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We present efficient finite difference estimators for goal-oriented sensitivity indices with applications
to the generalized Langevin equation (GLE). In particular, we apply these estimators to analyze an
extended variable formulation of the GLE where other well known sensitivity analysis techniques
such as the likelihood ratio method are not applicable to key parameters of interest. These easily
implemented estimators are formed by coupling the nominal and perturbed dynamics appearing in
the finite difference through a common driving noise or common random path. After developing a
general framework for variance reduction via coupling, we demonstrate the optimality of the common
random path coupling in the sense that it produces a minimal variance surrogate for the difference
estimator relative to sampling dynamics driven by independent paths. In order to build intuition
for the common random path coupling, we evaluate the efficiency of the proposed estimators for a
comprehensive set of examples of interest in particle dynamics. These reduced variance difference
estimators are also a useful tool for performing global sensitivity analysis and for investigating non-
local perturbations of parameters, such as increasing the number of Prony modes active in an extended
variable GLE. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971433]

I. INTRODUCTION

Sensitivity analysis (SA), understanding how changes in
input parameters affect the output of a system, is a key compo-
nent of uncertainty quantification (UQ), optimal experimental
design, and analysis of model robustness, identifiability, and
reliability.1,2 The local sensitivity of a system can be analyzed
by computing sensitivity indices that are formed by taking par-
tial derivatives with respect to each of the input parameters.
These indices quantify which parameter directions are most
sensitive to perturbations.

The present article concerns SA techniques for the gener-
alized Langevin equation (GLE) and other models of interest
in particle dynamics. The Langevin equation (LE) models
particle diffusion in the presence of a heat bath where the
particle-bath interactions are reduced to an instantaneous drag
force and a delta-correlated random force.3 This approxima-
tion dramatically reduces the computational cost compared
to explicitly resolving the particle-bath interactions. How-
ever, there are a number of compelling applications where
the Langevin assumptions fail to produce a reliable model,
such as anomalous diffusion. The GLE, a model that captures
both diffusion and anomalous diffusion, incorporates “mem-
ory” into the drag force through the inclusion of a kernel
depending on the history of the velocity. In many instances,
this non-Markovian system can be mapped onto a Markovian
system with additional degrees of freedom under physically
reasonable assumptions, such as when the memory kernel can
be approximated by a positive Prony series.4 The resulting
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extended variable formulation contains many parameters that
must be tuned and is therefore an ideal candidate for SA and
UQ. However, well known SA techniques such as likelihood
ratio and pathwise methods are not applicable to analyze the
sensitivity of key parameters of interest in the extended vari-
able formulation. In particular, it is relevant to understand and
compare discrete changes in the model such as modifying the
number of extended variables. In contrast, Monte Carlo finite
difference estimators of sensitivity indices are applicable to all
parameters of interest in the extended variable GLE but intro-
duce a bias error and typically have a large variance making
them computationally expensive.

We give efficient Monte Carlo finite difference estima-
tors via a coupling method for approximating goal-oriented
sensitivity indices for a large class of stochastic differential
equations (SDEs). In particular, we apply these estimators to
an extended variable formulation of the GLE where the mem-
ory kernel can be approximated by a positive Prony series,
a choice motivated by applications in anomalous diffusion in
biological fluids.5,6 Although uncertainties in drift, vibration,
and tracking measurements may be present in microrheol-
ogy, a central problem here is one of epistemic model form
uncertainty. There is a wealth of data but few methods that
allow one to compare and evaluate the models that are sug-
gested by these data. Moreover, the extended variable GLE
is typically fitted by matching summary statistics, such as the
mean squared displacement (MSD) and velocity autocorre-
lation function (VACF), between microrheology observations
and simulated data;5 however, for many applications, matching
summary statistics alone results in models that do not cap-
ture quantities of interest. For instance, the first passage time
for a pathogen across a mucus barrier depends critically on
model features that are not captured by summary statistics.7
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Further, “ergodicity breaking” is observed in biofluids, that is,
the time averaged statistics within independent reaction paths
do not converge to ensemble averages (the spreads in path-
wise MSD are too large to be independently drawn from a
uniform population).8 Therefore, it is of fundamental impor-
tance to understand the GLE dynamics and the sensitivity of
the dynamics to local and global perturbations.

In the context of anomalous diffusion for biological fluids,
we mention that other authors have given a Bayesian method-
ology for comparing different models of anomalous diffusion
that favor the extended variable GLE.7 In addition to biological
fluids, other recent interesting applications of the GLE include
modeling nanoscale materials and solids,9–13 thermostats for
sampling classical and path integral molecular dynamics,14–19

and, more generally, reduced order modeling.20–23 This list of
applications is far from exhaustive but nevertheless provides
additional incentive for investigating SA and UQ techniques
for the GLE and its extended variable formulations.

To provide further orientation consider, for simplicity, the
sensitivity of the stochastic dynamics Xt(θ), depending on an
input parameter θ,

S(t, θ; f ) = ∂θ E[ f (Xt(θ))],

for a given observable f where ∂θ is the derivative with respect
to θ. In general, the finite difference approach is to approximate
the derivative above by a finite difference quotient and then
obtain the required moments by Monte Carlo. For example, a
forward difference with a bias parameter ε yields the sensitivity
estimator,

Sε(t, θ; f ) = (E[ f (Xt(θ + ε))] − E[ f (Xt(θ))]) /ε,

where Sε ≈ S for ε small, and then the estimator is computed
by approximating the expectations with sample averages. Sim-
ilar expressions can be given for central differences and more
general finite difference stencils. While this approach requires
little analysis of the underlying model and is easily imple-
mented, the introduction of the bias, and in particular its effect
on the variance of Sε , a key quantity in evaluating the effi-
ciency of the method, is often cited as a reason for pursuing
alternative methods.24 However, as we shall show, the variance
of Sε can be reduced by choosing the right sampling strategy
for the observable of the nominal and perturbed dynamics,
respectively, f (Xt(θ)) and f (Xt(θ + ε)) in the expression above.
For a comprehensive set of examples of interest in particle
dynamics, we demonstrate that coupling the nominal and per-
turbed dynamics through a common driving noise, that is, a
common random path coupling, reduces the variance of the
finite difference estimator, often substantially. In particular,
for the extended variable GLE with a convex potential, the
reduction due to the common random path coupling is on the
order of the bias squared—mitigating the effect of the sys-
tematic error. The common random path coupling also leads
to reduced variance estimators for problems with nonconvex
potentials, although the reduction is not expected to be on the
order of the bias squared (cf. Figures 4 and 5). This is a topic
that deserves further rigorous analysis that will be the subject
of future work.

Other well known SA techniques for continuous time
stochastic dynamics, including pathwise methods,25 likeli-
hood ratio methods,26,27 and Malliavin methods,28,29 produce

unbiased estimators of sensitivity indices by representing S as
the expectation of f (or its derivative) under a change of mea-
sure. A very good account of the interrelations among them
has been given by other authors.24 However, each of these
methods is not suited to our application of interest, the GLE,
for reasons that we detail below.

The pathwise and likelihood ratio methods are not appli-
cable to key parameters of interest, those appearing simul-
taneously in the drift and diffusion terms, in the extended
variable formulation of the GLE. The pathwise method views
the dynamics at each fixed time as a density and takes a
derivative of this density yielding the estimator, SP(t, θ; f )
= ∂θ E[ f (Xt(θ))] = E

[
f ′(Xt(θ))∂θXt(θ)

]
, requiring equality

to hold when the order of differentiation and expectation is
interchanged, a smooth observable f, and, of course, that the
derivative of the process Xt(θ) exists. In its most general form,
if an expression E[ f (Xt(θ))] = ∫ f (xt)g(θ, xt)dxt exists, then
the likelihood ratio estimator,

SLR(t, θ; f ) = ∂θ E[ f (Xt(θ))]

=

∫
f (xt)

[
∂θ log g(θ, xt)

]
g(θ, xt)dxt

= E
[

f (Xt(θ))∂θ log g(θ, Xt)
]
,

is obtained by bringing the derivative inside the integral
and multiply and dividing by g. However, this formula-
tion requires knowledge of the unknown density g and,
in practice, pathwise information is substituted SLR(t, θ; f )
≈ E[ f (Xt(θ))G({Xs}0≤s≤t)]. For both estimators, the appli-
cation of these methods to key parameters of interest in the
extended variable formulation of the GLE leads to perturba-
tions in path-space that are not absolutely continuous, that
is, the typical Girsanov change of measure does not hold in
path-space.

