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Deterministic equations for stochastic spatial
evolutionary games

Sung-Ha Hwang
School of Economics, Sogang University

Markos Katsoulakis
Department of Mathematics and Statistics, University of Massachusetts at Amherst,

and Department of Applied Mathematics, University of Crete

Luc Rey-Bellet
Department of Mathematics and Statistics, University of Massachusetts at Amherst

Spatial evolutionary games model individuals playing a game with their neigh-
bors in a spatial domain and describe the time evolution of the strategy profile
of individuals over space. We derive integro-differential equations as determin-
istic approximations of strategy revision stochastic processes. These equations
generalize the existing ordinary differential equations such as replicator dynamics
and provide powerful tools for investigating the problem of equilibrium selection.
Deterministic equations allow the identification of many interesting features of
the evolution of a population’s strategy profiles, including traveling front solutions
and pattern formation.

Keywords. Spatial evolutionary games, deterministic approximation, long-range
interactions, equilibrium selection, traveling front solutions, pattern formation.

JEL classification. C70, C72, C73.

1. Introduction

Various economic phenomena are typically aggregate outcomes of interactions among a
large number of seemingly unrelated agents. The occurrence of depression may depend
on decisions of many agents to save or consume. Some institutional changes such as the
transformation of conventional crop share systems involve a large number of actors with
limited information and occur based on the collective action of these actors through de-
centralized processes. Interactions between agents are inherently local because they are
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separated by spatial locations, languages, and cultures, and agents are more likely to in-
teract with some agents than with others. Schelling (1971) examines spatial interactions
in deciding residential areas and shows that the preference for racial integration may
lead to spatial segregation in residential areas. Bisin and Verider (2011) study cultural
transmission and socialization, and identify geographical diffusion as one of the major
mechanisms underlying this transmission (see Bowles 2004 for more applications).

To examine such spatial interactions, we consider a class of spatial stochastic pro-
cesses in which agents at various spatial locations interact with their neighbors by play-
ing games. We develop and investigate deterministic approximations of spatial stochas-
tic processes. A number of studies have examined spatial stochastic models in the con-
text of evolutionary game theory (Blume 1993, 1995, Ellison 1993, 2000, Young 1998,
Chapter 5, and Young and Burke 2001; see Szabo and Fath 2007 for a survey of spa-
tial evolutionary games). In such models, agents typically interact with a finite set of
neighbors and thus they are referred to as local interaction models. Important questions
about equilibrium selection and the speed of convergence to equilibrium have been ad-
dressed by analyzing stochastic dynamics directly. For instance, Ellison (1993) shows
that local interactions lead to a rapid transition to a long-run equilibrium in learning
dynamics and Blume (1995) shows that spatial variations can replace persistent ran-
domness, which is necessary for equilibrium selection in global interaction models.

However, existing methods and results are confined to special classes of games such
as potential or coordination games or to a limited number of behavioral and learning
rules such as perturbed best-response and logit choice rules. It is known that the im-
plications of specific behavioral or learning rules for evolutionary dynamics are quite
different. In the stochastic dynamics of uniform interaction models, as in Kandori et al.
(1993) and Young (1993), the dynamics based on perturbed best-response rules select a
risk-dominant equilibrium, while those based on imitation behaviors select a Pareto-
superior Nash equilibrium (Josephson and Matros 2004, Robson and Vega-Redondo
1996). Grauwin and Jensen (2012) examine Schelling’s models of residential segrega-
tion by adopting the logit choice rule, but the choice of residence can be based on other
behavioral rules, notably imitation rules. After all, imitation is one of the most impor-
tant decision-making rules in everyday life (Levine and Pesendorfer 2007, Apesteguia
et al. 2007, Bergin and Bernhardt 2009, Apesteguia et al. 2010). The model of imitation
necessarily involves questions such as who to choose as a role model, and spatial consid-
erations such as neighbors and proximity are intrinsic aspects of sophisticated models
of such behaviors.

What are the implications of various learning and behavioral rules for spatial
stochastic processes? Specifically, how do imitation behaviors (in comparison to per-
turbed best-response behaviors) contribute to spatial decision-making processes such
as the choice of residential areas? What are the implications of various behavioral rules
for the speed of convergence to equilibrium and equilibrium selection? Addressing such
questions by using existing methods for analyzing stochastic processes directly can eas-
ily become a mathematically challenging problem (see, e.g., Durrett 1999). In addi-
tion, existing methods for examining equilibrium selection problems (Kandori et al.
1993, Young 1993, Ellison 1993, 2000) are not applicable to the case in which perturbed
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stochastic processes violate some regularity conditions such as ergodicity. To tackle this
difficulty, we adopt deterministic approximation methods for analyzing stochastic pro-
cesses, derive a class of differential equations that approximate the original stochastic
process, and rigorously justify such approximations. The deterministic approximation
method is widely used to analyze uniform or global interaction models (see Benaim and
Weibull 2003), but the extension of this method to spatial stochastic processes involves
nontrivial and technically demanding tasks.

Our main results rely on the insight that deterministic approximation methods are
still applicable to spatial stochastic processes under the key condition that the range
of spatial interactions is sufficiently long. We thus focus on the spatial models of long-
range interactions in which a player interacts with a substantial portion of the popula-
tion, but spatial variations in the strength of interactions are nonetheless allowed.

In the current literature of evolutionary game and learning theory (e.g., Hofbauer
and Sigmund 2003, Weibull 1995, Fudenberg and Levine 1998, Sandholm 2010b), the
time evolution of the proportion of agents with strategy i at time t, ft(i), is described by
an ordinary differential equation (ODE) as

d

dt
ft(i)=

∑
k∈S

cM(k� i� ft)ft(k)− ft(i)
∑
k∈S

cM(i�k� ft) for i ∈ S� (1)

Examples of such equations include the well known replicator dynamics, logit dynamics,
and Brown–von Neumann Nash dynamics. The first term in (1) describes the rate at
which agents switch to strategy i from some other strategy, whereas the second term
describes the rate at which agents switch to some other strategy from strategy i. For this
reason, (1) is also called an input–output equation.

It is well known (Kurtz 1970, Benaim and Weibull 2003, Darling and Norris 2008) that
a solution to (1), ft(i), approximates, on a finite time interval, a suitable mean stochas-
tic process (or a stochastic process with uniform interactions) in the limit of an infinite
population. That is, ft(i) is the average of the proportion of agents playing strategy i for
the entire domain. Our spatial model with long-range interactions describes instead the
state of the system by a local density function ft(u� i). Here u, a spatial location, belongs
to the spatial domain A ⊂ R

n, where agents are continuously distributed and ft(u� i)
indicates the proportion of agents playing strategy i at u. Our main result is that spa-
tial stochastic processes with long-range interactions are approximated on finite time
intervals and in the limit of an infinite population through the equation

∂

∂t
ft(u� i)=

∑
k∈S

c(u�k� i� ft)ft(u�k)− ft(u� i)
∑
k∈S

c(u� i�k� ft) for i ∈ S� (2)

Equation (2) provides a natural generalization of (1). For example, the term c(u�k� i� f )
describes the rate at which agents at spatial location u switch from strategy k to i. This
rate depends on strategies of agents at other spatial locations and, typically, c(u�k� i� f )
takes the functional form

c(u�k� i� f )=G(k� i�J ∗ f (u� i))� where J ∗ f (u� i) :=
∫

J (u− v)f (v� i)dv�
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(a) Traveling front solution (b) Logit equation

Figure 1. Traveling front solutions. This figure illustrates how a traveling front solution de-
scribes the propagation of a strategy over the whole spatial domain for a two-strategy game.
The heights of the solutions in (a) and (b) are local densities for strategy 1. For (b), N = 256,
�= [−1�1], dt = 0�001/(0�05N2), a11 = 20/3, a22 = 10/3, and a12 = a21 = 0; χ= 2 for the Gaussian
kernel. The initial condition is a unit step function at 0.

Here J ∗ f is the convolution product of J and f , and J (u) is a nonnegative probabil-
ity kernel that describes the strength of the interaction between players whose relative
distance is u. If J is constant, then (2) reduces to (1). This equation is referred to as an
integro-differential equation (IDE).

One of the major advantages of our framework and equations lies in their flexibility
and generality. Following the heuristic derivation method in Section 3.4, one can eas-
ily derive specific equations from various behavioral assumptions for any normal form
games, study the problem of equilibrium selection, and compare the roles of various be-
havioral rules in spatial interactions. Traveling front solutions to spatial equations (see
Figure 1) show how the adoption of a strategy propagates throughout a spatial domain,
selecting an equilibrium from among multiple Nash equilibria.

In the case of two-strategy coordination games, when agents’ behavioral rules are
perturbed best-response rules, we observe that the system converges everywhere to the
risk-dominant equilibrium exponentially fast. By contrast, in the dynamics in which
agents adopt imitation rules for strategy revisions, we observe a slow transition to the
risk-dominant equilibrium. Similarly, we observe the persistent spatial separation of
the choice of strategies in imitation dynamics, whereas no such patterns arise in the
dynamics of perturbed best-response rules.

Existing approaches to pattern formation and the existence of traveling front solu-
tions in evolutionary games traditionally employ reaction-diffusion partial differential
equations. Such models are typically obtained by adding a diffusion term to the mean
dynamic equation, which in turn models the fast but homogeneous spatial diffusion of
agents (Hutson and Vickers 1992, Vickers et al. 1993, Hofbauer et al. 1997, Hofbauer,
1997, 1999, Durrett 1999). By contrast, in our scaling-limit approach, spatial effects are
introduced at the microlevel, and thus diffusive effects are generally density dependent
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and differ markedly from equation to equation. This introduces new and interesting
spatial phenomena, which are absent in reaction-diffusion equations.

The rest of this paper is organized as follows. Section 2 illustrates the main results
in the example of a two-strategy symmetric game under perturbed best-response rules
and demonstrates that our deterministic equations can provide a useful technique for
analyzing the original stochastic processes. Section 3 introduces the stochastic process
and scaling limits, and presents the main results (Section 3.3). Section 3.4 provides a
heuristic derivation of the equations, and Section 3.5 elucidates the relationships be-
tween spatial models and uniform interaction models. Section 4 analyzes equilibrium
selection. In the final section, we informally discuss pattern formation in two-strategy
games through a combination of linear stability analysis and numerical simulations.
The Appendix provides all proofs, thereby streamlining the presentation of the main
results and analyses.

