0,T ]
dDη,ρ

[0,T ]

)
dDTσ,ρ

[0,T ]

and ε is a “small” parameter given by

ε ≡ β‖∇V ‖1

(
q

L

)
. (2.12)

Such a relative entropy estimates give a mathematical criterion for analyzing the parameter
regime, i.e., the degree of coarse-graining versus the interaction range, temperature and
oscillations in the potential, for which CGMC is expected to give errors within a given
tolerance. Note that the scaling factor N−1 is related to the fact that the system is extended,
i.e., it has a large number of N particles. Consequently, the proper error quantity that needs
to be tracked is the loss of information per particle (2.11).

Although (2.11) provides a bound on the entire time-dependent probabilities, estimates
on specific observables are also desirable as they could be accurately simulated with less
stringent CG strategies. This point of view necessitates the use of a weak convergence frame-
work for the study of the error between CGMC and the direct numerical simulation. For
instance, in [29] we proved the second order accuracy of CGMC in terms of the parameter
ε in (2.11):

∣∣E
[
ψ(TσT )

] − E
[
ψ(ηT )

]∣∣ ≤ CT ε2, t ∈ [0, T ]. (2.13)

In order to obtain that the constant CT is independent of the system size N it is essential to
obtain an upper bound on the total number of jumps up to time T . This is a key point related
to the extensivity of the system and it is shown rigorously using a Bernstein-type argument
on the discrete derivatives of the solutions to the backward equation. The technique is similar
to obtaining Bernstein estimates for parabolic PDEs. In [29] we used these analytical results
to guide CGMC algorithms and we demonstrated a CPU speed-up in demanding computa-
tional regimes that involved nucleation, phase transitions and metastability; see Figs. 2, 3
and Table 1 for related simulations and comparisons with the higher order methods devel-
oped in Scheme 2.1.

2.2.2 Higher-Order CG Schemes and Cluster Expansions

In [32] our goal was to develop more accurate coarse-graining schemes than those proposed
in [27, 35], and quantify their effectiveness in terms of a priori and a posteriori error analy-
sis. The work [32] can also be viewed as a blueprint for tackling more complex problems
described in the subsequent sections. We briefly outline the method and the results. We first
recall the renormalization group map, [20, 26]

e−βH̄M(η) =
∫

e−βHN (σ)PN(dσ |η), (2.14)
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Fig. 3 Probability density
function (PDFs) for the switching
times between two uniform
states; comparisons between
different coarse-grainings q . The
estimated mean times for each
PDF are shown in the figures. All
PDFs comprised of 10000
samples and the histogram is
approximated by 200 bins. The
potential is a piecewise constant
potential with interaction range is
L = 100 and βJ0 = 5.0

Table 1 Approximation of τ̄T , ‖ρq
τ −ρτ ‖

L1 and relative error. Measurements based on averaging over 10000
independent realizations for each q

N = 1000, βJ0 = 6.0, h = 0.4406 CGMC without corrections

L q τ̄T ‖ρq
τ − ρτ ‖

L1 Rel. err.

100 1 486.91 0 0

100 10 491.69 0.0022 1.16%

100 20 503.96 0.0025 3.68%

100 25 511.67 0.0032 5.27%

100 50 584.08 0.0074 20.17%

100 100 980.92 0.0246 101.82%

CGMC with corrections

L q τ̄T ‖ρq
τ − ρτ ‖

L1 Rel. err.

100 50 480.78 0.0025 1.08%

100 100 479.00 0.0028 1.45%

where H̄M(η) is, by definition, the exactly coarse-grained Hamiltonian and PN(dσ |η) is
the conditional probability (with respect to the prior distribution PN ) of having a micro-
scopic configuration σ given a CG configuration η. Note that, due to the high-dimensional
integration, H̄M(η) cannot be calculated explicitly and used in numerical simulations. Our
perspective is to approximate it by viewing it as a perturbation of H̄ (0) in (2.9). Using this
first approximation we have

H̄M(η) = H̄
(0)
M (η) − 1

β
log

∫
e−β(HN (σ)−H̄

(0)
M

(η))PN(dσ |η). (2.15)

The fact that the conditional probability PN(dσ |η) factorizes at the level of the coarse
cells allowed us to use cluster expansion techniques to write a series expansion for H̄M(η)
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around H̄
(0)
M

H̄M(η) = H̄
(0)
M (η) + H̄

(1)
M (η) + · · · + H̄

(p)

M (η) + N × O(εp+1), p = 1, . . . (2.16)

uniformly in η; also recall that Hamiltonians scale linearly with N , hence the N × O(εp+1)

term. The small parameter ε is given again by (2.12).
The error estimates for the improved CG schemes are calculated in terms of the specific

relative entropy of the corresponding equilibrium Gibbs measures, which here is used to
assess the information loss for a given level of coarse-graining.

An immediate outcome of our analysis is that the CG scheme using H(0) (2.8) is actually
second-order accurate, i.e.,

R
(
μ̄

(0)
M |μN ◦ T−1

) = O(ε2).

This is due to cancellations induced by our choice of H(0) which is selected in (2.9) so that

H̄ (0)(η) =
∫

HN(σ)PN(dσ |η). (2.17)

The correction terms H̄
(1)
M (η), H̄

(2)
M (η) etc. include multi-body interactions and are cal-

culated explicitly in [32]. The term H̄
(0)
M (η) consists of only two-body interactions as does

H̄
(1)
M (η) whereas H̄

(2)
M (η) consists of three-body interactions. As an example we define the

improved CG scheme with p = 3.

Scheme 2.1 (3rd order accurate)

1. Hamiltonian: H̄
(0)
M + H̄

(1)
M + H̄

(2)
M , where the corrections are

H̄
(1)
M (η) =

∑

k<l

�
(1)

2

(
k, l;η(k), η(l)

) +
∑

k

�
(1)

1

(
k;η(k)

)
(2.18)

where,

�
(1)

2

(
k, l;η(k), η(l)

) = β

2

(
j 1
kl

[
E2(η(k))E2(η(l))E1(η(k))E2(η(l))

− E2(η(k))E2(η(l)) + E1(η(k))E1(η(l))
]

+ j 2
kl

[−2E2(η(k))E2(η(l)) + E2(η(k))E1(η(l))

+ E1(η(k))E2(η(l))
])

,

�
(1)

1 (k;η(k)) = β

8

(
4j 2

kk

[−E4(η(k)) + E3(η(k))
]

+ 2j 1
kk

[
E4(η(k)) + E2(η(k)) − 2E3(η(k))

])
,

and

H̄
(2)
M (η) =

∑

k �=l

�
(2)

2

(
k, l, k;η(k), η(l), η(k)

)

+
∑

k<l<m

�
(2)

3

(
k, l,m;η(k), η(l), η(m)

)
, (2.19)
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where

�
(2)

2 (k, l, k;η(k), η(l), η(k)) = −β

2

(
j 2
kkl

[−E3(η(k))E1(η(l)) + E2(η(k))E1(η(l))

+ E1(η(k))E2(η(l)) − E3(η(l))E1(η(k))
])

,

�
(2)

3 (k, l,m;η(k), η(l), η(m)) = β
(
j 2
klm

[
E1(η(k))E1(η(m))(1 − E2(η(l)))

]

+ j 2
lmk

[
E1(η(k))E1(η(l))(1 − E2(η(m)))

]

+ j 2
mkl

[
E1(η(m))E1(η(l))(1 − E2(η(k)))

])
.