An approach that circumvents this lack of a Girsanov
transform for certain parameters, using the Malliavin deriva-
tive,30 first appeared in finance applications for calculat-
ing sensitivities, known as Greeks, related to the pricing of
securities.28,29,31 Applied directly to continuous time dynam-
ics, the Malliavin approach produces unbiased estimators
SM = E[ f (XT )h({Xs}0≤s≤T )] where h is a non-unique weight
that involves a system of auxiliary processes obtained through
Malliavin calculus but that does not depend on g. In partic-
ular, for overdamped Langevin dynamics, Malliavin weights
are given for sensitivities with respect to parametric forces,
that is, for parameters appearing in the drift term only.32

While in principle the Malliavin method applies to other
perturbations that cannot be handled by pathwise and like-
lihood ratio methods, it requires a number of auxiliary pro-
cesses that may scale poorly with the system size and is not
clearly computationally practical for the extended variable
GLE.

We mention that, finite differences using common random
numbers (CRNs) have been employed, based on empirical
evidence, for SA with respect to parametric forces for the
LE.33–35 The sensitivity for invariant measures for parametric
diffusions, ∂ε(∫Rd f dπε), has been considered,33 and a mathe-
matically rigorous justification of such objects has been given
by other authors in relation to linear response theory.36 In
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the finance literature, it is of great interest to calculate sen-
sitivities, or the Greeks, of option prices that are modeled by
SDEs. In this setting, the sensitivity is usually calculated at
a fixed terminal time, and then computing the sensitivity of
this static distribution using a finite difference with CRN is
a heuristic employed for certain Greeks, but not all applica-
tions allow such a nice coupling.37 In the context of discrete
state stochastic systems, the rates of convergence for finite
difference estimators using CRN have been derived under var-
ious assumptions.38–42 For physicochemical systems, several
coupled finite difference methods have been demonstrated to
reduce the variance of the estimator with respect to indepen-
dent sampling,43–49 and in particular examples are given in
kinetic Monte Carlo (KMC) simulations where CRN cou-
plings have minimal effect to the variance reduction of finite
difference estimators for sensitivities and instead a nontrivial
coupling is required due to the spatial effects of KMC and jump
Markov dynamics.47 Here, in contrast, we develop a general
framework, at the level of the generators of the coupled SDEs,
that allows us to formulate an optimization problem, locally in
time, with minor assumptions to ensure the correct marginal
statistics. That is, we formulate an associated maximization
problem (see Optimization Problem 1 in Sec. II C), and we
show that the problem is satisfied by the common random path
coupling for a large subset of solutions. Intuition is developed
in the examples of the Ornstein–Uhlenbeck (OU) process and
LE dynamics (see the Appendix) for which the optimality of
the common random path coupling can be derived directly
without invoking a localization argument.

In relation to SA, we also mention that information
theoretic bounds can be used to screen parametric sensi-
tivities.25,50–52 In particular, information theoretic bounds
involving the relative entropy53 have been used to analyze the
sensitivity of some parameters of interest in Langevin dynam-
ics in equilibrium and non-equilibrium regimes.51 These infor-
mation theoretic methods are not goal oriented, that is, the
dependence on the observable f is not explicit. Further they
cannot be applied to key parameters of interest in the extended
variable GLE as relative entropy calculations also require the
absolute continuity of the measures arising from the nominal
and perturbed dynamics.

In addition to local SA, the optimally coupled differences
are a useful computational tool for global SA and for investi-
gating non-local perturbations in parameters. In global SA,
elementary effects are used to screen for sensitive param-
eters.54–56 Calculating elementary effects involves sampling
a number of finite difference estimators with various biases
and stencils to survey the space of input parameters. The cou-
pled finite differences might be used to efficiently build such
global sensitivity indices. For exploring non-local perturba-
tions, a key observation is that the finite difference estimators
proposed are formed by coupling the nominal and perturbed
dynamics, and there is no requirement that the perturbations be
local or that the corresponding measures be absolutely contin-
uous. In Sec. IV B, we demonstrate that the optimally coupled
difference might be used to efficiently analyze, with respect
to independent sampling, the effect of increasing the number
of Prony modes active in an extended variable formulation of
GLE dynamics.

The rest of this paper is organized as follows. To set
the stage for our variance reduction technique, we review the
errors committed in estimators for sensitivity indices for static
distributions in Sec. II. Then we introduce a very general cou-
pling framework and derive a maximization problem for the
variance reduction. In Sec. III, we recall facts about the GLE
and illustrate how the theory presented in Sec. II applies to
the extended variable formulation, obtaining the optimality of
the common random path coupling for a large subset of solu-
tions. In Sec. IV, we provide numerical experiments involving
SA for GLE that include (1) the sensitivity with respect to the
coefficients of the Prony series approximation, for both convex
and nonconvex potentials, and (2) the sensitivity with respect
to the number of Prony modes, the latter not being formally a
sensitivity index. Finally, in the Appendix, we provide supple-
mental examples that help build an intuition for the behavior of
coupled finite difference estimators for other models of inter-
est in the study of particle dynamics, namely, OU processes
and the LE.

II. EFFICIENT FINITE DIFFERENCE ESTIMATORS

In forming the Monte Carlo finite difference estimator for
the sensitivity, the discretization of the derivative results in a
systematic error or bias, while replacing the expected value
with a sample average results in a statistical error. We denote
the sample average of f, for a sample of size M, by f̂ (Xt)
= M−1 ∑M

i=1 f (Xi,t), where the X i ,t are independent for each
i ∈ {1, . . . , M}. A measure of the statistical error committed in
computing Sε is the variance, or more precisely, the standard
deviation of the sample means which is proportional to the
square root of the variance.

A. Errors

To illustrate how these two errors behave, consider for
simplicity the observable that depends on the process at the
final time and define φ̂(θ) = M−1 ∑M

i=1 Xi,T (θ), a random vari-
able dependent on the parameter θ. The forward difference
estimator for this observable is

Sε(T , θ; φ) ≈ ∆̂(M, ε) =
(
φ̂(θ + ε) − φ̂(θ)

)
/ε,

where we write Sε = ∆(M, ε) to emphasize the dependence
on M and ε and, in the sequel, ∆c for the central difference
estimator. Note that under these assumptions, the target is a
distribution, that is, there are no dynamics, and in this setting
the following analysis, that gives the bias and variance of the
estimator, is classical.57 The expected value of the estimator is
E[∆̂] = (ε)−1(φ̂(θ+ε)− φ̂(θ)), and if φ̂ is (twice) differentiable
in θ, the bias is given by

Bias(∆̂) = E[∆̂ − φ̂′(θ)] = φ̂′′(θ)ε/2 + O(ε2),

where the last equality can be seen by writing out the Taylor
expansion for φ̂(θ + ε). The variance is

Var[∆̂] = ε−2 Var[φ̂(θ + ε) − φ̂(θ)].

Assuming the pair (Xi,T (θ+ε), Xi,T (θ)) is independent of other
pairs for each i ≤ M, then we have that

Var[φ̂(θ + ε) − φ̂(θ)] = M−1 Var[X1 − X2],
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where we define (X1, X2) = (X1,T (θ + ε), X1,T (θ)). Thus, alto-
gether we have

Var[∆̂] = ε−2M−1 Var[X1 − X2]. (1)

An analysis of how the variance of this difference depends on
ε provides insight into a strategy for efficiently computing the
estimator.