2. Two-strategy symmetric games: Equilibrium selection

In this section, we present the main results of the paper and their implications for the
problem of equilibrium selection in a two-strategy symmetric game. Our general re-
sults for various games and a large class of updating rules are presented in Section 3.
Consider a two-strategy game with the payoff matrix {a(i� j)}i�j=1�2, where a(i� j) = aij
is the payoff for playing strategy i against j, and a11 > a21 and a12 < a22. Suppose that
agents are located at various sites of a graph �. The strategy of the agent at site x is σ(x)
and the strategy profile σ is a collection of all agents’ strategies in the population, i.e.,
σ = (σ(x1)� � � � �σ(xn)), where n is the total number of agents in the population. We as-
sign nonnegative weights W(x� y) to any two sites x and y to capture the importance or
intensity of the interaction between neighbors. As in Young (1998, Chapter 6), we define
the payoffs for an agent playing strategies 1 and 2 as

u(x�σ�1)=
∑
y∈�

W(x� y)a(1�σ(y))� u(x�σ�2)=
∑
y∈�

W(x� y)a(2�σ(y))�

Thus, the total payoff for the agent at site x is the weighted sum of payoffs from all
games played with his neighbors. Suppose that each agent possesses a random alarm
clock. An agent receives a strategy revision opportunity when his clock goes off and he
revises his strategy according to some choice rule. This setting defines a Markov pro-
cess {σt}. Suppose that the choice rule is a logit choice rule (Blume 1993) modeling the
perturbed best-response behavior of agents. That is, the agent at x chooses strategy 1
(strategy 2, respectively) with probability

exp(βu(x�σ�1))
exp(βu(x�σ�1))+ exp(βu(x�σ�2))

(
or

exp(βu(x�σ�2))
exp(βu(x�σ�1))+ exp(βu(x�σ�2))

)
�

where β> 0 is the parameter measuring the (inverse) noise level or the degree of pertur-
bation. Then the spatial Markov process admits a stationary distribution of the form

μ({σ})∝ exp
[
β

1
2

( ∑
z�y∈�

W(y − z)a(σ(y)�σ(z))+
∑
y∈�

W(0)a(σ(y)�σ(y))
)]
� (3)
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(See Blume (1997) for the analogous expression in the case of local interaction models.)
Recall that strategy 1 is risk dominant if and only if a11 − a21 > a22 − a12 (Harsanyi

and Selten 1988). It is easy to show that under suitable conditions for W (as in (4) or
Young 1998, p. 97), as the noise level becomes negligible (β→ ∞), the stationary dis-
tribution (3) converges to a point mass on the state in which every agent chooses the
risk-dominant strategy. The selected state is called a stochastically stable state and it
has playing a significant role in the questions of equilibrium selection.

Instead of analyzing the long-run behaviors of the spatial stochastic process directly,
we focus on the time trajectories of the spatial stochastic process and derive a differen-
tial equation as a deterministic approximation. To do this, we make the following scaling
assumption for the interaction:

W(x− y)= n−1 J (n−1(x− y))� (4)

Under this assumption, we show that as n approaches infinity, the time trajectory of
the empirical distribution for the strategy profile (see (13)) converges to the time tra-
jectory of a local density for the strategy profile f , which satisfies a system of differen-
tial equations (Theorems 1 and 2). The function J (x) captures the spatial variations in
the model. Specifically, our deterministic approximation yields the integro-differential
equation

logit IDE
∂

∂t
ft(w)

(5)

= eβ(a11 J ∗f (w)+a12(1−J ∗f (w)))

eβ(a11 J ∗f (w)+a12(1−J ∗f (w))) + eβ(a21 J ∗f (w)+a22(1−J ∗f (w))) − ft(w)�

where J ∗ f (w) := ∫
J (w − v)f (v)dv and f (v) is the density of strategy 1 at loca-

tion v. Equation (5) is a spatial generalization of mean dynamics of the logit choice rule
(Sandholm 2010b). As in the analysis of mean dynamics, a handy tool for analyzing the
dynamics given by (5) is the functional

V (f ) := 1
2
(a11 − a21 + a22 − a12)

∫
J ∗ f (w)f (w)dw

(6)

− (a22 − a12)

∫
f (w)dw− 1

β

∫
φ(f(w))dw�

where φ(x) := x logx + (1 − x) log(1 − x). In Proposition 1, we show that V (f ) is the
Lyapunov functional of the logit IDE (5); the critical values of V (f ) coincide with the
stationary solutions and the value of V (f ) along the solution to (5) increases over time.

Proposition 1 (Lyapunov functional for spatial logit dynamics). For a solution ft that
satisfies (5), we have

d

dt
V (ft)≥ 0 and

d

dt
V (ft)= 0 if and only if

∂

∂t
ft = 0�
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The Lyapunov functional gives all stationary solutions (spatially homogeneous or
inhomogeneous), and the stabilities of such solutions can be studied by analyzing the
shape of V . The first two terms in (6) are called the energy part and the last term is called
the entropy part. If the noise level β−1 is high, then the entropy part dominates in (6)
and the dynamic has one spatially homogeneous stationary solution. By contrast, if the
noise level β−1 is low, then the agents’ behaviors are closer to the best-response rules
and the system admits three spatially homogeneous stationary solutions. Two of these
solutions correspond precisely to the local maxima of the functional V , with one being
close to 0 and the other being close to 1 across all spatial locations. This immediately
leads to the issue of selecting an equilibrium from two competing stable solutions at
deterministic dynamics.

Such equilibrium selection problems in deterministic spatial equations are typically
addressed using traveling front solutions. To study these solutions, we examine the time
evolution of solutions from initial data in which two stationary states are connected
through the spatial domain (see the initial condition in the left panel of Figure 1). The
existence of traveling front solutions and the asymptotic stability of such solutions in
various cases of logit dynamics follow from results for essentially equivalent equations
((36); see Theorem 5; De Masi et al. 1995, Orlandi and Triolo 1997, Chen 1997). In the
right panel of Figure 1, a traveling front solution shows how the choice of strategy 1
propagates over the spatial domain over time.

How are equilibrium selection results for deterministic dynamics related to the cor-
responding results for the original stochastic processes obtained through the analysis of
the invariant measure (3)? Although our approximation results hold for a fixed time win-
dow, we will illustrate that the propagation of a strategy can happen within the time win-
dow during which the deterministic approximation is still valid. Once the propagation is
complete, the entire population persists in playing the strategy, whether the determin-
istic approximation still holds or not. Hence, the deterministic equation can provide the
correct prediction about the long-run behaviors of the spatial stochastic process.

To illustrate this, we first refer to a more general result on deterministic approxima-
tions: in the case of logit equations, deterministic approximations are valid for a longer
time horizon as long as it is shorter than log(n) (De Masi et al. 1994). To be more con-
crete, we consider a large number of agents in the system (e.g., n = 105). According to
the result, deterministic equations are informative up to time t ≈ 11�6 (≈ log(105)). In
various numerical simulations of the coordination game (Figures 1, 2, and 4) with in-
teraction intensity J (x) ∝ exp(−|x|2), we observe that it usually takes time t ≈ 7 or 8
for the risk-dominant equilibrium in the coordination game to complete the propaga-
tion over the whole spatial domain. The time scale for the deterministic equation is the
same as that for the spatial stochastic process in our choice of scaling (see Section 3),
which implies that the stochastic process starting from the same initial condition as the
deterministic equation remains close to the traveling front solution with high probabil-
ity until the complete propagation of strategy 1. Moreover, the traveling wave solution
to the logit equation is asymptotically stable, attracting various solutions (see, e.g., the
condition (38)), which implies that various strategy profiles of the original stochastic
process could be attracted to the traveling front solution.
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This example illustrates that (i) the speed of convergence to equilibrium in our
stochastic model of long-range interaction is fast, as in the case of local interaction mod-
els, and (ii) the traveling front solution to the deterministic equation provides a useful
tool for analyzing equilibrium selection problems in the spatial stochastic process. In
our models, the function J varies according to the spatial distance, typically putting
more weight on interactions between close neighbors, which provides spatial clustering
that expedites the propagation of the risk-dominant equilibrium. In this regard, the way
that traveling front solutions move can be regarded as Ellison’s evolution path in a large
population limit toward the risk-dominant equilibrium (Ellison 1993, 2000).

A rigorous theoretical analysis relying on new techniques is required for establish-
ing more precise relationships between the waiting time for the stochastic processes
and the speed of the traveling front solution, but we leave such an analysis to future re-
search. However, our deterministic approximation methods yield a promising first step,
and these methods themselves often provide a powerful tool for analyzing the original
stochastic processes. For example, Kreindler and Young (2013) in their recent work on
learning in stochastic models first show that fast learning obtains in the determinis-
tic approximation of the stochastic process and then that the property of fast learning
is preserved under the deterministic approximation. Durrett (2002) proves the coex-
istence of species in the stochastic spatial model by proving persistent results for the
corresponding deterministic reaction diffusion equation.

Ellison (1993) shows that in the uniform model, it takes an extremely long time to
shift from one equilibrium to the other, while in the local interaction model, conver-
gence to the risk-dominant equilibrium is fast. Our spatial model of interactions also
confirms Ellison’s result. In the right panel of Figure 2, the spatial model accounting for
the locality of interactions shows a fast transition to the state in which all agents adopt
the risk-dominant strategy equilibrium (strategy 1). By contrast, the left panel demon-
strates that the uniform interaction model (here J (x) is identically constant over the
domain) shows convergence to the state that is risk dominated (strategy 2).

In the uniform interaction case, agents are concerned only about the aggregate be-
havior of other agents, and the initial proportion of agents playing strategy 2 in the whole
population is great enough to offset the payoff advantage of strategy 1. As a result, the
system converges to a state in which all agents play strategy 2. However, in a spatial
model that accounts for agents’ local behaviors, neighbors around the island of agents
with strategy 1 switch to strategy 1, and these behaviors propagate over the space. By re-
ducing complicated spatial stochastic processes to spatial differential equations, we ob-
tain more tractable mathematical settings in which important questions concerning the
original stochastic processes can be addressed. The uniqueness, existence, and stability
of traveling front solutions to IDE’s similar to ours have been studied and established
under fairly general conditions (see Theorem 5 in Section 4 of Chen 1997). This general
result can provide a rigorous characterization for equations arising from a number of
interesting strategy revision rules.

How is the very long-term behavior of differential equations (which may be longer
than the time scale of log(n)) related to that of the original stochastic processes? In this
time scale, long-term predictions of differential equation may be misleading, neglecting
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Figure 2. Comparison of equilibrium selection between uniform and spatial interactions. The
upper panels show how front solutions evolve over time in the uniform interaction model (the
left panel) and in the spatial interaction model (the right panel). We consider the same initial
conditions under which agents using strategy 1 form an island in the population using strat-
egy 2. The bottom panels show the population densities for strategy 1 when the local den-
sity is aggregated over the space. Here, the logit choice rule is used, N = 512, � = [−π�π],
dt = 0�001/(0�25N2), a11 = 20/3, a22 = 10/3, and a12 = a21 = 0; χ = 2 for the Gaussian ker-
nel in Section 4.2. The initial density in the upper panel is 1/6 and the initial condition is
1[−π/6�π/6], where 1A hereafter means a function that takes the value of 1 if u belongs to A and 0
otherwise.

stochasticity and fluctuations. For a large system, the very long-run behavior of stochas-

tic processes can be suitably analyzed using large deviation techniques in conjunction

with deterministic approximations. It is well known that in the case of the logit rule and

the two-strategy game, the empirical distribution of the strategy profile satisfies a large

deviation principle with a rate functional that has exactly the same form as the Lyapunov

functional (6) (see Eisele and Ellis 1983). In this case, the analysis of the Lyapunov func-

tional associated with deterministic equations can provide a fruitful prediction of the

long-run behavior of stochastic processes via large deviation analysis. In particular, one

can study metastable states, and compute the mean exit time and the optimal exit path

from the neighborhood of a metastable point. This is an infinite-dimensional version

of Freidlin and Wentzell’s (1998) theory, and De Masi et al. (1996a, 1996b) and Presutti

(2009) have obtained in this way the best results to date on the long-time behavior of

complex spatial stochastic processes.
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3. Spatial evolutionary games

3.1 Strategy revision processes

In models of spatial evolutionary games, agents at various spatial locations play a nor-
mal form game with their neighbors. Specifically, we suppose that agents are located at
the vertices of a graph �, which is a subset of the integer lattice Z

d . We consider one
population playing a normal form game, but the generalization to multiple population
games is straightforward. A normal form game is specified by a finite set of strategies S
and a payoff function a(i� j) that gives the payoff for a player using strategy i ∈ S against
strategy j ∈ S.