The terms Ei are defined in (2.20)–(2.23) and the quantities j 1
kl, j

2
kl, j

2
k1k2k3

are defined in
(2.24)–(2.26).

2. CG Gibbs measure μ̄
(2)
M,β(dη) = 1

Z̄
(2)
M

e−(H̄
(0)
M

+H̄
(1)
M

+H̄
(2)
M

)P̄M(dη).

The quantities Ei defined in the scheme are computed explicitly using conditional ex-
pectation of the prior PN , conditioned on η(k) = η

E1(η) := E
[
σ(x)|η] = η

q
, (2.20)

E2(η) := E
[
σ(x)σ (y)|η] = η(η − 1)

q(q − 1)
, (2.21)

E3(η) := E
[
σ(x)σ (y)σ (z)|η] = η(η − 1)(η − 2)

q(q − 1)(q − 2)
, (2.22)

E4(η) := E
[
σ(w)σ(x)σ (y)σ (z)|η] = η(η − 1)(η − 2)(η − 3)

q(q − 1)(q − 2)(q − 3)
, (2.23)

assuming in each case that all spin sites w,x, y, z are different. Furthermore, the interparticle
potential covariances are defined as

j 1
kl :=

∑

x∈Ck
y∈Cl

(
J (x − y) − J̄ (k, l)

)2
, (2.24)

j 2
kl :=

∑

x∈Ck

y,y′∈Cl

(
J (x − y) − J̄ (k, l)

)(
J (x − y ′) − J̄ (k, l)

)
, (2.25)

j 2
k1k2k3

:=
∑

x∈Ck1
y∈Ck2 ,z∈Ck3

(
J (x − y) − J̄ (k1, k2)

)(
J (y − z) − J̄ (k2, k3)

)
. (2.26)

For the Scheme 2.1 we have

R(μ̄
(2)
M,β |μN,β ◦ T−1) = O(ε3), (2.27)

where ε is given by (2.12).
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Remark 2.1

1. Clearly the choice of H̄ (0) in (2.16) is crucial to our method and it should be such that, (i)
it is explicitly computable, and (ii) it provides a good estimate to the microscopic model
in order to initiate the expansion (2.16). In Sect. 2.3 we extend this approach to more
realistic systems with both short and long-range interactions and demonstrate how the
small parameter ε (2.12) is determined.

2. Notice that we do not perform the usual high-temperature expansion (at the microscopic
level) using the Bernoulli product measure PN(dσ) as it is standard in numerous appli-
cations of cluster expansions in statistical mechanics, e.g., [17, 21, 47]. We rather expand
around (2.8) using the product properties of the conditional distribution PN(dσ |η) at the
coarse level. This leads to a very substantial gain in the domain of applicability of the
expansion. Cluster expansions around mean-field models have been carried out in the sta-
tistical physics literature (e.g. [6, 9, 40, 48]) for the purpose of studying critical behavior
using a known (mean field) model as a starting point for the cluster expansions. These
approaches are closely related to ours, although our expansion is around a better initial
approximation than the mean-field model, as can be seen in a comparison of the mean-
field and the CG (without corrections) simulations in Fig. 2. This is true in part because
(2.8) form a hierarchy in the CG level q , spanning from DNS (q = 1) to mean field, thus
giving added flexibility with which the compression of the interaction range L can be
handled. Furthermore, our focus is on the computational schemes and related numerical
analysis questions such as a priori (2.27) and a posteriori estimates and adaptivity, see
Sect. 5.

3. Although we have described the procedure leading to higher-order schemes for the case
of Ising spins the derivation is applicable to systems with multiple chemical species or
components. Obviously as the number of components increases the number of inter-
component interactions in multi-body terms of the expansions will grow. However, hav-
ing explicit quantification of the error helps to balance computational complexity, the
level of coarse-graining q and accuracy for estimated observables.

2.2.3 Computational Implications of (2.27) and the Effect of Multi-Body Corrections

The multi-body interactions given by H̄
(2)
M (η) in Scheme 2.1 are temperature-dependent and

hence they can be crucial in low temperature regimes; similarly the dependence of the small
parameter (2.12) in (2.27) on the interaction potential suggests that multi-body corrections
are also important when ‖∇V ‖1 is not small. The primary practical advantage of the higher-
order corrections—more than higher accuracy—is in allowing us to extend the regime of
validity of the expansion and to obtain an accurate CG of the Gibbs measure even if the
parameter ε in (2.11) is not necessarily much smaller than one.

For instance in systems with intermediate (but not necessarily long) range interactions L.
It has been already observed that hysteresis and critical behavior are not captured properly
for short and intermediate range potentials, [28]. In Fig. 2 we present an example with
relatively short range interactions and high coarse-graining up to the interaction range, i.e.,
q = L = 8; we compare schemes with one term (CGMC without corrections) and two terms
from the expansion (2.16). Note that here we are far from the ε ∼ q

L
� 1 limit suggested

by (2.27); the results are dramatically improved when the next-order corrections H̄
(1,2)
M are

added. In contrast, and in agreement with the error estimate (2.27), for smoother interaction
potentials such as long-range power laws corrections do not offer much improvement in
the simulations, see the hysteresis diagram in Fig. 4. Similar issues arise in the simulation
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Fig. 4 Comparison of different
fully resolved (q = 1),
coarse-grained q = 50,
coarse-grained q = 200,
coarse-grained q = 50 with
corrections and coarse-grained
q = 100 with corrections. The
potential here is the decaying
power-law potential with
exponent α = 0.8. Clearly,
corrections terms have minimal
impact as (2.6) is performing
well for q = 50

of switching times and rare events, see Fig. 3 and Table 1, where, again, the addition of
higher-order corrections provide a dramatic improvement.