From (1), we see that the ε dependence of Var[∆̂] relies
upon the ε dependence of Var[X1−X2]. If X1 and X2 are inde-
pendent, then Var[X1 − X2] = Var[X1] + Var[X2] ≈ 2 Var[X],
where X is related to the distribution of the final time of the
nominal dynamics. This implies Var[X1 − X2] = O(1) and
hence Var[∆̂] = O(ε−2M−1). In general for X1 and X2 that are
not independent, we have that

Var[∆̂] = ε−2M−1
(
Var

[
X1] + Var

[
X2] − 2 Cov

[
X1, X2] ) .

Thus, if X1 and X2 are positively correlated, then there is a net
reduction to the variance of the estimator relative to indepen-
dently sampling X1 and X2. For instance, if the difference X1

�X2 can be judiciously sampled so that Var[X1 − X2]
= O(ε2), then Var[∆̂] = O(M−1), asymptotically eliminating
the dependence of the estimator on the bias. For these static dis-
tributions, the well known technique of sampling using CRNs
leads to reduced variance estimators.57 Observe that all of the
error estimates and relations above can be extended from this
simple example with static distributions to the case of dynam-
ics in a straight forward manner and, in particular, that (1)
remains a quantity of interest for evaluating the efficiency of
the finite difference estimator. Our goal will be to choose a
sampling strategy for dynamics that will make the positive
correlation between the distribution of the nominal and per-
turbed dynamics at each time step as large as possible while
maintaining the correct marginal statistics.

We remark that at present we fix a bias and show that the
common random path coupling produces a reduction to the
variance relative to independent sampling. The mean squared
error (MSE), formally

MSE = Var+Bias ·Bias,

represents a balance between the statistical and systematic
errors. While increasing the number of samples M decreases
the variance with no effect on the bias, decreasing ε may
increase the variance while decreasing the bias. For dynamics,
different estimators, for example, central or forward differ-
ences, may have an optimal choice of bias that balances the
two sources of error to achieve a minimal MSE, as is the case
for static distributions.57

In Sec. II C, we demonstrate that coupling the nominal and
perturbed dynamics using a common random path is an optimal
strategy for sampling dynamics that reduces the variance of the
estimator Sε relative to independent sampling. For SA of the
extended variable GLE with convex potentials, the common
random path coupling leads to substantial reductions, observed
to be O(ε2), for sensitivities with respect to key parameters of
interest. In these instances, since the statistical error scales like
the square root of the variance, to reduce the error by a factor
of 10 for independent sampling with a modest bias of ε = 0.1
would require adding M = 104 samples, in contrast to M = 102

samples for the common random path coupling!

B. Coupling dynamics

In what follows, we provide a very general framework
that allows us to derive a coupling for dynamics that mini-
mizes the variance of the difference between the nominal and
perturbed processes appearing in Equation (1). We note that
this difference need not be associated with a difference esti-
mator, an aspect that we will exploit to analyze the sensitivity
for non-local perturbations in Sec. IV B.

Consider the following pair of SDEs:

dXk
t = bk(Xk

t )dt + σk(Xk
t )dW k

t , (2)

subject to the initial condition Xk
0 = xk

0 , for k = 1, 2, where
Xk

t ∈ R. We assume that for k ∈ {1, 2}, (W k
t )t≥0 are R-valued

independent Wiener processes, on a given stochastic basis,
and that the coefficients bk and σk satisfy the usual properties
guaranteeing that each of the solutions is an Itô diffusion.58

The infinitesimal generators of (2) are, respectively,

Ak f (x) = bk(x)f ′(x) +
1
2
σ2

k (x)f ′′(x), (3)

f ∈ C2
0 (R), where the prime indicates the derivative with res-

pect to the argument. The generator encodes information about
the statistics of the process.58,59

A coupling Zt = (X1
t , X2

t ) is produced by considering

d Zt = B(Zt)dt + Σ(Zt)dWt , (4)

subject to initial conditions Z0 = (x1
0 , x2

0), with given

Wt =

(
W1

t
W2

t

)
and B(Zt) =

(
b1(X1

t )
b2(X2

t )

)
.

Here the diffusion matrix,

Σ(Zt) =

(
Σ11(Zt) Σ12(Zt)
Σ21(Zt) Σ22(Zt)

)
,

depends on functions Σij, i, j ∈ {1, 2}, to be determined.
Observe that (4) reduces to (2) by choosing Σ12 = Σ21 = 0,
Σ11(Zt) = σ1(X1

t ), and Σ22(Zt) = σ2(X2
t ). The generator for

this extended system is given by

A f (z) = B(z) · ∇f (z) +
1
2
Σ(z)Σ>(z) : ∇2f (z), (5)

f ∈ C2
0 (R2), where z = (x1, x2), and we use the notation

M : N = tr (M>N) for the Frobenius product.
With these ideas in mind, we view Z t as a coupling of the

nominal and perturbed dynamics in the sensitivity estimator
and, as foreshadowed in (1) in Sec. II A, seek to minimize the
variance of the difference

D(Zt) = f (X1
t ) − f (X2

t ), (6)

where X1
t and X2

t are the solutions of (2) for a given observable
f. In general, this minimization can be achieved locally in time
where the constraints are constructed using (3) and (5). For
specific examples (see the Appendix), it is possible to obtain
the optimal coupling directly without localizing in time.

A slight modification of the above setting is sufficiently
general to consider the LE and the extended variable GLE,
both models that we consider in the sequel. These two models
can be cast as systems of Itô diffusions where some compo-
nents might degenerate in that the noise term may vanish. Then



224108-5 Hall, Katsoulakis, and Rey-Bellet J. Chem. Phys. 145, 224108 (2016)

instead of the pair (2), which we view as representing the nom-
inal and perturbed dynamics, we consider a larger system that
decomposes into a system of the nominal dynamics and of the
perturbed dynamics, where some equations are degenerate dif-
fusions. These ideas will be explored in more detail in Sec. III
after we derive a general formulation for the optimal coupling
for (2).

C. Optimal variance reduction

To obtain an optimal reduction to the variance of (6), we
place the following constraints on the generator of the coupled
system, namely,

A f (x1, x2) = A1 f1(x1), when f (x1, x2) = f1(x1),

A f (x1, x2) = A2 f2(x2), when f (x1, x2) = f2(x2),

assuming f 1 and f2 ∈ C2
0 (R2), but of course more general type

class assumptions are available. These constraints ensure that
the marginal statistics of the coupled system match the statis-
tics of the appropriate diffusion solving (2). In particular, for
g(z) = f (x1) f (x2) such that g ∈ C2

0 (R2), after some manip-
ulation, the generator A can be expressed, in terms of the
generators (3),

Ag(z) = (A1 f (x1)) f (x2) + (A2 f (x2)) f (x1)

+ (Σ11Σ21 + Σ12Σ22)(z)f ′(x1) f ′(x2), (7)

provided that Σ2
11(z) + Σ2

12(z) = σ2
1(x1) and Σ2

21(z) + Σ2
22(z)

= σ2
2(x2) hold for z = (x1, x2) ∈ R2 and that the mixed partials

of g are equal.
Next, we observe that the variance of (6) is equal to

Var[D(Zt)] = Var
[

f (X1
t )

]
+ Var

[
f (X2

t )
]

+ 2 E
[

f (X1
t )

]
E

[
f (X2

t )
]
− 2 E

[
f (X1

t )f (X2
t )

]
.