The strategy of the agent at site x ∈ � is σ�(x) ∈ S and we denote by σ� =
{σ�(x) :x ∈ �} the configuration of strategies for every agent in the population. With
these notations, the state space, i.e., a set of all possible configurations, is S�. The sub-
script of σ� = σ is suppressed whenever there is no confusion. As in Section 2, we assign
nonnegative weights W(x − y) to any two sites x and y to capture the importance or
intensity of the interaction between neighbors. Note that we assume that these weights
depend only on the relative location x− y between the players (i.e., we assume transla-
tion invariance; see the discussion at the end of Section 3.3). It is convenient to assume
that the total weight that an agent at site x assigns to all his neighbors is normalized to 1,
that is,

∑
y∈� W(x − y) ≈ 1. We say an agent at site y is a neighbor of an agent at site

x when W(x − y) > 0. Given a configuration σ , an agent at site x who plays strategy i
receives the payoff

u(x�σ� i) :=
∑
y∈�

W(x− y)a(i�σ(y))�

If we regard W as the probability with which an agent samples his neighbors, then
u(x�σ� i) is the expected payoff for an agent at x playing strategy i if the population con-
figuration is σ . An alternative interpretation is that an agent receives an instantaneous
payoff flow from his interactions with other neighbors (Blume 1993, Young 1998).

For the special case in which W(x − y) is constant, the interaction is uniform and
there is no spatial structure. In this case, if there is a total of nd agents in the population,
then W(x − y) ≈ 1/nd because of the normalization condition for W . Alternatively, if
W(x− y)= 1/2d for ‖x− y‖ = 1 and W(x− y)= 0 otherwise, then there are interactions
only between nearest sites and the model is referred to as a nearest neighbor model
(Blume 1995, Szabo and Fath 2007).

In this paper, we focus on long-range interactions in which each agent interacts with
as many agents as in the uniform interaction case, but the interaction is spatial and thus
local. We then analyze the limit of spatial stochastic processes under long-range inter-
actions by using unscaled time and scaled space. This model is known as a local mean
field model (Comets 1987) or a Kac potential model (Lebowitz and Penrose 1966, De Masi
et al. 1994, Presutti 2009) and such limits are referred to as mesoscopic scaling limits in
the physics literature. Limits similar to ours have been derived using several models in
statistical mechanics (e.g., Comets 1987, De Masi et al. 1994, Katsoulakis et al. 2005).
We generalize these results to spatial stochastic processes that arise from evolutionary
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game theory. Other scaling limits such as hydrodynamic limits in which the space and
time are scaled simultaneously (e.g., Katsoulakis and Souganidis 1997) may be relevant
to game theory but are not addressed in this paper.

More specifically, let J (x) be a nonnegative, compactly supported�and integrable
function such that

∫
J (x)dx= 1. We often take the support size for J to be less than or

equal to the domain (see (33) and (34) in Section 4). We assume that W is of the form

Wγ(x− y)= γdJ (γ(x− y))� (7)

and we take the limit γ → 0 and � ↗ Z
d such that γ−d ≈ |�| ≈ nd . Here nd is the

size of the population, | | denotes cardinality, and the factor γd is chosen to ensure
that

∑
Wγ(x − y) ≈ ∫

J (x)dx = 1. Note that in (7), the interaction vanishes when
‖x− y‖ ≥Rγ−1 if J is supported on the ball of radius R. Thus, as γ→ 0, an agent inter-
acts very weakly but with a growing number of neighbors in the population.

The time evolution of the system is given by a continuous-time Markov process {σt}
with state space S�. Each agent receives, independently of all other agents, a strategy
revision opportunity in response to his own Poisson alarm clock according to rate 1 and
then updates his strategy according to a rate c(x�σ�k)—the rate at which an agent at site
x switches to strategy k when the configuration is σ . Then this process is specified by
the generator (see Ethier and Kurtz 1986, Ligget 1985)

(Lg)(σ)=
∑
x∈�

∑
k∈S

c(x�σ�k)(g(σx�k)− g(σ))�

where g is a bounded function on S�, and σx�k(y) = σ(y) if y �= x and σx�k(y) = k if
y �= x. Thus σx�k represents a configuration in which an agent at site x switches from his
current strategy σ(x) to some new strategy k.

If a stochastic process can introduce a new strategy that is not currently used in the
population, then we refer to this process as an innovative process. If a strategy that is not
present in the population does not reappear under the dynamics, we refer to the process
as a noninnovative process. In addition, if, on switching, agents consider only the payoff
of the new strategy, then we refer to the process as a targeting process. In contrast, if
agents’ decisions depend on the difference in the payoff between the current strategy
and the new strategy, then we refer to the process as a comparing process (Szabo and
Fath 2007, Sandholm 2010b).

Precise technical assumptions about the strategy revision rates are discussed later
(conditions C1–C3 in Section 3.3). Here we provide only a few concrete examples that
are commonly used for applications. Several more examples of rates are discussed in
the Appendix, and the assumptions about rates are satisfied by virtually all dynamics
commonly used in evolutionary game theory (for a more comprehensive discussion on
rates and more examples, see Sandholm 2010b). In addition, one can easily define a new
strategy revision rate that models some other interesting behavioral and learning rules,
and still satisfies C1–C3. We first introduce a notation for the probability that an agent
at site x finds a neighbor with strategy k,

w(x�σ�k) :=
∑
y∈�

W(x− y)δ(σ(y)�k)� (8)
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where δ(i� j)= 1 if i = j and 0 otherwise. Then, because
∑
k∈S w(x�σ�k)= 1, (8) indeed

defines a probability distribution over S, according to which an agent at site x samples a
neighbor with strategy k. Let F be a nondecreasing function.

Examples of rates
• Targeting and innovative: This case arises if c(x�σ�k)= F(u(x�σ�k)) and F > 0. If

c(x�σ�k)= exp(βu(x�σ�k))∑
l exp(βu(x�σ� l))

� (9)

then the rate is known as the logit choice rule (Blume 1993). It is also called Gibbs sam-
pler in statistics and Glauber dynamics in physics. The inverse of β captures the noise
level. Hereβ= 0 means the randomization of strategies, and the choice rule approaches
the best-response rule asβ approaches infinity. For this reason, (9) is often referred to as
the perturbed best-response rule. When the underlying normal form game is a poten-
tial game, the spatial stochastic process is known to be time reversible, and the invariant
measure is often called the Gibbs measure (Blume 1993).
• Comparing : This rate is of the form c(x�σ�k) = F(u(x�σ�k) − u(x�σ�σ(x))), and is
comparing and innovative provided that F > 0. The dynamics induced by this kind of
rate are also known as pairwise comparison dynamics. Smith (1984) introduces them to
study a dynamic model of traffic assignment and shows that the dynamic converges to
Nash equilibria. Recently, Sandholm (2010a) shows that under various kinds of pairwise
comparison dynamics, the set of stationary states of the dynamics is identical to the set
of Nash equilibria. As an another example, we let

c(x�σ�k)= min
{
1�exp

(
β

(
u(x�σ�k)− u(x�σ�σ(x))))}�

For this behavioral rule, the maximum rate is truncated at 1, and if a strategy gives a
higher or equal payoff than the current strategy, then an agent chooses that strategy with
rate 1. If a strategy gives a lower payoff than the current one, then an agent chooses that
strategy with rate exp(β(u(x�σ�k) − u(x�σ�σ(x)))). As β approaches infinity, the rate
approaches the choice rule in which the agent does not choose any strategy that gives
lower payoffs than his current one, but still chooses the strategy that gives higher or
equal payoffs than his current one with rate 1. As β approaches zero, an agent chooses
any strategy with the same rate, namely 1. Similarly to the logit choice rule, when the
normal form game is a potential game, the corresponding Markov chain is reversible
and has the same invariant measure as the dynamics of the logit choice rule. This rate is
known to give a Metropolis algorithm in Monte Carlo simulations.
• Comparing and noninnovative: This rate is of the form

c(x�σ�k)=w(x�σ�k)(F(
u(x�σ�k)− u(x�σ�σ(x))))� (10)

This rate can model imitation behaviors as follows. The first factorw(x�σ�k) is the prob-
ability that an agent at site x chooses an agent with strategy k ((8)) and the second fac-
tor F(u(x�σ�k)− u(x�σ�σ(x))) gives the rate at which some new strategy k is adopted.
Therefore, the first term specifies who to imitate and the second term specifies how to
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imitate, as in the standard literature (Weibull 1995, Benaim and Weibull 2003, Hofbauer
and Sigmund 2003). An important example is

c(x�σ�k)=w(x�σ�k)[u(x�σ�k)− u(x�σ�σ(x))]+� (11)

where [s]+ = max{s�0}. In the uniform interaction case, the rate (11) gives rise to famous
replicator ODE’s as deterministic approximations. More generally if F in (10) satisfies
F(s) − F(−s) = s, then the corresponding mean ODE is the replicator dynamic. Note
that the function [s]+ satisfies this condition. In this paper, we frequently adopt

Fκ(s) := 1
κ

log(exp(κs)+ 1)� (12)

and it is easily seen that the function (12) satisfies the condition (F(s)− F(−s)= s) too
and converges uniformly to [s]+ as κ→ ∞. Thus (12) can serve as the smooth regular-
ization of (11).

3.2 Mesoscopic scaling and long-range interactions

We consider the limit γ → 0 under the assumption of (7). As the order of the interac-
tion range γ−1 approaches infinity, an agent at site x interacts with a growing number
of agents. To obtain limiting equations, we rescale the space and take a continuum
limit with the time unscaled. Specifically, let A ⊂ R

d (called the mesoscopic domain)
and A

γ := γ−1
A ∩ Z

d (the microscopic domain). If A is a smooth region in R
d , then A

γ

contains approximately γ−d|A| lattice sites, and as γ→ 0, γA
γ approximates A. Here we

recall that |A| denotes the cardinality of A. Concerning the time scale, we use micro-
scopic time. Thus, our scaling consists of (i) a long-range interaction scale ((7)), (ii) a
continuum space (rescaled space), and (iii) microscopic time (unscaled time), and is
referred to as mesoscopic scaling.

At the mesoscopic scale, the state of the system is described by the strategy profile
ft(u� i)—the density of agents with strategy i at site u. The bridge between the micro-
scopic and mesoscopic scales is provided by an empirical measure πγσ defined as follows.
For (v� j) ∈ A × S, let δ(v�j) denote the Dirac delta measure at (v� j).