The multi-body interactions such as the three-body term H̄
(2)
M in Scheme 2.1 can be com-

putationally expensive when implemented directly, due to the potentially large number of
three-body terms. Hence it is important to understand (a) when the multi-body interactions
are necessary in a CG scheme in order to achieve an error for a given tolerance in (2.27), and
(b) if multi-body corrections are needed how they can be compressed via suitable trunca-
tions. For example, (2.27) and (2.12) suggest that when coarse-graining smooth long-range
potentials the scheme based on (2.9) is an accurate approximation and does not require the
computationally expensive multi-body interactions in Scheme 2.1. On the other hand we
can make use of decay properties of the interaction potentials to show that the multi-body
interactions can be compressed by truncating them to a given tolerance. Further strategies to
decrease the computational cost of implementing the multi-body interactions are discussed
in [3].

In the coarse graining literature of polymer chains essentially all existing CG schemes
do not include the multi-body interactions. In view of our analysis it is not surprising that
they perform well at high-temperature regimes while they tend to break down at lower tem-
peratures. We will revisit this issue in Sect. 6, where we discuss the McCoy-Curro scheme
for CG of polymer chains, which typically accounts only for two-body terms in the CG
Hamiltonian.

2.3 Lattice Systems with Short and Long-Range Interactions

Lattice and off-lattice systems characterized by competing interactions arise in numerous
applications, for instance in micromagnetics, models of epitaxial growth, macromolecules,
etc. We focus on lattice systems, and consider a Hamiltonian (2.1) where in addition to the
long-range potential we incorporate a short-range potential

K(x − y) = 1

S
Vs

(
N |x − y|

S

)
, x, y ∈ �N, (2.28)

where S � L and Vs has similar properties as V in (2.10). When S = 1 we have the usual
nearest-neighbor interaction. The new Hamiltonian includes long and short-range interac-
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tions, (2.10) and (2.28) respectively

H
(L,S)
N = H

(L)
N + H

(S)
N . (2.29)

The corresponding Gibbs state (2.2) is defined accordingly. Our goal is to develop CGMC
algorithms for this class of problems in equilibrium and non-equilibrium. To achieve this
task, in the remainder of Sect. 2 and in Sect. 4 we explore two separate strategies, using our
earlier work as a starting point:

1. An applied math/statistical mechanics perspective of expanding (using cluster expan-
sions) around a “carefully” chosen first CG guess, in analogy to (2.16).

2. A statistics perspective that performs importance sampling with the transformation of
measure derived from a “carefully" chosen CG guess, given, for instance, by (2.4)
or (2.8).

The common theme behind both ideas is the observation that long-range interactions can
be handled very efficiently by CGMC with or without corrections, as demonstrated in the
previous section. On the other hand short-range interactions are relatively inexpensive and
one would be tempted to simulate them with Direct Numerical Simulation (DNS) provided
there is a suitable splitting of the algorithm into short and long-range parts, that can repro-
duce equilibrium Gibbs states and transient dynamics such as domain switching, nucleation,
etc. Both approaches are in part analytical, relying on explicitly derived rates and, in part
computational and statistical, when dealing with terms involving short-range interactions.

2.3.1 Coarse-Graining and Cluster Expansions

The proposed approach follows the strategy outlined in Sect. 2.2 and described in more
detail in [33]:

Step 1: Identify a suitable new prior distribution P
(S)
N . We augment the product Bernoulli

measure PN in (2.2), adding short-range interactions in the form,

P
(S)
N (σ ) = ⊗kp

(S)(σ |k), p(S)(σ |k) = 1

ZCk

e
−H

(S)
Ck

(σ |k)
PN(σ |k), (2.30)

where on each coarse cell Ck ,

H
(S)
Ck

(σ |k) =
∑

x,y∈Ck,
y �=x

K(x − y)σ (x)σ (y)

is defined as the restriction of H
(S)
N , without including boundary interactions from the

neighboring coarse cells; here σ |k denotes the restriction of σ on Ck .
Step 2: CG long-range Hamiltonian. In analogy to (2.17) we may now define the new CG

long-range Hamiltonian

H̄
(L)
M (η) =

∫
H

(L)
N (σ )P

(S)
N (dσ |η), (2.31)

where P
(S)
N (dσ |η) is the conditional probability obtained from (2.30) by conditioning

P
(S)
N (dσ ) on the CG state η. Note that under the approximation of periodic boundary con-

ditions on each coarse cell or by a suitable approximation of the potential J by (2.7), the
expression (2.31) is identical to (2.9). On the other hand, the short-range interactions enter
in the CG prior (2.33) below.
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Step 3: CG Gibbs state. We formulate the analogue of (2.8) by first considering the exact
coarse-graining of (2.30). We obtain

P̄
(S)
M (dη) =

∏

k

1

Z̄Ck

e
−H̄

(S)
Ck

(η(k))
P̄M(dη) (2.32)

where the CG Hamiltonian H̄
(S)
Ck

is given by the exact renormalization group map on a
single coarse cell Ck

e
−H̄

(S)
Ck

(η(k)) =
∫

e
−H

(S)
Ck

(σ )
PN

(
dσ |k|η(k)

)
.

Finally, the first approximation of the CG Gibbs state is defined as

μ̄
(L,S)
M (dη) = 1

Z
(L,S)
M

e−βH̄
(L)
M

(η)P̄
(S)
M (dη). (2.33)

Step 4: Error analysis The error between (2.33) and the projection of the microscopic Gibbs
state on the coarse variables is shown in [33] to be

R
(
μ

(L,S)
M | μN ◦ T−1

) = O

(
β

[
S

q
‖Vs‖∞ + q

L
‖∇V ‖1

])
, where S � L. (2.34)

This expression provides, at least qualitatively, an estimate on the regimes of validity of the
method, and on the “optimal” CG, q = qopt. The corresponding error according to (2.34) is
then

qopt ∼
√

SL
‖Vs‖∞
‖∇V ‖1

, R
(
μ

(L,S)
M | μN ◦ T−1

) = O

(
β

√
S

L
‖Vs‖∞‖∇V ‖1

)
. (2.35)

Remark 2.2

1. The choice of (2.30) can be ultimately justified by the error analysis in (2.34) and exten-
sive numerical exploration. However, the original motivation rests on two related points.
First, (2.30) is chosen so that P

(S)
N (σ |η) is a product measure over coarse cells thus, ap-

plying (2.17) gives rise to a computable formula similar to (2.9). Secondly, we need to
split short and long-range interactions in our simulations. We can carry out the former
with DNS in a single coarse cell Ck during the evaluation of H̄

(0)
Ck

, and the latter with
CGMC using (2.33).

2. We also note that the optimal CG q = qopt suggested by (2.34), allows us to coarse-
grain beyond the range S, in contrast with the estimate (2.27), where the size of CG was
restricted by the potential radius.