In order to minimize the variance, we must maximize the last
term in the above equation. Locally in time, that is, for small
perturbations δt, we have that

E[ f (X1
δt) f (X2

δt)] = E[g(X1
δt , X2

δt)]

= eδtAg(X1
0 , X2

0 ) = [I + δtA + O(δt2)]g(X1
0 , X2

0 )

= f (X1
0 ) f (X2

0 ) + δt(A1 f (X1
0 )) f (X2

0 ) + δt(A2 f (X2
0 )) f (X1

0 )

+ δt(Σ11Σ21 + Σ12Σ22)(X1
0 , X2

0 ) f ′(X1
0 ) f ′(X2

0 ) + O(δt2),
(8)

where the last equality follows from (7). Using these facts, we
now state the following formal optimization problem.
Optimization Problem 1. The choice of the diffusion matrix
Σ = Σ(z) in (4) that minimizes the variance of (6) is given by

max
Σ

F(Σ; f ) = max
Σ
{(Σ11Σ21 + Σ12Σ22)(z) f ′(x1) f ′(x2)},

for z = (x1, x2) ∈ R2, under the constraints Σ>Σ ≥ 0 and

Σ2
11(z) + Σ2

12(z) = σ2
1(x1),

Σ2
21(z) + Σ2

22(z) = σ2
2(x2).

(9)

To solve Optimization Problem 1, constraint (9) allows us
to write Σ11(z) = σ1(x1) cos θ1, Σ12(z) = σ1(x1) sin θ1, Σ21(z)
= σ2(x2) cos θ2, and Σ22(z) = σ2(x2) sin θ2. Then the objective
function to maximize is simply

(Σ11Σ21 + Σ12Σ22)(z) f ′(x1) f ′(x2)

= σ1(x1)σ2(x2) cos(θ1 − θ2) f ′(x1) f ′(x2).

If f ′(x1)f ′(x2) ≥ 0, then the maximum is achieved at η = θ1

= θ2. Thus we obtain a family of couplings

dX1
t = b1(X1

t )dt + σ1(X1
t )(cos(η)dW1

t + sin(η)dW2
t ),

dX2
t = b2(X2

t )dt + σ2(X2
t )(cos(η)dW1

t + sin(η)dW2
t ),

for η ∈ [0, 2π]. This coupling is equivalent to generating
approximations with a common Wiener process (W̃t)t≥0, since

W̃t
d
= cos(η)W1

t + sin(η)W2
t , that is, they are equal in dis-

tribution. Due to the localization argument in Equation (8),
this coupling may be sub-optimal for observables computed
over long time horizons. Indeed, for ergodic systems, observ-
ables of trajectories arising from perturbations in the force field
become essentially uncorrelated since the trajectories depart
exponentially as time increases.35 For some explicit examples
(see the Appendix), one obtains the optimality of the com-
mon random path coupling without requiring a localization
argument. On the other hand, locally for the OU process, LE,
and GLE, we observe that the reduction to the variance of the
estimator for several parameters of interest is on the order of
the bias squared; clearly this coupling must be optimal for the
specific numerical experiments that follow because anything
more would be miraculous—we would have produced a Monte
Carlo estimator that could beat Monte Carlo.

We remark further that the restricted set of diffusion
matrices does not include perturbations of the following
form. Consider dXt =

√
TdWt and dYεt =

√
TdW̃t for indepen-

dent Wiener processes (Wt)t≥0 and (W̃t)t≥0. Indeed, Yεt does
not define a local perturbation with respect to T in pre-
cisely the same manner as dXε

t =
√

T + εdWt . Such couplings
arise in a different context and are natural when the driving
noise is not Wiener but Poisson.60 Nevertheless, Cov[Yεt , Xt]
< Cov[Xε

t , Xt] and thus Var[Xε
t − Xt] < Var[Yεt − Xt], so

the diffusion that is a part of our solution set performs better
than the alternative. We also remark that the above solution
to the optimization problem does not depend on f due to
the implicit assumption that f is monotonic throughout its
domain. A more general solution to Optimization Problem
1 would incorporate the behavior of the function f into the
coupling design.

In Sec. III, we introduce the GLE, a prototypical system
with memory, and discuss an extended variable formulation
which casts the problem into a form amenable to the preced-
ing theory. We also introduce some notation and concepts
germane to both examples in Sec. IV, including the tech-
nique used for fitting the Prony series, the normalized velocity
autocorrelation function (VACF), and the integration scheme
used.

III. SYSTEMS WITH MEMORY
A. Extended variable GLE

The GLE is a model of anomalous diffusion, that is,
diffusion where the relationship between the mean squared
displacement (MSD) of the particle and time is no longer lin-
ear, that occurs in complex or viscoelastic media typically
found in biological applications. The GLE includes a tem-
porally non-local drag force and a random force term with
non-trivial correlations.61 The position, X i

t ∈ Rd , and velocity,
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V i
t ∈ Rd , of particle i with mass mi at time t are given by the

GLE,

dX i
t = V i

t dt,

midV i
t = −∇U(X i

t )dt −
∫ t

0
κ(t − s)V i

sdsdt + F i(t)dt,
(10)

subject to initial conditions X i
0 = x0 and V i

0 = v0, where −∇U
is the conservative force and F i is the random force. In the
stochastic integro-differential equation for the velocity, the
memory kernel κ characterizes the frictional force and, through
the fluctuation-dissipation theorem,

E
[
F i(t + s)F j(t)

]
= kBTκ(s)δij, s ≥ 0, (11)

the random force, where kB is Boltzmann’s constant and T
is the absolute (thermodynamic) temperature. This system is
non-Markovian, that is, it has memory; the friction at time t
may have a dependence on the velocity V (s), for s < t.

A general strategy for analyzing (10) involves mapping the
non-Markovian system onto a Markovian system with suitably
many additional degrees of freedom.62 An extended variable
formulation can often be obtained through physically realistic
assumptions on κ that suggest a particular representation for
the memory kernel. For example, when the memory kernel is
posited to have the form of a power law then a positive Prony
series has been identified as a good representation although
more general formulations exist.6,62 In general, observe from
(11) that κ is the covariance function for the driving noise. Then
a sufficient condition on κ for an extended variable formula-
tion to hold is when the driving noise has a spectral density
��p(k)���2, where p(k) =

∑m1
m cm(−ik)m is a polynomial with real

coefficients and roots in the upper half plane.63 A separate
topic, not addressed in this work, is at what level of generality
to represent the kernel or subsequently how to fit the param-
eters to experimental data. Indeed, much work has been done
in the harmonic analysis and signal processing literature on
fitting exponential functions to data since de Prony’s classical
work.64–67 The important observation here is that the mapping
onto Markovian dynamics yields a system of (degenerate) Itô
diffusions with a large number of parameters. This results in
systems for which local and global SA are highly relevant and
for which finite difference estimators are useful for SA of all
parameters of interest.

The issue of which representation to use aside, when the
memory kernel can be represented by a positive Prony series,

κ(t) =
Nk∑

k=1

ck

τk
e−t/τk , t ≥ 0,

then the non-Markovian GLE can be mapped onto a higher
dimensional Markovian problem in dNk-extended variables.
This extended variable GLE is given by

mdVt = −∇U(Xt)dt +
Nk∑

k=1

Sk
t dt,

dXt = Vtdt,

dSk
t = −

1
τk

Sk
t dt −

ck

τk
Vtdt +

1
τk

√
2kBTckdW k

t ,

(12)

subject to X0 = x0, V0 = 30, and Sk
0 = sk

0, for independent
Wiener processes (W k

t )t≥0. Here we omit the obvious exten-
sion to a system of many particles in the interest of brevity.
In the absence of a conservative force and for the harmonic
potential, U(Xt) = ω2X2

t /2, analytic expressions can be given
for the statistics of the dynamics and for certain observables of
interest including the VACF and MSD.68–70 For other poten-
tials, numerical integrators for this system that are stable for
a wide range of parameter values are available and imple-
mented in the LAMMPS software package.4 Moreover, these
schemes exactly conserve the first and second moments of
the integrated velocity distribution in certain limits and stably
approach the LE in the limit of small τk , the latter of which
is a property proven to hold for the extended variable GLE by
other authors.71

As formulated, (12) can be viewed as a system of (degen-
erate) Itô diffusions. Thus, we can form a system of nominal
and perturbed dynamics in the spirit of (2), for k ≥ 2. In addi-
tion to any parameter appearing in the potential and T, we are
interested in analyzing the sensitivity with respect to τk and
ck , k ∈ {1, . . . , Nk }. The pathwise and likelihood ratio meth-
ods outlined in the Introduction are not applicable to these
latter parameters of interest. Since in general the ck and τk

are obtained from experimentally observed data, it is desirable
to analyze the sensitivity of the model with respect to uncer-
tainties arising from the fitting procedure, for example, due to
errors in the measurement or lack of data.