Definition 1 (Empirical measure). The empirical measure πγσ :SA
γ → P(A × S) is a

map given by

σ �→ πγσ := 1
|Aγ|

∑
x∈Aγ

δ(γx�σ(x))� (13)

where P(A × S)denotes a set of all probability measures on A × S.

In addition to the empirical measure, for convenience, we define a measure m on
A × S to be a product measure of the Lebesgue measure on A and the counting measure
on S, i.e., m := du⊗ di, where du is the Lebesgue measure on A and di is the counting
measure on S. To state the main theorem, we denote by fm a measure v(E) := ∫

E f dm.
Then the main result shows that, under suitable conditions,

πγσt → ftm in probability (14)
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and ft satisfies an integro-differential equation. Because σt is the state of the micro-
scopic system at time t, πγσt is a random measure, and ft is a solution to a deterministic
equation. Thus, (14) is in a sense a form of a time-dependent law of large numbers. For
this result to hold, we need to assume that the initial distribution of σ0 is sufficiently
regular. For our purpose it is sufficient to assume that the distribution of σ0 is given by a
product measure with a slowly varying parameter, which is defined as follows.

Definition 2 (Product measure with a slowly varying parameter). For a given continu-
ous profile f , we define a measure

μγ :=
⊗
x∈Aγ

ρx on SA
γ
� where ρx({i})= f (γx� i)�

We call such a collection of measures {μγ}γ a family of product measures with a slowly
varying parameter associated to f .

More general initial distributions can be accommodated (see Kipnis and Landim
1999) if they can be associated with a mesoscopic strategy profile. In addition, we con-
sider two types of boundary conditions as follows.
(a) Periodic boundary conditions. Let A = [0�1]d . We assume that A

γ = γ−1
A ∩ Z

d =
[0�γ−1]d ∩Z

d , and then extend the profile ft(u� i) and the configuration σAγ periodically
to R

d and Z
d . Equivalently, we can identify A with the torus Td and, similarly, identify

A
γ with the discrete torus Td�γ .

(b) Fixed boundary conditions. In applications, it is useful to consider the case in which
the domain is simply a subset of R

d or Z
d . To accommodate this domain, we suppose

that the strategies of agents outside the subset do not change over time. Specifically, let
�⊂ R

d , where � is bounded. For a given domain �, we can define the boundary region
as follows: Because we consider compactly supported J , we can take, for suitable r > 0,
� := ⋃

u∈� B(u� r), where B denotes a ball centered at u with radius r that covers the
support of J . The region � includes all agents who are relevant in the evolution of the
dynamics. Then we consider ∂� := � \� as the “boundary region,” where agents do not
revise their strategies. Based on these assumptions, we define the microscopic spaces
�γ := γ−1�∩ Z

d and �γ := γ−1�∩ Z
d .

3.3 Main results

We first consider the case with periodic boundary conditions. For the interaction
weights Wγ(x− y), we make the following assumption.

(F) We have Wγ(x − y) = γdJ (γ(x − y)), where J is nonnegative, continuous with
compact support, and normalized,

∫
J (x)dx= 1.

Let {σγt }t≥0 be a stochastic process with the generator Lγ given by

(Lγg)(σ)=
∑
x∈Td�γ

∑
k∈S

cγ(x�σ�k)(g(σx�k)− g(σ))
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for g ∈ L∞(STd�γ ). For the strategy revision rate cγ(x�σ�k), we assume that there is a
real-valued function

c0(u� i�k�π)� u ∈ Td� i�k ∈ S�π ∈ P(Td × S)

such that the following conditions hold.

C1. The function c0(u� i�k�π) satisfies

lim
γ→0

sup
x∈Td�γ�σ∈STd�γ

�k∈S
|cγ(x�σ�k)− c0(γx�σ(x)�k�π

γ
σ)| = 0�

C2. The function c0(u� i�k�π) is uniformly bounded, i.e., there existsM such that

sup
u∈Td�i�k∈S�π∈P(Td×S)

|c0(u� i�k�π)| ≤M�

C3. The function c0(u� i�k� fm) satisfies the Lipschitz condition with respect to f , i.e.,
there exists L such that for all f1� f2 ∈ M(Td × S),

sup
u∈Td�i�k∈S

|c0(u� i�k� f1m)− c0(u� i�k� f2m)| ≤L‖f1 − f2‖L1(Td×S)�

When a measure π is absolutely continuous with respect tom, so there exists a mea-
surable function f such that π = fm, we write c(u� i�k� f ) := c0(u� i�k�π). In the Ap-
pendix, we show that all classes of rates given in the examples in Section 3.1 and sev-
eral others satisfy C1–C3. Note that if f1 and f2 are constant over Td or there is no spa-
tial dimension, then f1 and f2 can be regarded as points in the simplex �. In this case,
C3 reduces to the Lipschitz continuity condition in (Benaim and Weibull 2003, p. 878)
and, in this way, generalizes their condition. In Section 3.4, we explain how the function
c(u� i�k� f ) can be obtained from these rates. We now state our main result.

Theorem 1 (Periodic boundary condition). Suppose that the revision rate satisfies C1–
C3. Let f ∈ M(Td × S) and assume that the initial distribution {μγ}γ is a family of mea-
sures with a slowly varying parameter associated with the profile of f . Then for every
T > 0,

lim
γ→0

πγσt = ftm in probability

uniformly for t ∈ [0�T ] and ft satisfies the differential equation, for u ∈ Td , i ∈ S,

∂

∂t
ft(u� i) =

∑
k∈S

c(u�k� i� f )ft(u�k)− ft(u� i)
∑
k∈S

c(u� i�k� f )

(15)
f0(u� i) = f (u� i)�
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As an example of c(u� i�k� f ), when the cγ(x�σ�k) is of the form c(x�σ�k) =
F(u(x�σ�k)− u(x�σ�σ(x))) (comparing and innovative), we have

c(u� i�k� f )= F
(∑
l∈S
a(k� l)J ∗ f (u� l)− a(i� l)J ∗ f (u� l)

)
(16)

(recall that J ∗ f (u� l) := ∫
Td J (u− v)f (v� l)dv is the convolution of J with f ). A slight

modification of (16) yields corresponding expressions for each choice of cγ(x�σ�k) in
Section 3.1 (see the Appendix for a complete list of these rates).

Next we consider fixed boundary conditions in Section 3.2. In this case, the stochas-
tic process, {σt}t≥0, is specified by the generator Lγ as

(Lγg)(σ�γ)=
∑
x∈�γ

∑
k∈S

cγ(x�σ�γ �k)(g(σ
x�k
�γ )− g(σ�γ)) (17)

for g ∈ L∞(S�γ). Note that the summation in terms of x in (17) is taken over �γ , which
shows that only those agents in�γ revise their strategies, whereas the rate itself depends
on the configuration throughout �γ . For a given f ∈ M, we define its restriction on � as
f�(u� i) : f�(u� i)= f (u� i) if u ∈� and f�(u� i)= 0 if u ∈�C .

Theorem 2 (Fixed boundary condition). Suppose that the revision rate satisfies C1–C3.
Let f ∈ M(�d × S) and assume that the initial distribution {μγ}γ is a family of mea-
sures with a slowly varying parameter associated with the profile of f . Then, for every
T > 0,

lim
γ→0

πγσt = 1
|�|ftm in probability

uniformly for t ∈ [0�T ] and ft = f��t + f∂��t satisfies the differential equation, for
u ∈ �, i ∈ S,

∂

∂t
f��t(u� i) =

∑
k∈S

c(u�k� i� f )f��t(u�k)− f��t(u� i)
∑
k∈S

c(u� i�k� f ) (18)

f0(u� i) = f (u� i)�

Note that c(u�k� i� f ) = c(u�k� i� f�+ f∂�) is given by a formula similar to (16), with
J ∗ f (u)= ∫

� J (u− v)f (v)dv for u ∈ � and, thus, the rate depends on f∂� as well as f�.
The existence of solutions to IDE’s (15) or (18) follows from the proof of the theorems.
That is, the convergence of πγσt to a limit point shows this existence. We provide the
proof of uniqueness of the solutions in the Appendix.

The assumption of an integer lattice is for simplicity. First, we can accommodate
any other regular lattice (e.g., a hexagonal lattice). More generally, we can extend our
theorem by using the same techniques as follows: If a stochastic spatial process is such
that there are approximately nd players (up to corrections of lower order in n) in every



Theoretical Economics 8 (2013) Stochastic spatial evolutionary games 845

region of size 1, then for large n, we can still show the convergence of the empirical
measure following the same line as the proof for Theorems 1 and 2. In this sense, the
lattice assumption is not necessary and, thus, can be replaced by a local homogeneity
condition. Formulating this in a mathematically precise sense would only obscure our
results and, therefore, we choose not to do so. The assumption of translation invariance
is also not necessary for Theorems 1 and 2. We can replace an interaction of the form
W(x − y) with a general interaction W(x� y) if 1/ndW(x/n� y/n) converges to J (u� v).
Then the deterministic equation is suitably modified.

3.4 Heuristic derivation of the differential equations

In this section, we heuristically justify the IDE’s obtained in Theorems 1 and 2. For sim-
plicity, we assume the periodic boundary condition, but the fixed boundary case is sim-
ilar. The differential equations (15) and (18) are examples of input–output equations.
In particular, by summing ft over the strategy set, it is easy to see that

∑
i∈S ft(u� i) is

independent of t and, thus, if f0 ∈ M, then ft ∈ M for all t. In addition, the space M
can be regarded as a product space of the standard strategy simplex � of game theory,
that is, M = ∏

u∈Td �. As is shown in evolutionary game theory textbooks (Weibull 1995,
Hofbauer and Sigmund 1998, Sandholm 2010b), one can derive heuristically the ODE’s
from corresponding uniform interaction stochastic processes. Here the main assump-
tion is that the rate depends only on the population average of players with a given
strategy. We provide, for the convenience of readers, a similar heuristic derivation of
the spatial IDE (15) from stochastic processes with long-range interactions. We replace
the global average with spatially localized averages in the limit of the empirical mea-
sure (13).