3. We have presented a choice for the initial approximation of the coarse-grained Hamil-
tonian such that the prior measure (2.30) preserves the product structure. The choice
exploits explicit splitting of short and long-range interactions in the microscopic Hamil-
tonian. Consequently, the approximate CG Gibbs state (2.33) has only limited region of
validity which is controlled by the error estimate (2.34). As a part of the general method-
ology explained in this section the expansion of coarse-graining error allows for identi-
fying parameter regimes which lead to satisfactory approximation. More refined higher
order estimates such as (2.27) are possible; they require the use of a cluster expansion
and are discussed in [33].
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2.3.2 Improved CG Schemes

The source of error in (2.34) originates in two approximations: the O(q/L) term is due to
the approximation of the long-range interactions, see (2.27), while the error O(S/q) is due
to neglecting the coarse cell/cell interaction terms when considering the prior (2.30). It is
precisely the latter omission that makes (2.30) a product measure. A closer inspection of
the calculations reveals that this latter error depends on the strength of the nearest-neighbor
interactions as described by K = K(x − y), thus it is non-negligible for strong interactions
or low temperatures. This is the regime where our product measure approximation (2.30) is
expected to be inadequate. In this case we need to include correction terms that improve the
CG approximation. In [33] we introduce a different prior by making a more educated guess
than (2.30) which already includes multi-body coarse cell correlations. An expansion in this
spirit was already suggested for the nearest-neighbor Ising model in [5]. The ensuing cluster
expansion is again not the usual high-temperature series around the uniform prior PN in
(2.2) and as in [5] it allows us to carry through the expansion to much lower temperatures.

2.3.3 Computational Strategies

For systems with long-range interactions, CGMC allows for fast and accurate simulation
in spite of their presence: computational savings are obtained through the compression of
the interaction potential (2.7) similarly to wavelet or fast multipole methods. Significant
additional computational savings result due to the fact that CGMC involves only CG ob-
servables defined on a coarser lattice than the microscopic lattice �N , [28]. The resulting
reduction in the effective radius of interactions in (2.7) leads also to better KMC algorithmic
properties when considering lists of neighbors and possibly easier development of parallel
implementations.

In the case of short and long-range interactions the CGMC algorithm is based on the CG
Gibbs measure (2.33), which suggests an efficient splitting of the algorithm into a CGMC
long-range piece and a short-range simulation over a single coarse cell. Here we are faced
with two options: (a) to pre-compute the CGMC rates by calculating H̄

(0)
Ck

(η(k)) in (2.33)

with microscopic DNS and subsequently use them in CGMC; or (b) calculate H̄
(0)
Ck

(η(k))

on-the-fly during the CGMC simulation only for the η(k)’s involved in the particular sim-
ulated path. In the second case we move back and forth between a micro-solver (for the
short-range) and a coarse step (using CGMC), as in general micro-solver methodologies
proposed in [15, 36]. However, our derived formula (2.33) suggests precisely how the sim-
ulation should be split into a macro- and a micro-solver step. In conclusion, we remark
that whatever approach is selected pre-computation or on-the-fly, the micro-simulation is
performed in micro-canonical ensemble—for a fixed η(k)—on a single coarse cell Ck , us-
ing only inexpensive short-range interactions. A related multigrid approach combined with
CGMC was introduced earlier in [11] for the simulation of nearest-neighbor Ising models.
There a splitting between microscopic and CG steps is also performed. The short-range
microscopic simulations run on a single coarse cell with periodic boundary conditions are
employed to calculate computationally CG rates such as (2.6).

3 Microscopic Reconstruction

Reversing the coarse-graining, i.e., reproducing “atomistic” properties, directly from CG
simulations is an issue that arises extensively in the polymer science literature, [44, 51].
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The principal idea is that computationally inexpensive CG simulations will reproduce the
large-scale structure and subsequently microscopic information will be added through mi-
croscopic reconstruction. One such an example is the calculation of diffusion of penetrants
through polymer melts, reconstructed from CG simulation, [44]. Current approaches ad-
dress the equilibrium case and rely on a semi-empirical approach by conditioning on most
CG variables and carrying out a local relaxation of the microscopic system.

We first provide a general mathematical framework for the problem of reconstruction of
the microscopic equilibrium properties of the system. We recall that μN(dσ) is the Gibbs
measure (2.2) and we define

μ̄M(dη) = 1

Z̄M

e−βH̄ (η)P̄M(dη)

as the exact coarse-grained measure with H̄ (η) given by (2.14). Then we have the relation

μN(dσ) = e−β(H(σ)−H̄ (η))PN(dσ |η)μ̄M(dη) ≡ μN(dσ |η)μ̄M(dη). (3.1)

We can think of the conditional probability μN(dσ |η) as (perfectly) reconstructing μN(dσ)

from the exactly CG measure μ̄M(dη). Although many fine-scale configurations σ cor-
respond to a single CG configuration η, the “reconstructed” conditional probability mea-
sure μN(dσ |η) is uniquely defined, given the microscopic and the coarse-grained measures
μN(dσ) and μ̄M(dη) respectively.

A coarse-graining scheme provides us with an approximation μ̄
app
M (dη) for μ̄M(dη), at

the coarse level. The approximation μ̄
app
M (dη) could be, for instance, any of the schemes dis-

cussed in Sects. 2.2 or 2.3. To provide a reconstruction we need to lift the measure μ̄
app
M (dη)

to a measure μ
app
N (dσ) on the microscopic configurations. That is, we need to specify a

conditional probability νN(dσ |η) and set

μ
app
N (dσ) := νN(dσ |η)μ̄

app
M (dη). (3.2)

In the spirit of our earlier discussion, it is natural to measure the efficiency of the reconstruc-
tion by the specific relative entropy R(μ

app
N |μN). A simple computation shows that

R(μ
app
N | μN) = R(μ̄

app
M | μ̄M) +

∫
R(νN(·|η) | μN(· | η))μ̄

app
M (dη), (3.3)

i.e., relative entropy splits the total error at the microscopic level into the sum of the error at
the coarse level and the error made during the reconstruction.

The first term in (3.3) can be controlled, for example, by our cluster expansion results,
see (2.27), (2.34). In order to obtain a successful reconstruction we then need to con-
struct νN(dσ |η) such that (a) it is easily computable and implementable, and (b) the error
R(νN(dσ |η) | μN(dσ | η)) should be of the same order as the first term in (3.3).

Example The simplest example of reconstruction is obtained by considering a microscopic
system with intermediate/long range interactions (2.10), simulated in terms of the measure
(2.8). We set

μ̄
app
M (dη) = μ̄

(0)
M (dη), νN(dσ |η) = PN(dσ |η), (3.4)

i.e., we first sample the CG variables η involved in (2.8), using the CGMC algorithm (2.6);
then we reconstruct the microscopic configuration σ by distributing the particles uniformly
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on the coarse cell, conditioned on the value of η. Since PN(dσ |η) is a product measure this
can be done numerically in a very easy way, without communication between coarse cells
and only at the coarse cells where an update has occurred in the CGMC algorithm. In this
case the analysis in [31] yields the estimates

R(μ̄
(0)
M |μ̄M) = O(ε2), R

(
μN(· | η)|PN(· | η)

) = β

N

(
H̄ (0)(η) − H̄ (η)

) = O(ε2),

hence the reconstruction is second order accurate and of the same order as the coarse-
graining given by (2.9).