B. Optimal coupling for extended variable GLE

Presently, we apply the most basic aspects of the the-
ory presented in Sec. II to the simple example of an extended
variable GLE with one extended degree of freedom, i.e., one
Prony mode, where the dynamics is subject to a harmonic
confining potential with frequency parameter ω. That is, we
consider the system dZt = BZtdt + ΣdWt for the coupling
Z = (X, V , S, X̃ , Ṽ , S̃), where B and (Σ)ij = σij are 6 × 6 coeffi-
cient matrices to be determined. Here and below we suppress
the extended variable index and denote the perturbed system
variables with tildes for the ease of notation.

An optimal coupling is found by matching the statistics
of the marginals of the coupled process to the statistics of the
nominal and perturbed processes. By writing out the infinites-
imal generators of the corresponding SDEs, this requirement
immediately characterizes B and implies that the only nonzero
elements of Σ are σ33, σ63, σ36, and σ66. Formally, the
optimization problem can be stated as follows.
Optimization Problem 2 (1-mode GLE with harmonic
potential). The choice of diffusion matrix (Σ)ij = σij that
minimizes the variance of D(Z t) is given by

max
Σ

F(Σ; f ) = max
σ

(σ33σ63 + σ36σ66)
∂

∂x3∂x6
f (z),

for σ = (σ11, . . . ,σ66) for all z ∈ R4, under the constraints
Σ>Σ ≥ 0 and

σ2
33 + σ

2
36 = γ

√
c/τ,

σ2
63 + σ

2
66 = γ

√
c̃/τ̃,

where γ =
√

2kbT.
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Thus, for this problem, an optimal family of couplings
Z(η), indexed by η ∈ [0, 2π], is given by

B =

(
L 0
0 L̃

)
,

with

L = *.
,

0 1 0
−ω2 0 1

0 − c
τ −

1
τ

+/
-

,

and Σ with only nonzero elements σ33 = γ sin(η)
√

c/τ,
σ63 = γ sin(η)

√
c̃/τ̃, σ36 = γ cos(η)

√
c/τ, and σ66 = γ cos(η)√

c̃/τ̃, where W = (�, �, W3, �, �, W6) for independent Wiener
processes (W3

t )t≥0 and (W6
t )t≥0 (here several components of

W are irrelevant due to the zero rows and columns in Σ). For
each fixed η, this coupling is equivalent to choosing a common
random path for generating the dynamics of S and S̃. Extend-
ing this optimization problem to an Nk-mode GLE leads to
the expected strategy, namely, the common random path cou-
pling for generating Sk and S̃k , for each k ∈ {1, . . . , Nk }. Each
extended variable requires an independent common random
path for Nk independent Wiener processes in total, as dictated
by (12).

In the remainder of this section, we introduce the notation
and concepts that are relevant for the numerical experiments
in Sec. IV where we test the variance reduction obtained by
the common random path coupling suggested by the theory
above.

C. Fitting Prony series

In the numerical experiments that follow, we consider (10)
with a power law memory kernel given by

κ(t − s) =
γλ

Γ(1 − λ)
(t − s)−λ, (13)

for λ ∈ (0, 1) where Γ is the gamma function. For (13), one
can obtain an approximate Prony series with Nk modes by
assuming logarithmically spaced τk and then fitting the ck

using a least squares method over an interval two decades
longer than the simulation length.4 This simplification retains
a rich enough family of parameters ck to illustrate the
variance reduction achieved by the common random path
coupling. In Figure 1, we illustrate this fitting procedure
for Prony series with Nk modes compared to measure-
ments of (13) with γλ = 1.0 and λ= 0.5. We choose suffi-
ciently many data points to ensure a stable least squares
approximation.

D. Integration scheme

We integrate the system using a modified Verlet method
proposed by other authors, ensuring that the choice of method
parameters satisfies the consistency condition and preserves
the Langevin limit.4 In many molecular dynamics simula-
tions, the initial velocity 30, and hence sk ,0, is chosen from
a thermal distribution. In the numerical experiments below,
the initial conditions for the particle position and velocity are
taken to be definite and sk ,0 = 0 for all k. This is done to min-
imize the sources of the statistical error thus, clarifying the
reporting of deviations in the numerical results. The inclusion

FIG. 1. A least squares fit of the Prony coefficients ck , k ∈ {1, . . . , Nk },
assuming log-spacedτk , for each of Nk modes. This fit is sufficient to illustrate
the variance reduction achieved by the common random path coupling.

of thermal initial conditions does not pose a challenge to the
method.

E. Normalized autocorrelation functions

The results of our numerical experiments are given
primarily in terms of normalized autocorrelation functions.
Formally, the normalized VACF is given by

VACF(t) = 〈VtV0〉/〈V0V0〉 = 〈Vt〉/v0,

where the second equality holds when the initial velocity is def-
inite. A similar definition is assigned to the normalized position
autocorrelation function (PACF). For the GLE with a harmonic
confining potential and a power law memory kernel, expres-
sions for the autocorrelation functions can be given in terms of
Mittag-Leffler functions and their derivatives.68 We compute
the normalized VACF and PACF using the integrated veloc-
ity and position distributions and the fast Fourier transform
method.72

As discussed in the Introduction, it is of fundamental
importance to understand the sensitivity of the GLE dynamics
to local and global perturbations. Fitting parameters based on

FIG. 2. Small changes to the number of modes leads to qualitatively different
behavior of the VACF for the GLE with a harmonic confining potential.
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summary statistics alone can lead to models that do not capture
quantities of interest. Nevertheless, we shall demonstrate the
optimal coupling method for summary statistic observables
for the simple models discussed above where analytic rep-
resentations are available. Even for these simple models, the
VACF exhibits striking qualitative differences to global model
perturbations such as decreasing the number of Prony modes.
Figure 2 illustrates the VACF for models with a varying num-
ber of Prony modes, i.e., extended variables, compared to an
asymptotically exact quantity for the normalized VACF for the
GLE.

IV. NUMERICAL EXPERIMENTS

The numerical experiments below focus on SA for the
extended variable GLE for one particle in one dimension with
a power law memory kernel. The first experiment, in Sec. IV A,
concerns the sensitivity with respect to the Prony coeffi-
cients ck where the coefficients are fit using the method
described in Sec. III C. We observe that the reduction to
the variance of the difference (6) for the optimally coupled
dynamics is on the order of the bias squared for convex
potentials.