The key idea behind this heuristic derivation is to replace the expected payoff at
the microscopic level,

∑
y∈Td�γ γ

dJ (γx− γy)a(k�σ(y)), with the expected payoff at the
mesoscopic level,

∑
j∈S a(k� j)J ∗ f (u� j). For microscopic sites x and y, we denote by

u = γx and v = γy the corresponding spatial positions at the mesoscopic level. For
the sake of exposition, suppose that cγ(x�σ�k) is innovative and comparing, that is,
cγ(x�σ�k)= F(u(x�σ�k)−u(x�σ�σ(x))), where F is positive and increasing. For a func-
tion g on Td × S, by the definition of the empirical measure (13), we can write the sum
of values of g over the microscopic domain as the integration of g with respect to the
empirical measure πγσ :

1
|Td�γ|

∑
y∈Td�γ

g(γy�σ(y))=
∫

Td×S
g(v� j)dπγσ(v� j)� (19)

Because the number of all sites in the microscopic domain is approximately γ−d
(|Td�γ| ≈ γ−d) and the empirical measure πγσ is shown to converge to a smooth density
f , we obtain

lim
γ→0

∑
y∈Td�γ

γdg(γy�σ(y))=
∫

Td×S
g(v� j)f (v� j)dm(v� j)
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for any g. Thus, if we choose g(v� j)= J (u− v)a(k� j), then, by using (19), we find that

lim
γ→0

∑
y∈Td�γ

γdJ (γ(x− y))a(k�σ(y)) =
∫

Td×S
a(k� j)J (u− v)f (v� j)dm(v� j)

=
∑
j∈S
a(k� j)J ∗ f (u� j)�

This shows that as the size of the system increases (as γ goes to 0), the expected payoff
for strategy k in the microscopic spatial model becomes the expected payoff evaluated
by using the “spatially weighted” fraction of each strategy, namely J ∗ f (u� j). Thus, if
σ(x)= i, then we obtain

cγ(x�σ�k)= F
( ∑
y∈Td�γ

γdJ (γx− γy)a(k�σ(y))

−
∑
y∈Td�γ

γdJ (γx− γy)a(σ(x)�σ(y))
)

(20)

−→
γ→0

F

(∑
j∈S
a(k� j)J ∗ f (u� j)−

∑
j∈S
a(i� j)J ∗ f (u� j)

)
= c(u� i�k� f )�

and this gives (16).
Having identified the rate, we now explain how the IDE (15) is derived. We write

〈πγσ�g〉 :=
∫

Td×S
g(u� i)dπγσ� 〈f�g〉 :=

∫
Td×S

g(u� i)f (u� i)dm(u� i)�

where we view 〈πγσ�g〉 as a function of the configuration σ . Then, by using (20), we can
compute the action of the generator on this function as

Lγ〈πγσ�g〉 =
∑
k∈S

∫
Td×S

c(u� i�k�πγσ)(g(u�k)− g(u� i))dπγσ(u� i)�

From the martingale representation theorem for Markov processes (see, e.g., Ethier and
Kurtz 1986), there exists a martingaleMg�γ

t such that

〈πγσt � g〉 = 〈πγσ0
� g〉

(21)

+
∫ t

0
ds

∑
k∈S

∫
Td×S

c(u� i�k�πγ
σs )(g(u�k)− g(u� i))dπγ

σs (u� i)+Mg�γ
t �

The representation (21) shows that a change in the value of the Markov chain, 〈πγσt � g〉 −
〈πγσ0� g〉, can be decomposed into two parts: a change from the generator, which is some-
time referred to as a reaction part (the second expression on the right hand side of (21))
and a change from an unbiased random walk (the martingale term, the third expression
on the right hand side of (21)). As γ → 0, one can usually prove that the reaction part
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Corollary 4
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Theorems 1� 2

Mesoscopic Equation ft(u� i)

Figure 3. Relationships between the stochastic process and the deterministic approximation.

gives a law of motion of a deterministic dynamic and that the martingale term vanishes.
Thus, if πγσt → ftm as γ→ 0, then (21) becomes

〈ft� g〉 = 〈f0� g〉 +
∫ t

0
ds

∑
k∈S

∫
Td×S

c(u� i�k� fs)(g(u�k)− g(u� i))fs(u� i)dm(u� i)�

and upon differentiating with respect to time, we find
〈
∂ft

∂t
� g

〉
=

∑
k∈S

∫
Td×S

c(u� i�k� ft)(g(u�k)− g(u� i))ft(u� i)dm(u� i)� (22)

Equation (22) is equivalent to the IDE (15), which is referred to as the weak formulation,
and can be obtained by integrating (18) over u and i.

The proof of Theorems 1 and 2 (see the Appendix) is a variation on the proof given
in Comets (1987), Kipnis and Landim (1999), and Katsoulakis et al. (2005). Unlike these
studies, we do not assume that the spatial stochastic processes are reversible. Rather,
we identify the general conditions under which scaling limits hold. Specifically, by using
the martingale representation (21), we show that {Qγ}γ , a sequence of probability laws
of {πγσt }γ , is relatively compact. We then show that all limit points are concentrated on
weak solutions to (18) and on measures that are absolutely continuous with respect to
the Lebesgue measure. Finally, we demonstrate that weak solutions to (18) are unique
and, thus, we conclude the convergence of Qγ to the Dirac measure concentrated on
solutions to (18).

3.5 Spatially uniform interactions: Mean dynamics

In this section, we show that under the assumption of uniform interactions, a spatially
aggregated process is still a Markov chain (such a process is called lumpable). Further-
more, as expected, our IDE’s then reduce to usual ODE’s in evolutionary game theory.
Figure 3 shows the relationships between various processes and differential equations.
We take periodic boundary conditions and uniform interactions, that is, J := 1 on Td ,
where 1 denotes a constant function with the value of 1 on Td . We define an aggregation
variable

ηγ(i) := 1
|Td�γ|

∑
x∈Td�γ

δ(σ(x)� i)
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that gives the empirical population proportion of agents with strategy i in the entire do-
main Td�γ . Suppose that there are nd agents in the population. Thus, |Td�γ| = nd = γ−d .
Note that this can be obtained, equivalently, by integrating the empirical measure πγσ
over the spatial domain Td . Furthermore, because J = 1, the payoff u(x�σ�k) depends
on σ only through the aggregated variable ηn(i). Indeed, we have

u(x�σ�k) := 1
nd

∑
y∈Td�n

∑
l∈S
δ(σ(y)� l)a(k� l)=

∑
i∈S
a(k� i)ηn(i)�

Thus, for the strategy revision rate, if σ(x) = j, then we define cM(j�k�ηn) :=
cγ(x�σ�k), because the right hand side is independent of x and depends only on σ

through the corresponding aggregate variable ηn. So {ηnt }t itself is a Markov process,
as we show below in Theorem 3, and the state space for ηnt is the discrete simplex
�n = {{η(i)}i∈S;∑i∈S η(i) = 1� ndη(i) ∈ N+}. To capture the transition induced by an
agent’s strategy switching, we write ηn�j�k(i) = ηn(i) if i �= k� j, ηn�j�k(i) = ηn(i) − 1/nd

if i = j, and ηn�j�k(i)= ηn(i)+ 1/nd if i = k. Thus, ηn�j�k is the state obtained from ηn if
one agent switches his strategy from j to k.

Theorem 3. Suppose that the interaction is uniform. Then ηnt is a Markov chain over the
state space �n and its generator is

LM�ng(η)=
∑
k∈S

∑
j∈S
ndηn(j)c(j�k�η)(g(ηn�j�k)− g(ηn))� (23)

The factor nd in (23) derives from the fact that in a time interval of size 1, on av-
erage, nd agents switch their strategies, and among those, ndηn(j) agents switch from
strategy j. Theorem 3 shows that the stochastic process with uniform interactions coin-
cides with the multitype birth and death process in population dynamics (Blume 1997,
Benaim and Weibull 2003). Furthermore, at the mesoscopic level, IDE’s directly reduce
to ODE’s as follows (see Figure 3). Note that when J = 1, we can define

ρ(i) :=
∫
f (u� i)du= J ∗ f (i)

such that c(u�k� i� f ) is independent of u and this again allows for the definition
cM(k� i�ρ) := c(u�k� i� f ). Thus, from the IDE (15), we immediately obtain

dρt(i)

dt
=

∑
k∈S

cM(k� i�ρ)ρt(k)− ρt(i)
∑
k∈S

cM(i�k�ρ)�

Well known mean ODE’s such as replicator dynamics, logit dynamics, and Smith dynam-
ics can be derived by choosing F appropriately. Finally, as a consequence of Theorem 1,
we have the following corollary, which can be compared to the continuous-time model
of Benaim and Weibull (2003) (see Section 6 and Appendix I in Benaim and Weibull
2003). To state the result, we write ‖ηn‖u := supi∈S |ηn(i)|.
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Corollary 4 (Uniform interaction (Benaim and Weibull 2003)). Suppose that the inter-
action is uniform and that the strategy revision rate satisfies C1–C3. Further suppose that
there exists ρ ∈ � such that the initial condition ηn0 satisfies limn→∞ηn0 = ρ in probability.
Then for every T > 0,

lim
n→∞η

n
t (i)−→ ρt(i) in probability

uniformly for t ∈ [0�T ] and ρt(i) satisfies the differential equation

dρt(i)

dt
=

∑
k∈S

cM(k� i�ρ)ρt(k)− ρt(i)
∑
k∈S

cM(i�k�ρ) (24)

ρ0(i) = ρ(i)

for i ∈ S, where cM(k� i�ρ) := c(u�k� i� f ). Moreover, there exist C and ε0 such that for all
ε≤ ε0, there exists n0 such that for all n≥ n0,

Pr
{

sup
t≤T

‖ηnt − ρt‖u ≥ ε
}

≤ 2|S|e−ndε2/(TC)� (25)

Estimates such as (25) describe the validity regimes of the approximation by uniform
interaction models (24) in terms of both the agent number n and the time window [0�T ].
Observe that the bound in (25) is essentially the same as that in Lemma 1 in Benaim
and Weibull (2003). That is, the bound increases linearly as the number of strategies
increases, and it decreases exponentially as the size of the system (nd) and the deviation
(ε2) increase.

4. Equilibrium selection

4.1 Linear stability analysis

In this section, we present linear stability analysis of IDE’s around stationary solutions.
The linearization of IDE’s around stationary solutions is a widely used technique for an-
alyzing nonlinear IDE’s, as in the case of ODE’s (see Murray 1989, Fisher and Marsden
1975, Collet and Eckmann 1990, Fife 1979). For example, if all eigenvalues for a lin-
earized system have a negative real part, then one can show that the stationary solution
to the nonlinear equation is stable. Furthermore, if the linearized system around the
stationary solution is hyperbolic (i.e., no eigenvalue has a zero real part), then one can
analyze the local behavior of the nonlinear equation around the stationary solution by
constructing stable and unstable manifolds. We do not provide a precise statement for
the Hartman–Gorbman type theorem that relates the linearized equations to original
nonlinear equations. Such a theorem can be proved by using standard methods on a
case-by-case basis.

At a deeper level the linear stability analysis is the first step toward understanding
the generation and propagation of spatial structures. As in the case of the example in
Section 2, traveling front solutions are constructed by joining two stable and spatially
homogeneous stationary solutions to the linearized system, and the exponential con-
vergence to such a front solution can be proved by analyzing the spectrum of the linear
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operator obtained from the original nonlinear system (Bates et al. 1997; Theorem 1.1 in
Chapter 5 in Volpert et al. 1994).

This linearization also allows for an analysis of bifurcations in the system when the
nature of eigenvalues for the linearized system changes. The appearance of eigenval-
ues with a positive real part indicates the instability of the system, and this instability
often leads to the formation of complex spatial structures such as patterns. For exam-
ple, Vickers et al. (1993) show the existence of patterns—spatially inhomogeneous sta-
tionary solutions—by analyzing bifurcations from eigenvalues for a linearized system
(Theorems 3.1 and 3.2 in Vickers et al. 1993). Several such examples are demonstrated
at length in Murray (1989).