Note that (3.4) implies that if we use Scheme 2.1, which is third-order accurate, and carry
out the reconstruction using PN(dσ |η), we will obtain a reconstruction (3.2) which is only
second order accurate. This problem is treated in the recent paper [49] where the authors
decompose the coarse lattice into odd and even alternating coarse cells (denoted O and E).
The conditional probabilities are then decomposed in the form

μN(σ |η) = μN,E(σ E |η)μN,O(σO|σ E , η) (3.5)

and similarly for νN(·|η). The second factor μN,O(σO|σ E , η) factorizes nicely and can be
computed through direct simulation and used for reconstruction. The first term μN,E(σ E |η)

is approximated in [49] using cluster expansions.
The reconstruction in the case of short and long-range interactions can be done in a

similar way to (3.4), at least as a first approximation, using the conditional prior distribution
P

(S)
N (dσ |η) arising from (2.30). It is discussed in more detail in [33].

Dynamics and Reconstruction The problem of reconstruction can also be formulated for
the case of dynamics. Interestingly the issue of microscopic reconstruction arises naturally
in the mathematical error analysis in [29, 34]. One of the mathematical difficulties in car-
rying out error estimates lies in the fact that {Tσt }t≥0 defined in (2.5) is (in general) non-
Markovian, while it needs to be compared to the approximating Markov process {ηt }t≥0.
To circumvent this mathematical difficulty in [34] the authors construct an auxiliary mi-
croscopic Markov process {γt }t≥0 from {ηt }t≥0, which is an approximation of {σt }t≥0. The
reconstruction is carried out by distributing particles uniformly on each coarse cell, using
precisely (3.4). This enforces a local equilibrium, which is crucial in obtaining the 2nd or-
der accuracy in (2.13). It is shown in [29] that for any microscopic observable φ, one has an
analogous error estimate to (2.13) for {σt }t≥0 and {γt }t≥0

|E[φ(σT )] − E[φ(γT )]| ≤ CT ε2. (3.6)

It is also conceivable that {γt }t≥0 can be used as a systematic procedure for model refinement
or adaptivity. We discuss such tools in Sect. 5.

4 Importance Sampling and Coarse-Graining

In the study of lattice systems with short and long-range interactions in Sect. 2.3 our ap-
proach was essentially based on asymptotics carried around a reasonable first guess (e.g.
(2.27) or (2.34)). This reference state was further improved by including more terms in the
cluster expansion. It is possible to pursue a different but complementary perspective on CG
in both equilibrium and non-equilibrium setting, which is partly based on a statistics ap-
proach. The proposed method replaces the explicit asymptotics with statistics, by carrying
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out importance sampling (IS) around a first CG guess that serves as a “trial process” or “trial
distribution”. As in all importance sampling methods, the goal is to sample from the trial
distribution which is chosen in such a way that it is easy to simulate. On the other hand, the
careful choice of trial distributions is important as it can lead to more efficient sampling,
[41]. Finally, we note that a wealth of sophisticated IS techniques have been long employed
in the simulation of equilibrium problems in statistical mechanics. Examples include protein
folding, polymer chains, etc., see for instance [41, Sects. 3.1, 4.1] and the extensive refer-
ences there in. Similarly, importance sampling is used extensively in finance, e.g. [19], and
in the study of stochastic systems exhibiting rare events, e.g., [14].

In our presentation we focus on the case of dynamics, since the equilibrium sampling is
conceptually same but significantly simpler to implement. For the sake of definiteness we
present the method for the case of adsorption/desorption dynamics (2.4) used as a demon-
strating example in Sect. 2. We assume the potential

U(x,σ ) = U(S)(x, σ ) + U(L)(x, σ ), (4.1)

corresponding the short and long-range interactions in the Hamiltonian (2.29).

Importance Sampling and Change of Measure The principal tool behind the importance
sampling algorithm is a change of measure. We employ a change of measure in order to
replace the evaluation of observables for the lattice dynamics σt with the evaluation of mod-
ified observables for a numerically more tractable dynamics γt . Since both processes are
continuous-time Markov jump processes we can calculate explicitly, in terms of the rates,
see, e.g., Appendix 1 in [37], the change of measure (i.e., the Radon-Nikodym derivative)
(dDσ,ρ

[0,T ]/dD
γ,ρ

[0,T ]) on any path ((ρt )t∈[0,T ]), where Dσ,ρ

[0,T ] (resp. Dγ,ρ

[0,T ]) is the distribution of
{σt }t∈[0,T ] (resp. {γt }t∈[0,T ]) with the fixed initial condition ρ. More precisely,

dDσ,ρ

[0,T ]
dDγ,ρ

[0,T ]

(
(ρt )t∈[0,T ]

) = exp

{∫ T

0

[
λσ (ρs) − λγ (ρs)

]
ds −

∑

s≤T

log
λσ (ρs−)pσ (ρs−, ρs)

λγ (ρs−)pγ (ρs−, ρs)

}
(4.2)

in terms of the rates of σt and γt , where (λσ ,pσ ) and (λγ ,pγ ) are the skeleton processes,
see Appendix 1 in [37]. The sum in the last term runs over the jump times of {γt }t∈[0,T ].
Then for any observable φ we have the transformation formula that relates expected values
computed with respect to the measure of the process {σt }t∈[0,T ] in terms of the averaging on
the process {γt }t∈[0,T ]

E
σ
ρ [φ(σT )] = E

γ
ρ

[
φ(γT )

(
dDσ,ρ

[0,T ]
dDγ,ρ

[0,T ]

(
(γt )t∈[0,T ]

))]
. (4.3)

Relation (4.3) implies that the evaluation of observables for σt at time T reduces to the
evaluation of modified observables that depend on the entire path {γt }t∈[0,T ]. Essentially,
the Radon-Nikodym derivative represents a memory term that provides an exact correction,
possibly of order one, in the approximation of σt by γt .