FIG. 3. The computational advantage of the common ran-
dom path coupling is illustrated by the reduced sample size
required to obtain meaningful estimates for sensitivities.
Here we plot the sample mean with error bars denoting
two standard deviations, based on M = 102 samples (left
column) and M = 104 samples (right column), for various
parameters.
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We remark that the experiments that follow do not use
physically significant units. The difference estimator and the
variance of D(Z t) depend on the scale of the parameters of
interest and this should be taken into account when under-
standing the results, for example, the limits on the y-axis in
Figures 4 and 5 have no relation to experimental resolution.
That is, for u(θ) = E[ f (Xθ

t )], the finite difference estimator of
∂θu depends on the scale of θ, and therefore it may be of inter-
est in certain applications to compute re-scaled sensitivities,
such as

∂log θu = θ∂θu,

∂θ log u = (∂θu)/u, and

∂log θ log u = θ(∂θu)/u,

where ∂log θ is the derivative with respect to log θ.73

A. Sensitivity with respect to Prony coefficients

We begin by computing local sensitivities for the pro-
posed model with a harmonic confining potential. In particular,
we investigate the sensitivity with respect to the Prony coeffi-
cients ck for k ∈ {1, . . . , Nk }, the harmonic potential frequency
ω, and the temperature T, that is, for a set of parameters
θ = (ω, T, c1, . . . , cNk ). For the observable VACF(t) = f (V θ

t ),
the Monte Carlo finite difference estimator Sε(t, θ; VACF)
= ∆c(M, ε) based on the central difference is given by

∆̂c (M, ε) =
(

f̂
(
V θi+ε

t

)
− f̂

(
V θi−ε

t

))
/2ε,

where V θi±ε
t denotes a small ε perturbation with respect to the

parameter θi leaving all other θj, j , k, fixed. We compute ∆̂c

with a bias ε = 0.01 for dynamics that are driven by a com-
mon random path and that are driven by independent paths.
In Figure 3, we compare the sample mean of estimators Sε ,
along with two standard deviations, for various parameters.
The key observation here is that the optimal coupling dramati-
cally reduces the variances of the difference estimator, relative

FIG. 4. For Sε (t = 10, c1; VACF) for an Nk = 8 mode formulation of GLE,
Var[D(Zt)] = O(ε2) for the common random path coupling in contrast to
Var[D(Zt)] = O(1) for the naively sampled independent difference.

to the independently sampled dynamics, even for a modestly
sized sample.

The precise nature of the reduction can be deduced by
varying ε for a fixed index Sε(t, θi; VACF). In Figure 4, the
variance of the difference (6) is compared for dynamics cou-
pled with a common random path and independent dynam-
ics for Sε(t, c1; VACF). For the optimally coupled dynamics,
the reduction is Var[D(Zt)] = O(ε2), that is, on the order of
the bias squared and, in contrast, Var[D(Zt)] = O(1) for the
difference of the independent dynamics. Recalling the dis-
cussion of errors in Sec. II A, we see that for this example,
Var[∆̂c] = O(M−1) in the case of the optimally coupled dynam-
ics. That is, the optimal coupling eliminates the dependence
of the variance of the estimator on the bias, asymptotically, in
the case of a convex potential.

For nonlinear and non-convex potentials, the common
random path coupling reduces the variance of the estimator,
although the rate is not expected to be O(ε2). In Figure 5,
the Nk = 8 mode formulation of GLE is considered with

FIG. 5. For simple nonlinear non-convex potentials, there is a net reduction
to the variance from the common random path coupling. Here, for the double

well potential, U(Xt) = (1 − X2
t )

2
, with kBT = 0.5, the reduction is less than

O(
√
ε) for both the PACF and VACF.
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FIG. 6. For nonlinear non-convex potentials, less substantial reductions to the
variance are observed. For the double well potential, the coupled dynamics
can be “pushed” into separate basins decreasing the covariance between the
coupled paths.

a simple double-well potential, U(Xt) = (1 − X2
t )

2
, and kBT

= 0.5 for the sensitivities Sε(t = 10, c1; VACF) and Sε
(t = 10, c1; PACF). In this setting, we observe a decay of less
than O(

√
ε) for both observables. In particular, for the double

well potential, the position time series, see Figure 6, indicates
that the perturbed dynamics can be pushed into a basin dif-
ferent from the location of the nominal dynamics for some
time. This decreases the correlation between the two paths
and lessens the reduction to Var[D(Zt)].

For the extended variable GLE with a harmonic potential
and a power law memory kernel, since analytical expressions
exist for several observables of interest including the VACF,68

the maximum relative error for approximating the power law
memory kernel with a given number of Prony modes can be
computed a priori.4 For more complicated potentials, exact
expressions for observables and statistics of the dynamics
are not available. Further, in reality one would like to fit the
Prony modes to experimentally obtained data. Such a proce-
dure would likely involve complex inference methods and a
nonlinear fitting to obtain the τk and ck . In such instances, it
would be highly relevant to test the sensitivity of the fitted
parameters.

B. Sensitivity with respect to number of Prony modes

From Figure 2, we see that changing the number of Prony
modes has a qualitative impact on the VACF. This motivates
the numerical experiment that follows, where we analyze the
effect of increasing the number of Prony modes. That is, for
N1 < N2 consider two systems with N1 and N2 extended
variables, respectively. Given the difference D(Zt) = f (VN1

t )
− f (VN2

t ), define a sensitivity

S ∗ =
∑

t

|ED(Zt)|
2/σZt ,

where the carat denotes the sample mean, σZt is the standard
deviation of the associated sample mean ED(Zt), and the sum
is over the space of discrete time points up to a fixed time
t < T . Although this sensitivity is not a sensitivity in the sense
of the gradients introduced previously, S∗ gives a quantitative

FIG. 7. The non-local sensitivity S ∗ gives a quantitative characterization of
the difference between the observed VACF for models with different numbers
of modes (cf. Figure 2).

characterization of the difference between the two systems,
see Figure 7.

The optimal coupling can be used to reduce the variance
of such non-local sensitivities. Here we investigate the differ-
ence between a nominal model with N1 = n, for n = {1, . . ., 8},
and a perturbed model with one additional mode N2 = N1 + 1.
In Figure 8, we plot the variance of the difference generated by
these nominal and perturbed dynamics for both the optimally
coupled and independent cases, illustrating the reduced com-
putational cost in sampling the optimally coupled dynamics
in comparison to independent sampling. Here the Prony series
are fit separately for the nominal and perturbed dynamics using
the method outlined in Sec. III C. Auxiliary variables cN1 +1

= 0 and τN1+1 = 1 are added to the nominal system so that the
vectors for the nominal and perturbed dynamics have the same
size, and then the common random path coupling is naively
carried out for each of the components.

FIG. 8. The common random path coupling is a valid tool for global SA, as
illustrated by the reduced computational cost in computing Var[D(Zt)] where
the difference is between a nominal model with a fixed number of Prony modes
and an alternative model with one additional Prony mode. This difference,
although it cannot be expressed as a derivative, provides a characterization of
the sensitivity to a discrete change to the system.
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V. CONCLUSIONS

We develop a general framework for the variance reduc-
tion via coupling for goal-oriented SA of continuous time
stochastic dynamics. This theory yields efficient Monte Carlo
finite difference estimators for sensitivity indices that apply to
all parameters of interest in an extended variable formulation of
the GLE. Other well known SA techniques, such as likelihood
ratio and pathwise methods, are not applicable to key param-
eters of interest for this model. These estimators are obtained
by coupling the nominal and perturbed dynamics appearing in
the difference estimator through a common random path and
are thus easy to implement. Strong heuristics are provided to
demonstrate the optimality of the common random path cou-
pling in this setting. In particular, for the extended variable
GLE with a convex potential, the reduction to the variance of
the estimator is on the order of the bias squared, mitigating the
effect of the bias error on the computational cost. Moreover,
the common random path coupling is a valid computation tool
for non-local perturbations and finite difference estimators for
the global SA with applications to model form uncertainty,
such as comparing different models obtained from truncating
the Prony series in GLE, and other aspects of UQ.
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APPENDIX: OTHER EXAMPLES OF INTEREST
IN PARTICLE DYNAMICS

1. OU processes

OU processes are simple and easily analyzed yet are
insightful as they possess several important features: the pro-
cesses are Markovian, Gaussian, and stationary under the
appropriate choice of initial conditions. Further, we note that
the evolution of the extended variables in (12) is described by
an OU process.

Consider the SDE,

dXt = θ(µ − Xt)dt + σdWt , (A1)

subject to the initial condition Xt = x0 ∼ h, for a given distri-
bution h, with scalar coefficients θ,σ > 0, and µ ∈ R. Here
(Wt)t≥0 is a Wiener process on a given stochastic basis. The
solution to (A1), given by

Xt = x0e−θt + µ(1 − e−θt) + σe−θt
∫ t

0
eθsdWs,

for t ∈ [0, T ], is the OU process. This process depends on
parameters θ, µ, σ, x0, and h.