To simplify the linear stability analysis, in the remaining part of this section, we con-
sider a general type of integro-differential equation that incorporates logit and replicator
equations as special cases. We then determine explicit solutions for a linearized system
of general equations and apply the result to specific equations in Section 4.2. Consider
the type of integro-differential equations

∂f

∂t
= �(J ∗ f� f ) in �× (0�T ]

(26)
f (0�x) = f 0(x) on �× {0}�

where � ⊆ R
d or � = Td , f ∈ M(� × S), J ∗ f := (J ∗ f1�J ∗ f2� � � � �J ∗ f|S|)T , and

� :R|S| × R
|S| → R

|S|, �(r� s) is smooth in both arguments, where r and s are variables
for J ∗p and p, respectively, and T denotes the transpose operation. Here� is a vector-
valued function taking two vectors as arguments. The first vector argument J ∗ f is a
collection of spatially weighted densities of each strategy, J ∗ f1�J ∗ f2� � � � �J ∗ f|S|, and
the second vector argument f is a collection of densities of each strategy, f1� f2� � � � � f|S|.
Note that replicator and logit equations can be written in the form of (26) by choosing�
appropriately.

Observe that if f is spatially homogeneous, that is, f (u� t) = f (t), then J ∗ f =
f (J ∗ 1)= f , where 1 again denotes a constant function with the value of 1 on �. Thus,
the IDE (26) reduces to the ODE ∂f/∂t = �(f� f ). In turn, this ODE is identical to the
one obtained when the interaction is uniform (J = 1). This shows that spatially ho-
mogeneous solutions to (26) are precisely the stationary solutions to the corresponding
mean ODE. In particular, every spatially homogeneous stationary solution f0 satisfies
�(f0� f0)= 0. We record this observation in Lemma 1.

Lemma 1 (Spatially homogeneous stationary solutions). The constant function f0 is a
spatially homogeneous stationary solution to (26) if and only if �(f0� f0)= 0.

We now examine perturbations by linearizing around a spatially homogeneous sta-
tionary solution, f0. Let f = f0 + εZ, where Z = Z(u� i). Substituting this into (26), we
obtain

ε
∂Z

∂t
=�(f0 + εJ ∗Z�f0 + εZ)� (27)
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We expand the right hand side of (27) and obtain

�(f0 + εJ ∗Z�f0 + εZ)=�(f0� f0)+ ε[Dr�(f0� f0)J ∗Z+Ds�(f0� f0)Z] +O(ε2)� (28)

where Dr and Ds denote derivatives with respect to r and s, respectively, that is,
(Dr�(f0� f0))i�j = ∂�i/∂rj , (Ds�(f0� f0))i�j = ∂�i/∂sj . Note that �(f0� f0) = 0. We sub-
stitute (28) into the right hand side of (27), divide each side by ε, and take ε→ 0. Then
we obtain

∂Z

∂t
=Dr�(f0� f0)J ∗Z +Ds�(f0� f0)Z� (29)

This equation is a linear equation of the form ∂Z/∂t =AZ, whereA is a linear operator.
One of the important properties of Fourier transformation is that it converts the com-
plicated convolution operation into simple multiplication, which enables us to find the
explicit solutions to (29) (for Fourier transformation, see, e.g., Stein and Shakarchi 2003).
By applying the Fourier transformation to (29), we obtain an |S| × |S| matrix

Dr�(f0� f0)Ĵ (k)+Ds�(f0� f0) (30)

for each k ∈ Z
d , which is often called a frequency variable. Here Ĵ (k) :=∫

Td J (u)e2πik·u du is called the Fourier coefficients of J . We denote by λj(k) the eigen-
values of the matrix (30) for j = 1� � � � � |S|, k ∈ Z

d , and denote by Zj(k)= eik·xZj the cor-
responding eigenfunction, where Zj is some vector in R

|S| for each j = 1� � � � � |S|. Then
the general solution to (29) is the linear superposition of eλj(k)teik·xZj over j and k (see
(39) and Appendix A.5).

4.2 Two-strategy symmetric games

We consider the two-strategy symmetric games in Section 2. We call a game a coordi-
nation game if a11 > a21 and a22 > a12, and call it a Hawk–Dove type game if a11 < a21

and a22 < a12. If p(u) := f (u�1), then from f (u�1) + f (u�2) = 1, we can write a single
equation for p(u) and obtain equations of the form (26):

replicator IDE
dp

dt
= (1 −p)J ∗pFκ(π1(J ∗p)−π2(J ∗p))

(31)
−p(1 − J ∗p)Fκ(π2(J ∗p)−π1(J ∗p))

logit IDE
dp

dt
= lβ(π1(J ∗p)−π2(J ∗p))−p� (32)

where lβ(t) := 1/(1 + exp(−βt)), Fκ(t) := 1/κ log(exp(κt)+ 1) (recall (12)), π1(J ∗ p) :=
a11 J ∗ p + a12(1 − J ∗ p), and π2(J ∗ p) := a21 J ∗ p + a22(1 − J ∗ p). We write
the replicator equation as dp/dt = �R(J ∗ p�p) and the logit equation as dp/dt =
�L(J ∗p�p).

We consider [−π�π]d for d = 1�2 as a domain with the periodic boundary condition
and [−1�1]d for d = 1�2 as a domain with the fixed boundary condition. In addition
to the conditions for J stated in Section 3.3, we assume that J is symmetric: J (x) =
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J (−x) for x ∈ �. Frequently, in examples and simulations, we consider the localized
Gaussian-like kernel J (x)∝ exp(−χ‖x‖2) for some χ> 0. More specifically, we use

periodic boundary: J (x)= exp(−χ‖x‖2)∫
[−π�π]d exp(−χ‖z‖2)dz

for x ∈ [−π�π]d (33)

fixed boundary: J (x)= exp(−χ‖x‖2)∫
[−1�1]d exp(−χ‖z‖2)dz

for x ∈ [−1�1]d� (34)

In the fixed boundary domain, we have � = [−1�1]d and � = [−2�2]d . For the case of
d = 1, an agent located at the center of the domain� (at 0) interacts with all other agents
in �, whereas an agent at the endpoints of � (e.g., at −1) interacts with half of all agents
in � (e.g., [−1�0]) as well as half of all agents in ∂� (e.g., [−2�−1]).

4.2.1 Stationary solutions and their linear stability To determine spatially homoge-
neous stationary solutions, we need to set �R(p�p) = 0 and �L(p�p) = 0. We let α :=
a11 − a21 + a22 − a12 and ζ := (a22 − a12)/α. Note that we have π1(p)−π2(p)= α(p− ζ).
Then, for a coordination or Hawk–Dove type game, we have 0 < ζ < 1. Consider the
replicator equation. In this case, it is easy to see that p = 0�1, and ζ are three spa-
tially homogeneous stationary solutions. In the case of the logit equation, we recall that
lβ(π1(p)−π2(p)) has the shape of a smoothed step function at p= ζ. As β approaches
zero, lβ(π1(p) − π2(p)) approaches a constant function with the value 1/2. As β ap-
proaches infinity, lβ(π1(p) − π2(p)) approaches a unit step function at p = ζ. For the
coordination game (α> 0), lβ(π1(p)−π2(p)) is increasing in p. Thus, if β is small, then
there is a unique p such that lβ(π1(p) − π2(p)) = p. If β is large, then there are three
p’s that satisfy the relationship lβ(π1(p) − π2(p)) = p. For the Hawk–Dove type game
(α< 0), lβ(π1(p)−π2(p)) is decreasing in p. As a result, there is a unique p that satisfies
lβ(π1(p)− π2(p)) = p for all β > 0. We summarize these observations in the following
proposition.

Proposition 2 (Stationary solutions). (i) Consider replicator dynamics. Thenp(u)= 0,
p(u)= 1, and p(u)= ζ for all u are stationary solutions.

(ii) Consider logit dynamics. Assume a coordination game. Then there exists βC such
that for β<βC , there is one spatially homogeneous stationary solution p1, and for
β>βC , there are three spatially homogeneous stationary solutions p1, p2, and p3.

(iii) Again consider the logit dynamics. Assume a Hawk–Dove type game. Then there is
a unique spatially homogeneous stationary solution.

We now examine the linear stability of these stationary solutions. By differentiating
�R and �L, and using (30), we find the expression for eigenvalues (the so-called disper-
sion relations) for the replicator IDE (Table 1). Note that by the assumptions for J (i.e.,
the symmetry of J and

∫
J (u)du = 1), Ĵ (k) is real-valued and |Ĵ (k)|< 1 for all k. We

also note that the Gaussian kernel satisfies the hypothesis 0< Ĵ (k) for all k. Using these
facts, we obtain the first part of Proposition 3. Because α < 0 in the Hawk–Dove type
game, if Ĵ (k)≥ 0, then λR(k) is negative for sufficiently large κ.
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p= 0 λR(k)= Fκ(−αζ)Ĵ (k)− Fκ(αζ)
p= 1 λR(k)= Fκ(α(ζ − 1))Ĵ (k)− Fκ(α(1 − ζ))
p= ζ λR(k)= (log(2)/κ+ αζ(1 − ζ))Ĵ (k)− log(2)/κ

Table 1. Eigenvalues for the replicator IDE.

Proposition 3 (Linear stability for the replicator IDE). We have the following results.

(i) The equality p = 0�1 is linearly stable for replicator dynamics for coordination
games.

(ii) The equalityp= ζ is linearly stable for the replicator dynamics for Hawk–Dove type
games.

In the case of logit dynamics, we note that l′β(t)= βlβ(t)(1 − lβ(t)) and, thus, obtain
eigenvalues for any stationary solution p:

λL(k)= βα(1 −p)pĴ (k)− 1� k ∈ Z
d� (35)

Proposition 4 (Linear stability for the logit IDE). We have the following results.

(i) Suppose a coordination game. If β < βC , then the unique stationary solution p0

is linearly stable. If β > βC , then two stationary solutions p1 and p3 are linearly
stable, where p3 <p2 <p1.

(ii) For a Hawk–Dove type game, the unique stationary solution p0 is linearly stable.

The linear stability results for spatially homogeneous stationary solutions are con-
sistent with the corresponding results for stationary solutions to ODE equations. In ad-
dition, if we consider the linearization of the replicator equation (k= ∞) around ζ, then
from Table 1, we can find that λR(k) = αζ(1 − ζ)Ĵ (k), and by using (35), we find that
λL(k)= βλR(k)− 1, which shows that the eigenvalues for the linearized replicator and
logit equations at their interior equilibria differ only by a positive affine transformation
(see Hopkins 1999 and Sandholm 2010b, pp. 298–299). This shows that the important
and interesting relationship between the linearizations of replicator and logit equations
holds at the level of the mesoscopic equations as well.

The logit equation has a close relationship with the Glauber equation, which is a well
known equation in statistical mechanics (De Masi et al. 1994, Katsoulakis and Sougani-
dis 1997, Presutti 2009). Using lβ(z)= 1/2 + 1/2 tanh(βz/2) and changing the variable by
p �→ 2p− 1 :=w, we derive the following equation from the logit equation:

∂w

∂t
= −w+ tanh

(
β 1

4α(J ∗w+ 1 − 2ζ)
)
� (36)

which is a Glauber mesoscopic equation with β interpreted as the inverse temperature.
All known results for (36), such as the existence of traveling front solutions in one-
dimensional space and the geometric evolution of the interface between homogeneous
stationary states in higher dimensions, are applicable to logit dynamics. In addition, we
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show directly the existence and stability of traveling front solutions to the logit equation
in the next section. Brock and Durlauf (1999, 2001) also use a discrete time version of
(36) to analyze social interactions and they examine the logit choice rules for individu-
als by incorporating various terms that reflect social factors (e.g., conformism with the
behavior of others).