Example A simple choice for a trial process, although by no means the definite one, as we
discuss further below, is to choose γt associated only with the long-range interactions J . For
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this choice of the trial process we have

dDσ,ρ

[0,T ]
dDγ,ρ

[0,T ]

(
(γt )t∈[0,T ]

) = exp

{∫ T

0

∑

x∈�N

d0e
−βŪ(L)(k(x),Tγs )γs(x)[e−βU(S)(x,γs ) − 1]ds

+
∑

s≤T
∃x∈�N γ

s− (x)=γs (x)+1

βU(S)(x, γs−)

}
. (4.4)

Coarse-Graining and Reconstruction At first glance the formula (4.4) does not seem to
provide a useful algorithmic tool since it involves the microscopic process γt . We construct
the trial microscopic process γt by reconstruction from a computationally inexpensive CG
process ηt . The reconstruction could be carried out with a controlled error as derived in
[29, 34] and not on the entire lattice but only on a particular path. At each jump time we
locally reconstruct the configuration only on the coarse cells where the CG dynamics ηt ex-
hibit a jump. Comparing to the direct numerical simulation performed with the conventional
MC the proposed algorithm uses only the compressed long-range potential and the micro-
scopic process does not have to be constructed on each microscopic cell. The expression
(4.4) provides an abstract splitting of the computational effort into the CGMC piece for the
long-range interactions and the DNS piece for the relatively inexpensive short-range com-
ponent on a smaller configuration space. We include the exact short-range effects through
the calculation of the Radon-Nikodym derivative (4.4), using the reconstructed process γt .

The outlined approach in its generality gives only basic guidelines and it has to be tailored
to a specific case of interactions to be simulated. The mathematical and algorithmic aspects
of the method, as well as extensive simulations will appear in [30]. Finally, we mention
several issues that require special attention.

Remark 4.1

1. Although the formula (4.3) holds in general, the choice of the trial dynamics γt is a
crucial step in all importance sampling methods. In this choice we have to balance two
demands: (a) γt needs to be easy to simulate, or at least easier than DNS, and (b) the sta-
tistical sampling in the calculation of (4.3) needs to be efficient. For instance, in the pre-
vious example, γt is expected to work well at least when its time dependent distribution
is a reasonable approximation of the original process {σt }t≥0, i.e., when the short-range
interactions are not dominant. Otherwise we can improve the first guess by including a
self-interaction approximation for the short range piece such as the one in (2.9). In gen-
eral, an advantage of IS methods is that even a suboptimal guess for the trial distribution
can give good results.

2. Sampling from a given distribution using importance sampling is a powerful statistical
method, [41, 46], which directly inspired all the aforementioned material. It is worth
emphasizing that our focus is however on sampling non-equilibrium processes. Closer to
the statistical practice, we can sample, in a similar way as the one proposed above, from
the distribution (2.2) with the short/long Hamiltonian (2.29). In the case of equilibrium
simulations, we replace the Radon-Nikodym derivative in (4.3) with dμ

(L,S)
N /dμ̂N , where

μ
(L,S)
N is the Gibbs measure corresponding to (2.29), while μ̂N is the trial equilibrium

measure from which we would prefer to sample. One such a choice, in analogy to (4.4),
could be the reconstructed CG measure that includes only long range interactions, see
(2.8). A better trial distribution, as suggested by (2.34), could be reconstructed from
(2.33). Note that for any such choice, estimating the corresponding partition functions
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does not pose a problem since we can either employ the dynamics in the sampling of
the Radon-Nikodym derivative, as in (4.4), or use a more sophisticated estimator for
dμ

(L,S)
N /dμ̂N that does not depend on prefactors, [41].

3. A possible advantage of the importance sampling approach over the asymptotics method-
ology discussed in Sect. 2.3.1 is that the trial distribution does not have to approximate
the target distribution for the method to perform well. On the other hand, it seems rea-
sonable to explore the possibility that the methods can complement each other, as the
different trial processes γt proposed above, suggest. Similarly, for equilibrium sampling
we could use the reconstruction of (2.8), while a better trial distribution, as suggested by
(2.34) can be reconstructed from (2.33) or even taking further into account the coarse cell
corrections, [30].

5 A Posteriori Estimation and Adaptive Coarse-Graining

In this section we explore the possibility of having adaptive coarse-graining schemes, where
the actions of refining and coarsening are carried out according to an error indicator that
can be estimated in the course of coarse-grained simulation. Such estimates in the finite
element/PDE literature are known as a posteriori error estimates. Here we study the error
control in the context of lattice systems considered earlier in Sect. 2.2.

The error estimate (2.27) combined with the cluster expansion in Scheme 2.1 yield an
explicit representation of the error in the coarse-grained numerical approximation. In fact,
in [32] we showed the following a posteriori error estimate for the CG scheme based on (2.8)

R
(
μ̄

(0)
M,β |μN,β ◦ T−1

) = 1

N
E

μ̄
(0)
M,β

[R(η)] + 1

N
log

(
E

μ̄
(0)
M,β

[eR(η)]) + O(ε3), (5.1)

where the residuum operator R is given by

R(η) = H̄
(1)
M (η) + H̄

(2)
M (η).

This error representation indicates that the error in coarse-graining can be computed on-the-
fly, during a coarse-grained simulation, exclusively in terms of the coarse observables η.
The error involves only H̄

(1,2)
M (η) plus a controlled error of order O(ε3).

In [31] we implemented the sharp a posteriori estimates (5.1), tracking them throughout
our simulations, where the on-the-fly estimated error served as a diagnostic tool for the qual-
ity of the coarse-grained simulations. It indicated when a particular level of coarse-graining
can produce excessive error and needs to be refined, or when it can be safely coarsened
further in order to speed up the simulation. This approach leads to adaptive coarse-graining
of the configuration space and clearly relies on the fact that the coarse-grained models in-
troduced in [27, 32] form a hierarchy. The hierarchy includes the microscopic description at
the finest level, and allows for a seamless transition between different resolutions.

In [31] we demonstrated the use of such diagnostics and the ensuing adaptive coarse-
grainings in the numerical calculation of phase diagrams in systems with combined short
and long-range interactions. In this case it turns out that most of the phase diagram is con-
structed using coarse levels and hence inexpensive CG simulations are used, while the rel-
atively fewer regimes where critical phenomena occur, require finer, or even fully resolved
simulations. The transitions from finer to coarser scales and back are done on-the-fly, based
on the a posteriori error computation.
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Fig. 5 Demonstration of adaptivity dictated by the a posteriori error indicator: no CG is performed close to
the hysteresis region; the simulation uses the “crude” CGMC without corrections with the coarse-cell size
q variable. The level of coarse-graining (the parameter q) used when computing the magnetization curve
for different values of h is indicated in the phase diagram (a). The Hamiltonian consists of the long-range
interactions with L = 8 only. The curve for the Curie-Weiss model represents the long-range interactions with
L = N (N = 1000). The a posteriori indicator estimated in the CG simulation is depicted in (b)

Such application of our a posteriori estimates is demonstrated in Fig. 5. The goal of those
simulations is to computationally construct a phase diagram, plotting the average magnetiza-
tion (or coverage) and the external field in a parameter regime where hysteresis is exhibited.
We carry out a “crude” CGMC simulation based on (2.8), for each external field. The a pos-
teriori estimate demonstrates that for most fields we only need very coarse cells. The error
increases close to the hysteresis region (recall this is the region where fixed-size CG without
corrections did not perform well, see Fig. 2), and we are forced to refine our simulation
almost down to the microscopic level. The computational gain against full DNS stems from
the very limited use of such microscopic simulations as compared to the majority of external
fields. Note also the excellent agreement of adaptive and DNS in Fig. 5.