As discussed in Sec. II, we are interested in minimizing
the variance of (6), where (X1

t , X2
t ) is given by the system

dX1
t = θ1(µ1 − X1

t )dt + σ1dW1
t , X1

0 = x1
0 ∼ h1

dX2
t = θ2(µ2 − X2

t )dt + σ2dW2
t , X2

0 = x2
0 ∼ h2.

Then

Var[D(Zt)] = Var[ f (X1
t )] + Var[ f (X2

t )]

+ 2 E[ f (X1
t )] E[ f (X2

t )] − 2 E[ f (X1
t ) f (X2

t )]

= Var[ f (X1
t )] + Var[ f (X2

t )]

− 2 Cov[ f (X1
t ), f (X2

t )],

and hence to minimize the variance of the difference we seek
to maximize the covariance appearing in the expression above.
If X1

t and X2
t are independent, that is, they are generated

with independent processes W1 and W2, then the covari-
ance in question will vanish. If we inject some dependence
between X1 and X2 so that the covariance is nonzero, we find,
after cancellation (for linear f ), that the covariance is given
by

E
[
f

(
σ1e−θ1t

∫ t

0
eθ1sdWs

)
f

(
σ2e−θ2t

∫ t

0
eθ2sdWs

)]
.

This covariance is maximized when the stochastic integral pro-
cesses above are dependent, which occurs when the driving
processes W1 and W2 are assumed to be linearly dependent.

We shall look at two concrete observables, to gain intu-
ition on the variance reduction introduced by the common
random path coupling for the sensitivity with respect to dif-
ferent parameters. For simplicity, we shall further assume that
x1

0 = x2
0 and that µ1 = µ2 are definite. Then these terms do

not play a role since cancellations occur, for example, when
E[x0]2 = E[x2

0]. In these examples, the coupling with a com-
mon random path reduces the variance in the computation
of the central difference estimator by a factor O(ε2) for the
sensitivity with respect to θ and σ.

For both observables and for the sensitivity with res-
pect to θ and σ, we find that Var[D(Zt)] = O(ε2) when
sampling coupled paths and Var[D(Zt)]=O(1) when sampling
independent paths. Therefore, for standard first order dif-
ference estimators of the sensitivity indices, we have
Var[∆̂c] = O(M−1), when sampling optimally coupled paths
but Var[∆̂c] = O(ε−2M−1), for independently sampled paths.
For the OU process, the optimal coupling eliminates the
asymptotic dependence of the variance of the estimator
on ε, in contrast to the case of sampling independent
paths.

a. Finite time observable

Consider the finite time observable, f (X t) = XT for T < ∞.
The expression for the covariance simplifies to

Cov[X1
T , X2

T ]

= σ1σ2e−(θ1+θ2)T E
[∫ T

0
eθ1udWu

∫ T

0
eθ2vdWv

]

= σ1σ2e−(θ1+θ2)T
∫ T

0
e(θ1+θ2)sds

= σ1σ2e−(θ1+θ2)T (e(θ1+θ2)T − 1)/(θ1 + θ2)

= σ1σ2(1 − e−(θ1+θ2)T )/(θ1 + θ2).

Thus the variance of the difference D(Z t) converges to a con-
stant, depending on ε, as T → ∞. As the variance of the
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difference does not vanish, the coupling with a common ran-
dom path is a useful computational technique for all finite
times.

Consider now the sensitivity with respect to θ. Then
θ1(θ, ε) and θ2(θ, ε) can be viewed as functions of θ and ε,
i.e., θ1 = θ + ε and θ2 = θ − ε for the central difference.
To determine the asymptotic dependence of Var[D(Zt)] on
ε, we expand the variance of the difference in a series in
ε at zero. For standard first order differences (central, for-
ward, and backward), in the case of independent sampling, one
finds

Var[X1
T ] + Var[X2

T ] = σ2θ−1 − σ2θ−1e−2Tθ + O(ε),

since θ1(0) = θ2(0) = θ. That is, the variance of the difference
is O(1). In contrast, for sampling with common random paths,

one finds

Var[X1
T ] + Var[X2

T ] − 2 Cov[X1
T , X2

T ] = O(ε2).

A similar story holds for the sensitivity with respect to σ,
Var[D(Zt)] = O(1) for independent sampling and Var[D(Zt)]
= O(ε2) for sampling with common random paths, when using
standard first order differences.

b. Time average observable

Next we consider the time average observable defined
by X = T−1

∫
T

0 Xsds. Once again, we wish to investigate the
dependence of Var[D(Zt)] on ε for the case of coupled paths
and independent sampling. The expression for the covariance
in this instance is

Cov[X1, X2] = E

T−1

∫ T

0
σ1e−θ1s

∫ s

0
eθ1udWuds T−1

∫ T

0
σ2e−θ2t

∫ t

0
eθ2vdWvdt



= σ1σ2T−2
∫ T

0

∫ T

0
e−θ1s−θ2t E

[∫ t

0
eθ1udWu

∫ s

0
eθ2vdWv

]
dsdt

= σ1σ2T−2
∫ T

0

∫ T

0
e−θ1s−θ2t

∫ s∧t

0
e(θ1+θ2)rdrdsdt

= σ1σ2T−1
((
θ1θ2 + θ

2
2

)−1
+

(
θ2

1 + θ1θ2

)−1
)
+ O(T−2).

First, we look at the sensitivity with respect to the parameter
θ. As in the case for the finite time observable, we expand
Var[D(Zt)] in a series in ε at zero. For standard first order
differences, this yields

Var[D(Zt)] = 2σ2T−1θ−2 − 3σ2T−1θ−3

+ 4σ2T−2θ−3e−Tθ − σ2T−2θ−3e−2Tθ + O(ε),

for independently sampled paths. Working in a similar fashion,
we find in contrast that

Var[D(Zt)] = ε
2
(
4σ2T−1θ−4 + O(T−2)

)
+ O(ε4),

for the coupled paths. For the sensitivity with respect to σ, the
story is the same. The independently sampled paths behave
like

Var[D(Zt)] = 2σ2T−1θ−2 + ε22T−1θ−2 + O(T−2)
(
1 + ε2

)
,

and the coupled paths behave like

Var[D(Zt)] = ε
2
(
cT−1θ−2 + O(T−2)

)
,

for a constant c. In Figure 9, we observe the theoretically
obtained values for the reduction to the variance for the sen-
sitivity with respect to σ of an OU process with parameters
θ = 1, µ = 1.2, σ = 0.3, and x0 = 2. The time average is com-
puted up to time T = 10 and each variance is computed using
M = 103 independent samples of an optimally coupled AR(1)
process and an independent AR(1) process.

2. Langevin dynamics

We consider the LE with particle mass m = 1,

dXt = Vtdt,

dVt = −ω
2Xtdt − βVtdt +

√
2βkBTdW1

t ,

FIG. 9. For the OU process, the variance of the estimator for the sensitivity
with respect to σ for the time averaged observable is O(1) for the indepen-
dently sampled difference and O(ε2) for the optimally coupled difference.
Here consider an OU process with parameters θ = 1, µ = 1.2, σ = 0.3, and
x0 = 2 and compute the average up to time T = 10. Each variance is based
on M = 103 independent samples of optimally coupled AR(1) processes and
independent AR(1) processes.
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for t ∈ [0, T ], subject to X0 = x0 and V0 = 30, where (W1
t )t≥0

is the Wiener process. This system can be written as a two-
dimensional OU process Y t = (X t , V t), given by

dYt = −BYtdt + ΣdWt , Y0 = (x0, v0), (A2)

for Wt = (0, W1
t ) with coefficient matrices

B =

(
0 −1
ω2 β

)
and Σ =

(
0 0
0

√
2βkBT

)
.