4.2.2 Imitation versus perturbed best responses: Equilibrium selection through traveling
front solutions To examine traveling front solutions, we suppose that the domain is
a subset of R with the fixed boundary condition or the whole real line R. A solution is
called a traveling front (or wave) solution if it moves at a constant speed; thus, a traveling
front solution p(x� t) can be written as P(x− ct) for some constant c and some function
P that satisfies limξ→∞ P(ξ)= 1, limξ→∞ P(ξ)= 0 (see Figure 1). Here, if the speed of the
front solution, c, is negative, then the front solution travels toward the left, indicating
that the choice of strategy 1 propagates over the whole domain. If the speed c is zero,
then the front solution is called a standing front solution or an instanton.

A rigorous analysis of such traveling front solutions is an important and popular
topic in mathematical physics and evolutionary biology. For example, De Masi et al.
(1995), and Orlandi and Triolo (1997) show the existence of traveling front solutions to
Glauber equations, which implies the existence of such solutions for the logit equations.
However, no rigorous results exist for the replicator IDE (31). Hutson and Vickers (1992),
Hofbauer et al. (1997), Hofbauer (1997), and Hofbauer (1999) examine traveling front so-
lutions and the problem of equilibrium selection for (bistable) reaction diffusion equa-
tions, which are similar to replicator IDE’s. Chen (1997) provides fairly general condi-
tions for the existence and stability of traveling front solutions to IDE’s similar to (31)
and (32), and using his results, we show that replicator IDE’s as well as logit IDE’s admit
traveling front solutions.

To state Chen’s result, we again consider the general IDE dp/dt = �(J ∗ p�p), and
denote by r and s the first and second arguments for �. In addition, we assume that
h(p) :=�(p�p) satisfies

h(p) > 0� p ∈ (a�1); h(p) < 0� p ∈ (0� a)
(37)

h′(0) < 0� h′(1) < 0� h′(a) > 0�

The conditions (37) require that the ODE, specified by dp/dt = �(p�p), has two stable
stationary states at 0 and 1, and an unstable interior state at a. For a coordination game,
these conditions are satisfied.

Theorem 5 (Chen 1997). Suppose that � is smooth, ∂�/∂r > 0, and ∂�/∂s < 0. Then
dp/dt =�(J ∗p�p) admits a unique traveling front solution. Furthermore, the traveling
front solution is asymptotically stable in the sense that any initial data p0 that satisfy

lim sup
x→−∞

p0(x) < a < lim inf
x→∞ p0(x) (38)

converge exponentially to the traveling front solution.
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Figure 4. Comparison of traveling fronts between replicator and logit IDE’s. We reproduce the
right panel of Figure 1 in the left panel for comparison. The left panel shows the time path of
the density of strategy 1 in logit dynamics, whereas the right panel shows the case of replicator
dynamics: N = 256, � = [−1�1], dt = 0�001/(0�05N2), a11 = 20/3, a22 = 10/3, and a12 = a21 = 0;
χ= 2 for the Gaussian kernel. The initial condition is a unit step function at 0.

Then it is easy to see that the replicator IDE specified by �R and the logit IDE speci-
fied by �L at sufficiently high β satisfy the hypotheses in Theorem 5. This shows that
the replicator and logit IDE’s admit the unique and asymptotically stable traveling front
solution described in Section 2.

The speed of the traveling front solutions is important too. The sign of the speed di-
rectly determines equilibrium selection, as discussed earlier. Orlandi and Triolo (1997)
show that the speed of the traveling front solution is negative if 1 − 2ζ > 0 in the Glauber
equation (36). This indicates that if a11 − a21 > a22 − a12, then the equilibrium of strat-
egy 1 is selected, whereas strategy 2 is driven out. This implies that, like other equi-
librium selection models, logit IDE’s select the risk-dominant equilibrium. A similar
direct characterization of the sign of the speed of the replicator equation is not read-
ily available. However, our numerical simulations (e.g., Figure 4) suggest that a similar
characterization would hold for replicator equations. Which behavioral rules (imitating
vs. best-response behaviors) select the risk-dominant equilibrium in the coordination
game faster? To compare the speed of traveling front solutions, we conduct informal,
but illuminating, numerical comparisons. In the literature studying the traveling front
solutions to equations similar to (31) and (32), it is known that the speed of a traveling
front solution is proportional to the mean curvature of the shape of the front solution
(see Katsoulakis and Souganidis 1997, Carr and Pego 1989). This means that the sharper
is the shape of the traveling front solution, the slower is the propagation of the inter-
face. Therefore, a sharper solution shape implies a less diffusive system. To compare
such shapes, we present the shapes of standing front solutions to the replicator and logit
equations in Figure 5.

As shown in Figure 5, the shape of the standing wave in replicator dynamics is con-
siderably sharper than that for logit dynamics. This implies that the speed of the trav-
eling front solution for replicator dynamics is considerably slower than that for logit
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Figure 5. Comparison of standing waves between replicator and logit dynamics (a11 = a22; the
periodic boundary condition). The top left panel shows the time evolution of the population
density of strategy 1 in replicator dynamics, whereas the top right panel describes the case of logit
dynamics. The bottom panel shows the shapes of standing waves for both cases at time 4. We
consider the replicator with κ = ∞, N = 256, � = [−π�π], dt = 0�001/(0�25N2), a11 = 5, a22 = 5,
and a12 = a21 = 0; χ= 2 for the Gaussian kernel. The initial condition is 1[−π/2�π/2].

equations; Figure 4 illustrates these observations, demonstrating that when agents im-
itate other’s behaviors instead of playing the best response, the propagation of a risk-
dominant equilibrium is slow. We present this comparison from different perspectives
in the next section.

5. Pattern formation

In this final section, we explain the formation of patterns for replicator and logit dynam-
ics in the case of coordination games. Here, the analysis is heuristic and informal; we
leave the rigorous treatment of these issues for future research. Figure 6 shows an ex-
ample of the dispersion relations (eigenvalues) for the replicator and logit equations at
p= ζ. Observe that in the case of two-strategy games and one- dimensional space, the
solution to the linearized system can be expressed as

∞∑
k=−∞

cke
λ(k)t cos(2πkx) or

∞∑
k=−∞

dke
λ(k)t sin(2πkx)� (39)

where ck and dk are some constants. Here the frequency variable k determines the pe-
riod of the sine and cosine functions, and is often called the mode. We first consider the
replicator equation. Notice that in the left panel of Figure 6, λR(k) > 0 if k= 0, ±1, and
±2, and λR(k) < 0 otherwise. So, as t increases, the following three terms in each sum of
(39),

c0e
λ(0)t � c1e

λ(1)t cos(2πx)� c2e
λ(2)t cos(4πx)

d0e
λ(0)t � d1e

λ(1)t sin(2πx)� d2e
λ(2)t sin(4πx)�
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(a) Replicator (b) Logit

Figure 6. Eigenvalues for the mixed strategy equilibrium. The figure shows the dispersion re-
lations λR(k) and λL(k) at p = ζ, χ = 20 for the Gaussian kernel, κ = 20, α = 3, ζ = 1/3, and
β= 1.

Figure 7. Pattern formation in replicator dynamics. The left and middle panels show the time
evolution of population densities for strategy 1 in the spatial domain Td = [−π�π]2. The number
of nodes is 64 and the time step is 0�0175. The initial conditions are 1/3 + rand cos(2πx) cos(2πy)
(top panel) and 1/3 + rand cos(4πx) cos(4πy) (bottom panel), where rand denotes the realization
of the uniform random variable [0�1] at each node: a11 = 2/3, a22 = 1/3, and a12 = a21 = 0; χ= 15
for the Gaussian kernel. The right panels show the contour maps of densities at t = 22.

increase exponentially and dominate other terms with negative λR(k). If linear solu-
tions approximate well the solution to the original nonlinear equation, then there may
be nonlinear solutions that reflect the shape of periodic functions. In addition, such
nonlinear solutions may be spatially inhomogeneous stationary solutions (for a de-
tailed explanation, see Murray 1989). This is how we generate the patterns for repli-
cator equations (Figures 7 and 8). In these simulations, we use the initial data ob-
tained by perturbing the unstable mixed strategy periodically. That is, in the top panel
of the coarse pattern, we use p0(x� y) = ζ + ε(x� y) cos(2πx) cos(2πy), where ε(x� y) is
the realized value of a uniform random variable from [0�0�1] at each spatial location
(x� y). Alternatively, to generate a fine pattern in the bottom panel, we use p0(x� y) =
ζ + ε(x� y) cos(4πx) cos(4πy).
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Figure 8. Replicator versus logit dynamics (periodic boundary conditions). The left panel
shows the population density of strategy 1 for replicator IDE’s with κ = ∞ and the right panel
shows the population density for logit dynamics: N = 512, �= [−π�π] with the periodic bound-
ary condition, dt = 0�001/(0�05N2), a11 = 20/3, a22 = 10/3, and a12 = a21 = 0; χ= 10 for the Gaus-
sian kernel�The initial condition is 1/2 + 1/10 rand cos(2πx), where rand denotes the realization
of a uniform random variable at each node.

As shown in the right panel of Figure 6, the dispersion relation (eigenvalues) for logit
dynamics under exactly the same parameter values as replicator dynamics shows that
λL(k) < 0 for all k, indicating that the logit dynamics may not develop a pattern under
the same condition as the replicator dynamics. This conjecture is illustrated in Figure 8,
which compares the replicator and logit equations. For a coordination game, both equa-
tions admit three stationary states: two stable states near the boundaries and an unsta-
ble interior state. Therefore, if we examine only the population aggregate, ignoring the
spatial interactions, we may conclude that the two dynamics are indistinguishable from
each other. Figure 8 contrasts the imitation behaviors with perturbed best-response be-
haviors in the spatial domain, demonstrating that such a conclusion may be misleading.
As shown in Figure 8, imitation behaviors develop a spatial pattern, whereas perturbed
best-response behaviors lead to the rapid convergence to strategy 1. This may be be-
cause the mixed strategy state in imitation dynamics is more destabilizing than that in
perturbed best-response dynamics (see Figure 6). Note that the time evolution of the
replicator IDE in the left panel of Figure 8 corresponds to a one-dimensional snapshot
of the pattern in the two-dimensional replicator systems in Figure 7.