The refinement or coarsening are governed by the error indicator in (5.1), although this
indicator does not easily relate to the absolute error of a given observable (e.g., magneti-
zation). In the presented simulations a simple strategy has been adopted: the change of the
level is controlled by the relative value of the indicator with respect to its maximal value
along the simulation path. More elaborate strategies for the error control are also possible
and will be discussed elsewhere. Earlier work that uses only an upper bound and not the
sharp error expansion in (5.1) can be found in [10, 13]. These papers are more related to the
spirit of adaptive finite element methods for PDEs, where a posteriori errors are typically
used to construct spatially adaptive coarse-grainings.

6 Coarse-Graining and Reconstruction in Macromolecular Systems

The coarse-graining of polymeric and other macromolecular systems has attracted consid-
erable attention in polymer science and engineering, [38, 44]. The primary goal is to group
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together, in a systematic manner, several atoms on a macromolecule, see Fig. 1(b), creating
an effective new chain, as means of reducing the degrees of freedom of the original system.
Key challenges include the presence of complex short and long-range interactions, as well
as the off-lattice nature of the models. In many applications, for instance in the simulation
of microscopic penetrants in a polymeric melt, it is also important to be able to reconstruct
microscopic details of the chain by “reversing” the coarse-graining, [44, 51].

6.1 The Microscopic Model

Here we consider as our microscopic system the United Atom (UA) model. This point of
view is typically taken in the coarse-graining literature in polymer science, e.g., [7, 16, 22],
as it is expected that the coarse-graining of UA models captures many of the related technical
and computational difficulties. We note that the UA model is not a fully resolved atomistic
description of the polymeric chain but involves a coarse-graining procedure that defines
the united atoms in the chain. This class of models consists of n macromolecules (e.g.,
polymer chains) in a simulation box with volume V at a fixed temperature T . Each molecule
contains m atoms. Thus the system consists of N = nm microscopic particles at the positions
X = (x1, . . . , xN) ∈ X, where xi ∈ R

3 is the position vector of the ith atom. The interactions
in the system are described by the Hamiltonian

HN(X) = Hb(X) + Hnb(X) + HCoul(X) + Hwall(X) + Hkin(X). (6.1)

The first term Hb defines short-range (bonded) interactions between neighboring atoms in
each individual polymer chain. This term is defined in terms of a pair-wise potential Ub, i.e.,
Hb = ∑

Ub. The second term Hnb describes long-range (non-bonded) interactions between
atoms in different chains and is typically associated with the Lennard-Jones two-body po-
tential Unb. The Coulomb term HCoul describes interactions associated with charged macro-
molecules, while Hwall interactions with walls. The term Hkin is the total kinetic energy of
the system. In our analysis we focus on the canonical ensemble (also called NVT ensemble),
at the inverse temperature β , given by the microscopic Gibbs measure

μ(dX) = 1

Z
e−βHN (X)

∏

i

dxi, Z =
∫

X
e−βHN (X)

∏

i

dxi . (6.2)

The classical microscopic dynamics is derived from the Newtonian dynamics imbedded
into a heat bath. The resulting stochastic Langevin dynamics is then compatible with the
canonical equilibrium measure (6.2) which is the invariant measure for the process. There-
fore Langevin dynamics is widely employed for simulations and sampling of the canonical
Gibbs measure; the dynamics is formulated in terms of Newtonian equations of motion

mi

d2xi

dt2
= −∇xi

HN − γ
dxi

dt
+ ξi(t), i = 1, . . . ,N. (6.3)

The damping is given by the friction constant γ and mi denotes the mass of the i-th particle.
The random forcing is the Wiener process ξi(t) with the covariance matrix that couples β

and γ through the fluctuation-dissipation relation and ensures that the Gibbs measure is the
invariant measure of the resulting process {Xt }t≥0.
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6.2 Coarse-Graining of Polymer Chains

We begin our discussion by first setting the notation and defining a set of coarse-grained
variables. We assume a polymeric system with n molecules (polymer chains) in a simulation
box with the volume V at a fixed temperature T . In the CG description of the system, k

microscopic atoms in a single chain are grouped into one CG state (analogous to η in (2.5)),
which is usually referred to as a “super-atom”. The result of this procedure is a system of
M = N/k CG particles. The positions of CG particles are denoted by the coarse variables
Q = (q1, . . . , qM) where qi ∈ R

3 represents the position of each super-atom. The first goal
of the coarse-graining procedures is to find the CG interactions. In fact, as in the lattice case
(2.14), the exactly coarse-grained Hamiltonian H̄ (Q) is defined by the relation

e−βH̄M(Q) =
∫

{X∈X|TX=Q}
e−βHN (X)dX. (6.4)

The evaluation of the integral involves high dimensional integration and one way to make
some progress towards calculating H̄M(Q) is to adopt a semi-empirical strategy that will
reduce the dimension and hence the computational cost in (6.4). Below we briefly describe
two different perspectives developed recently in the literature [7, 16, 44, 50].

6.2.1 Statistical Methods

In view of the CG methods for lattice systems using importance sampling presented in
Sect. 4, we note that a parametric statistics-based approach for CG of macromolecules was
developed earlier in the polymer science literature, [44]. In this class of methods a para-
metrization of a CG potential is introduced, based on an assumed functional form (e.g.,
a Lennard-Jones type potential), and is sequentially optimized, against the pair distribution
function gCG(r). The pair distribution function can be obtained either from the microscopic
simulations in (6.3), or from experimental data. A more advanced approach involves opti-
mization with respect to a fixed set of observables beyond just the pair distribution function.
The main drawback of this approach is that it is purely empirical and does not provide any
physical information about the resulting potential. In addition the method does not give a
unique CG potential since it is essentially a statistical fitting that may have more than one
solution which will produce the desired pair distribution function or more generally a fixed
number of observables.