The general solution to (A2) is given by

Yt = e−BtY0 +

∫ t

0
e−B(t−s)

ΣdWs,

for t ∈ [0, T ], where, for this example, e�Bt can be written
as (except in the critically damped case) in a closed form in
terms of the eigenvalues of B, µ1 = β/2 +

√
β2/4 − ω2 and

µ2 = β/2 −
√
β2/4 − ω2.74 That is, the position and velocity

are given component-wise by

Xt = µ
−1

(
x0(µ1e−µ2t − µ2e−µ1t) + v0(e−µ2t − e−µ1t)

+
√
γ(µ1 + µ2)

∫ t

0
(e−µ2(t−s) − e−µ1(t−s))dWs

)
,

Vt = µ
−1

(
x0ω

2(e−µ1t − e−µ2t) + v0(µ1e−µ1t − µ2e−µ2t)

+
√
γ(µ1 + µ2)

∫ t

0
(µ1e−µ1(t−s) − µ2e−µ2(t−s))dWs

)
,

for µ−1 = (µ1 − µ2) and γ = 2kBT. We shall further assume,
for simplicity, that both x0 and 30 are definite.

For the Langevin dynamics, we form the coupled system
Zt = (Yt , Ỹ t), where Ỹ solves (A2) for B̃ and Σ̃ depending upon
perturbed parameters (also denoted with tildes in the sequel)
and with an independent Wiener process W̃ . Once again, we are
interested in minimizing the variance of the difference D(Zt)
= f (Yt) − f (Ỹ t), for linear observables f. Note that D(Z t) is
a vector quantity (i.e., Var[D(Zt)] is the variance-covariance
matrix),

Var[D(Zt)] = Var[ f (Yt)] − 2 Cov[ f (Yt), f (Ỹ t)] + Var[ f (Ỹ t)],

for f (Y t) = ( f (X t), f (V t)), where Cov[ f (Yt), f (Ỹ t)] has com-
ponents Cov[ f (Xt), f (X̃ t)], Cov[f (Vt), f (Ṽ t)], and cross terms
1
2 (Cov[f (Vt), f (X̃ t)] + Cov[ f (Xt), f (Ṽ t)]). This covariance is
zero when Y t and Ỹ t are independent and can be maximized
when Y t and Ỹ t are linearly dependent, which is equivalent to
generating Y t and Ỹ t using common random paths Wt = W̃ t .
Next, we investigate the asymptotic dependence of Var[D(Zt)]
on ε for two observables, related to a finite time horizon and
a time average, for sensitivities with respect to β.

a. Finite time observable

Consider the finite time observable f (Y t) = YT . Using the
component wise expression above, the covariance term related
to the positions can be expressed in terms of the eigenvalues
of the drift matrices for the nominal and perturbed systems.

That is, we let Cov[XT , X̃T ] = φ(µ1, µ2, µ̃1, µ̃2), where

φ(µ1, µ2, µ̃1, µ̃2)

=
γ
√

(µ1 + µ2)(µ̃1 + µ̃2)

(µ1 − µ2)(µ̃1 − µ̃2)
*.
,

1 − e−(µ1+µ̃1)T

µ1 + µ̃1

−
1 − e−(µ1+µ̃2)T

µ1 + µ̃2
−

1 − e−(µ2+µ̃1)T

µ2 + µ̃1
+

1 − e−(µ2+µ̃2)T

µ2 + µ̃2

+/
-

.

Similar expressions can be given for the covariances related to
the velocity and the cross terms. Here the eigenvalues of the
nominal and perturbed systems are (linear) functions of ε (and
β) that are related by the type of difference quotient chosen to
approximate the sensitivity.

In the case of a centered difference, µ1 = µ1(ε)
and µ2 = µ2(ε) are defined, in the obvious way, as µ1(ε)

= (β + ε)/2 +
√

(β + ε)2/4 − ω2 and µ2(ε) = (β + ε)/2

−

√
(β + ε)2/4 − ω2, and hence µ̃1 = µ1(−ε) and µ̃2

= µ2(−ε). In this case, we can write Var[XT ] = ψ(µ1(ε), µ2(ε))
and Var[X̃T ] = ψ(µ1(−ε), µ2(−ε)) where we define ψ(µ1, µ2)
= φ(µ1, µ2, µ1, µ2).

The asymptotic dependence of Var[D(Zt)] = Var[XT ]
+Var[X̃T ]−2 Cov[XT , X̃T ] on ε can now be obtained by expand-
ing the quantity of interest in a series in ε = 0, using the
representations above. That is, for each term appearing above,
we have

Var[XT ] = ψ |ε=0 + ∂εψ |ε=0ε + ∂
2
εψ

���ε=0
ε2 + O(ε3),

Var[X̃T ] = ψ |ε=0 − ∂εψ |ε=0ε + ∂
2
εψ

���ε=0
ε2 + O(ε3),

Cov[XT , X̃T ] = φ|ε=0 + ∂εφ|ε=0ε + ∂
2
εφ

���ε=0
ε2 + O(ε3),

where ∂k
ε denotes the kth derivative with respect to ε. Noting

that ψ |ε=0 is non-zero, it follows that Var[XT − X̃T ] = O(1)
for independently sampled paths. For the common random
path coupling, the zeroth order term in the expansion for
Var[D(Zt)] vanishes, since ψ |ε=0 = φ|ε=0. In this particu-
lar case, the first order term, ∂εφ|ε=0 = 0, also vanishes since
∂µjφ = ∂µ̃jφ and µ̃′j(0) = −µ′j(0), for j = 1, 2. Finally, not-
ing that since ∂µjφ is not symmetric in (µj, µ̃j), the second
order term in the expansion for Var[D(Zt)] does not vanish,
yielding Var[D(Zt)] = O(ε2). Explicit expansions can also be
calculated for other standard first order differences and for the
other covariance terms with similar asymptotic rates observed,
namely, O(ε2) for the common random path coupling and O(1)
for independently sampled paths.

b. Time average observable

Let X = T−1
∫

T
0 Xtdt and consider the time average

observable f (Yt) = (X , V ). As in the case of the time aver-
age observable for the OU process, the expectation can be
exchanged with the integral in time, yielding explicit expres-
sions for the covariances as in the Appendix, Subsection 2 a.
Investigations into the asymptotic dependence of Var[D(Zt)]
yield O(ε2) in the optimally coupled case and O(1) in the
independent case. These rates are observed experimentally
in Figure 10 where we consider Var[D(Zt)] = (ϕ)ij (i.e., ϕ11
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FIG. 10. The sample variance of the components of Var[D(Zt)], for the time
average observable f (Zt) = Z , is on the order of O(ε2) for optimally coupled
paths, in contrast to O(1) for independent paths. Here we consider the sample
variance of ϕ11, ϕ22, and ϕ12, based on M = 103 samples, for the sensitivity
in β, at β = 1, for time averages up to T = 10.

= Var[X1 − X2]), based on M = 103 samples, for a central dif-
ference perturbation in β, at β = 1 (the underdamped case
β < 2ω). The time averages are computed up to a final time
T = 10 for sample paths from Langevin dynamics, with fixed
parameters x0 = �1, 30 = �0.1, ω = 1, m = 1, and γ = 1,
integrated using the BAOAB method75 with ∆t = 10−3.
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29E. Fournié, J.-M. Lasry, J. Lebuchoux, and P.-L. Lions, Finance Stochastics

5, 201 (2001).
30D. Nualart, The Malliavin Calculus and Related Topics, Probability and its

Applications, 2nd ed. (Springer-Verlag, New York, 2006), p. xiv+382.
31B. Bouchard, I. Ekeland, and N. Touzi, Finance Stochastics 8, 45 (2004).
32P. B. Warren and R. J. Allen, Phys. Rev. Lett. 109, 250601 (2012).
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