6.2.2 Computational Statistical Mechanics Methods

In this direction the goal is to calculate directly the CG Hamiltonian H̄M(Q) in (6.4) us-
ing MC sampling. However, as the computational cost to sample (6.4) is prohibitive, the
perspective in the polymer science literature is to construct an approximation, checked
eventually against direct numerical simulations (DNS). Such approximations are obtained
by a series of simplifying assumptions on the structure of the CG Hamiltonian H̄M(Q)

that allow to reduce the integration dimension and hence the computational cost in (6.4),
[50]. We briefly review this approach below. For the sake of simplicity we focus on the
case where only bonded and non-bonded interactions are present in the Hamiltonian, i.e.,
HN(X) = Hb(X) + Hnb(X). Then the CG approximation involves the following steps:

Step 1 From (6.4) we have,

H̄M(Q) = − 1

β
log

∫

{X∈X|TX=Q}
e−βHN (X)dX. (6.5)
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Although (6.5) is not additive, the following approximation is made

H̄M = H̄b + H̄nb, (6.6)

where H̄b and H̄nb are CG bonded and non-bonded Hamiltonians (to be calculated
separately below). Since β is proportional to the inverse temperature, clearly the
approximation (6.6) is expected to be a reasonable one at relatively high tempera-
tures. Furthermore, it is assumed H̄b = ∑

Ūb and H̄nb = ∑
Ūnb for corresponding

CG potentials that will need to be calculated numerically.
Step 2 It is assumed that the term Ūb decouples as Ū θ

b + Ū
φ

b + Ū r
b where each term depends

only on torsion angle φ, rotation angle θ and distance r respectively between CG
particles.

Step 3 The long-range term Ūnb is approximated as a binary interaction between CG par-
ticles. This interaction is further assumed to be rotationally invariant, although the
latter is clearly not true in general.

These simplifying assumptions allow for the break-up of the computational evaluations.
For instance, Ub is calculated through atomistic simulations, performed on one isolated
oligomer by sampling the phase space. Thus we obtain the probability distribution func-
tion between the CG particles at a given angle or distance and the effective bonded CG
potentials are calculated by taking a logarithm similarly to (6.5). Consequently, we define
the CG bonded Hamiltonian as

H̄b(Q) =
∑

〈i,j 〉
Ūb(qi − qj ), (6.7)

where 〈·, ·〉 indicates the summation is over all neighboring coarse sites i and j on the same
macromolecule (chain).

The non-bonded CG Hamiltonian is assumed to be the sum of only two-body, radial CG
non-bonded interactions

H̄nb(Q) =
∑

i,j

Ūnb

(|qi − qj |
)
. (6.8)

A typical approach to calculate Ūnb is to use the McCoy-Curro scheme. This scheme was first
proposed in [43] for calculating the effective non-bonded interaction between the centers of
mass q1 and q2 of two isolated small molecules (and later extended to polymer chains in
[16]). The scheme yields a formula for the effective potential

Ūnb

(|qi − qj |
) = − 1

β
log

∫

{X:TX=(qi ,qj )}
e−βH2m(X)dX, (6.9)

where H2m(X) is the Hamiltonian involving the detailed description of two isolated mole-
cules, each of them containing m atoms. In other words, Ūnb(|qi − qj |) is a two-body CG
interaction, where all other molecules are disregarded. All these calculations need to be
repeated whenever the parameters N , V , T are changed. When compared to DNS, this ap-
proach yields good results in some regimes. However, deviations are also observed both
in the structure and dynamics [1, 22]. Differences are attributed to assumptions such as
(i)–(iii) and (6.8) that are necessary for the computational implementation of the CG poten-
tials. From a numerical analysis perspective such simplifying assumptions are nothing else
but approximations generating numerical errors. As discussed earlier this error is expected
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to be small in relatively high temperatures, although a detailed understanding of the para-
meter regimes when the approximations are valid is still lacking for the macromolecular
case. However, our work in lattice systems addresses directly this issue, as we see in (2.27)
and (2.12).

In the off-lattice case we can follow the strategy outlined in Sect. 2 for the lattice case,
starting with identifying a suitable first approximation H̄

(0)
M (Q). Such an approximation can

be given by the McCoy-Curro scheme (6.8), (6.9) or the off-lattice analogue of (2.17), or
even a combination of the two. Subsequently, we can rewrite (6.4) as

H̄M(Q) = H̄
(0)
M (Q) − 1

β
log

∫

{X|TX=Q}
e−β(HN (X)−H̄

(0)
M

(Q))dX. (6.10)

Cluster expansions can be used to further improve the initial approximation H̄
(0)
M (Q), simi-

larly to (2.16). A detailed presentation, analysis and extensive simulations for the polymers
case will appear in [23].

6.3 Connections to CG Methods for Lattice Systems

Next we make some precise connections between the two types of models and their
CG strategies. We pursue the connection between the McCoy-Curro CG methodology to
Scheme 2.1. We compare the two approaches by using the cluster expansion methodology
we presented for the lattice systems. According to (6.9) and (6.8) the McCoy-Curro scheme
for the coarse grained Hamiltonian is given by

H̄mc(η) = −
∑

k,l∈�c
M

Ūmc
(
ηk, ηl, |k − l|), (6.11)

where

Ūmc
(
ηk, ηl, |k − l|) = − 1

β
log

(
E

[
e−βHCk,Cl

(σ )|ηk, ηl

])
, (6.12)

and

HCk,Cl
(σ ) = −1

2

∑

x∈Ck,y∈Cl

J (x − y)σ (x)σ (y),

corresponds to the totality of microscopic interactions between two isolated coarse cells Ck

and Cl . A simple calculation yields

Ūmc
(
ηk, ηl, |k − l|) = 1

2
J̄ (k, l)ηkηl − 1

β
log

(
E[e−β�Jkl (σ ) | ηk, ηl]

)
(6.13)

where

�klJ (σ ) := −1

2

∑

x∈Ck
y∈Cl ,y �=x

(
J (x − y) − J̄ (k, l)

)
σ(x)σ (y). (6.14)

By using the Taylor expansion of the exponential and of the logarithm we eventually obtain
that the McCoy-Curro CG Hamiltonian behaves asymptotically as

H̄mc(η) = H̄
(0)
M (η) + H̄

(1)
M (η) + (. . .) (6.15)

where (. . . ) include higher order two-body terms only.
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Remark 6.1

1. It is clear from these calculations that the McCoy-Curro scheme is asymptotically iden-
tical to using H̄

(0)
M (η) and H̄

(1)
M (η) of Scheme 2.1, while the three-body term H̄

(2)
M (η)

included in Scheme 2.1 is absent. As we have seen in the estimates in Sect. 2.2 correc-
tions including three-body CG terms are crucial in obtaining higher accuracy, especially
in low temperature regimes. A detailed study of the impact of multi-body terms in coarse-
graining, using the lattice systems as a paradigm, can be found in [3].

2. Implementing the McCoy-Curro scheme on a lattice is computationally expensive as
it requires calculating ŪCG(ηk, ηl, |k − l|) using (6.12) over all possible ranges of
ηk, ηl, |k − l| and repeating all the calculations for each temperature β . On the other hand
the Scheme 2.1 provides an analytical way of coarse graining which in this particular
context is computationally more efficient.
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