Appendix

A.1 Proof of Proposition 1

We set

B(f�u) := eβ(a11 J ∗f (u)+a12(1−J ∗f (u)))

eβ(a11 J ∗f (u)+a12(1−J ∗f (u))) + eβ(a21 J ∗f (u)+a22(1−J ∗f (u))))

and note that φ′(p)= log(p/(1 −p)). Thus, we have

φ′(B(f�u))= β(a11 − a21 + a22 − a12)J ∗ f (u)−β(a22 − a12)�
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From the symmetry of J , we have ∂〈J ∗ ft� ft〉/∂t = 2〈J ∗ ft� ∂ft/∂t〉, where 〈f�g〉 :=∫
f (u)g(u)du and, thus,

dE(f )

dt
= 1
β

∫
T

[
β(a11 − a21 + a22 − a12)J ∗ ft(u)−β(a22 − a12)−φ′(f (u))

]∂ft
∂t
(u)du

= 1
β

∫
T
[φ′(B(f�u)−φ′(ft(u))][B(f�u)− ft(u)]du≥ 0�

We use the fact that φ′′(p) ≥m> 0 in the last line, and the equality holds if and only if
the solution is stationary, that is, ∂ft/∂t = 0.

A.2 Various strategy revision rates and the Proof of Theorem 2

Strategy revision rates We show that C1–C3 are satisfied for the strategy revision rates

• cγ(x�σ�k)= F(u(x�σ�k))

c(u� i�k� f )= F
(∑

l

a(i� l)J ∗ f (u� l)
)

• cγ(x�σ�k)= F(
u(x�σ�k)− u(x�σ�σ(x)))

c(u� i�k� f )= F
(∑

l

[a(k� l)− a(i� l)]J ∗ f (u� l)
)

• cγ(x�σ�k)=
∑
y

w(x� y�σ�k)F(u(x�σ�k))

c(u� i�k� f )= J ∗ f (u�k)F
(∑

l

a(k� l)J ∗ f (u� l)
)

• cγ(x�σ�k)=
∑
y

w(x� y�σ�k)F
(
u(x�σ�k)− u(x�σ�σ(x)))

c(u� i�k� f )= J ∗ f (u�k)F
(∑

l

[a(k� l)− a(i� l)]J ∗ f (u� l)
)

• cγ(x�σ�k)= exp(u(x�σ�k))∑
l

exp(u(x�σ� l))

c(u� i�k� f )= exp(J ∗ f (u�k))∑
l

exp(J ∗ f (u� l))
�

If F satisfies the global Lipschitz condition, i.e., for all x� y ∈ Dom(F) there exists
L > 0 such that |F(x) − F(y)| ≤ L|x − y|. Here we abuse the notation c(u� i�k�π) =
c(u� i�k� f ). Note that the above list is far from being exhaustive, because one can easily
invent a number of other rates that satisfy C1–C3. Because the verification of conditions
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is similar, we check the conditions for the rate in the periodic boundary domain:

cγ(x�σ�k)= F
( ∑
y∈�γ

γda(k�σ(y))J (γ(y−x))−
∑
y∈�γ

γda(σ(x)�σ(y))J (γ(x−y))
)
� (40)

Lemma 2. The rate given by (40) satisfies C1–C3.

Proof. Let

c̄γ(u� i�k�σ) := F

( ∑
y∈�γ

γda(k�σ(y))J (u− γy)−
∑
y∈�γ

γda(i�σ(y))J (u− γy)
)

c(u� i�k�π) := F

(
|�|

∫
�γ×S

a(k� l)J (u− v)dπ(v� l)− |�|
∫
�γ×S

a(i� l)J (u− v)dπ(v� l)
)
�

where we associate u with γx and v with γy. Here we note that
∣∣∣∣
∑
y∈�γ

γda(k�σ(y))J (γx− γy)− |�|
∫
�×S

a(k� l)J (γx− v)dπγσ(v� l)
∣∣∣∣

≤
∣∣∣∣γd − |�|

|�γ|
∣∣∣∣

∑
y∈�γ

a(k�σ(y))J (γx− γy)≤ |γd|�γ| − |�||M

→ 0 uniformly in x�σ�k�

whereM := supi�k�u�v a(i� j)J (u�v). Therefore, by using the Lipschitz condition for F , we
have

|cγ(x�σ�k)− c(γx�σ(x)�k�πγσ)|
≤ |c̄γ(γx�σ(x)�k�σ)− c(γx�v�σ(x)�k�πγσ)|

≤L sup
x∈�γ
σ∈S�γ
k∈S

∣∣∣∣
∑
y∈�γ

γda(k�σ(y))J (γx− γy)− |�|
∫
�×S

a(k� l)J (γx− v)πσ(v� l)
∣∣∣∣

+L sup
x∈�γ
σ∈S�γ
k∈S

∣∣∣∣
∑
y∈�γ

γda(σ(x)�σ(y))J (γx− γy)

− |�|
∫
�×S

a(σ(x)� l)J (γx− v)πσ(v� l)
∣∣∣∣

→ 0 uniformly in x�σ�k�

Hence C1 is satisfied. Because c(u� i�k�π) is uniformly bounded, C2 is satisfied. Again,
C3 follows from the fact that c(u� i�k�π) is uniformly bounded and F satisfies the Lips-
chitz condition. �
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Notation We use the following notation for the proof of Theorems 1 and 2.

• The process {�γt } is a stochastic process that takes the value σt with the generator
Lγ given in (17) and the sample spaceD([0�T ]� S�γ).

• The process {�γt } is a stochastic process for an empirical measure that takes the
value πt with the sample space D([0�T ]�P(�× S)), and we denote by Qγ the law
of the process {�γt } and denote by P the probability measure in the underlying
probability space. The proof of Theorem 1 is very similar to that of Theorem 2;
therefore, we only prove Theorem 2 and leave the modification needed for proving
Theorem 1 to the reader.

Martingale estimates For g ∈ C(�× S), we set

h(σ) := 〈πγσ�g〉 = 1
|�γ|

∑
y∈�γ

g(γy�σ(y))� (41)

We defineMg�γ
t and 〈Mg�γ

t 〉 as follows. For g ∈ C(�× S),

M
g�γ
t = 〈�γt �g〉 − 〈�γ0 � g〉 −

∫ t

0
Lγ〈�γs �g〉ds�

(42)

〈Mg�γ
t 〉 =

∫ t

0
[Lγ〈�γs �g〉2 − 2〈�γs �g〉Lγ〈�γs �g〉]ds�

Because h is measurable,Mg�γ
t and 〈Mg�γ

t 〉 are Ft-martingale with respect to P, where Ft

is the filtration generated by {�t} (Ethier and Kurtz 1986, Darling and Norris 2008).

Lemma 3. For g ∈ C(�× S), there exists C such that

|Lγ〈πγ�g〉| ≤C� |Lγ〈πγ�g〉2 − 2〈πγ�g〉Lγ〈πγ�g〉| ≤ γdC�

Proof. For h in (41), we have

h(σx�k)− h(σ)= 1
|�γ|

(
g(γx�k)− g(γx�σ(x)))

and, thus, we have (43). Now let q(σ) := 〈πγσ�g〉2. Then

q(σx�k)− q(σ)

= 1
|�γ|2

( ∑
y∈�γ

g(γy�σx�k(y))

)2

− 1
|�γ|2

( ∑
y∈�γ

g(γy�σ(y))

)2

= 1
|�γ|2

(
g(γx�k)− g(γx�σ(x)))2 + 2

|�γ|2
(
g(γx�k)− g(γx�σ(x))) ∑

y∈�γ
g(γy�σ(y))�
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Thus, we have

Lγ〈πγ�g〉 = 1
|�γ|

∑
k∈S

∑
x∈�γ

cγ(x�σ(x)�k)
(
g(γx�k)− g(γx�σ(x))) (43)

Lγ〈πγ�g〉2 − 2〈πγ�g〉Lγ〈πγ�g〉

= 1
|�γ|2

∑
k∈S

∑
x∈�γ

cγ(x�σ(x)�k)
(
g(γx�k)− g(γx�σ(x)))2

�

Thus, from C1 and C2, we have |�γ| ≈ |�|γ−d and |�γ| ≈ |�|γ−d , and the results follow. �

Proposition 5. Let g ∈ C(�× S) and take τγ and δγ as follows.

(a) The variable τγ is the stopping time on the process {�γt : 0 ≤ t ≤ T } with respect to
the filtration Ft .

(b) The variable δγ is a constant for which 0 ≤ δγ ≤ T and δγ → 0 as γ → 0. Then for
ε > 0, there exists C such that

(i) P
{
ω : sup

t∈[0�T ]
|Mg�γ

t | ≥ ε
}

≤ γdCT

ε2 and

(ii) P{ω : |Mg�γ
τγ+δγ −Mg�γ

τγ | ≥ ε} ≤ γdCδγ

ε2 �

and there exists γ0 such that for γ < γ0,

(iii) P
{
ω :

∣∣∣∣
∫ τγ+δγ

τγ
Lγ〈�γs �g〉ds

∣∣∣∣ ≥ ε
}

= 0�

Proof. We first show (iii). Let C be as in Lemma 3. Because δγ → 0, there exists γ0 such
that δγ < ε/2C for γ ≤ γ0. Then by Lemma 3

∣∣∣∣
∫ τγ+δγ

τγ
Lγ〈�γs �g〉ds

∣∣∣∣ ≤ δγC < ε

2
for γ ≤ γ0�

For (i), let γ be fixed first. Because (Mg�γ
0 )2 − 〈Mg�γ

0 〉 = 0, P a.e. and (Mg�γ
t )2 − 〈Mg�γ

t 〉 is
Ft-martingale, by the martingale inequality and Lemma 3, we have

P
{
ω : sup

t∈[0�T ]
|Mg�γ

t |> ε
}

≤ 1
ε2 E[(Mg�γ

T )2] = 1
ε2 E[〈Mg�γ

T 〉] ≤ γdCT

ε2 �

For (ii), by Lemma 3, the Chebyshev inequality, and Doob’s optional stopping theorem,
we have

P{ω : |Mg�γ
τγ+δγ −Mg�γ

τγ |> ε} ≤ 1
ε2 E[(Mg�γ

τγ+δγ −Mg�γ
τγ )

2]

= 1
ε2 E[〈Mg�γ

τγ+δγ 〉 − 〈Mg�γ
τγ 〉] ≤ γdCδγ

ε2 � �
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We now prove an exponential estimate. Let rθ(x) = eθ|x| − 1 − θ|x| and sθ(x) =
eθx − 1 − θx for x�θ ∈ R. We define

φ(σ�θ) :=
∑
k∈S

∑
x∈�γ

cγ(x�σ�k)rθ(h(σ
x�k)− h(σ))

ψ(σ�θ) :=
∑
k∈S

∑
x∈�γ

cγ(x�σ�k)sθ(h(σ
x�k)− h(σ))�

Then, from Proposition 8.8 in Darling and Norris (2008), we have forMg�γ
T in (42),

Z
g�γ
t := exp

{
θM

g�γ
t −

∫ t

0
ψ(�

γ
s �θ)ds

}

as a supermartingale for θ ∈ R. Now let Cg := 2 sup |g(u� i)| and Cc := sup |cγ(x�σ�k)|.

Lemma 4 (Exponential estimate). There exists C that depends on Cg, Cc , S, and ε0 such
that for all ε≤ ε0, we have

P
{

sup
t≤T

|Mg�γ
t | ≥ ε

}
≤ 2e−|�γ |ε2/(TC)�

Proof. We choose ε0 ≤ |S|CgCcT/2 and let A = |S|C2
gCce/|�γ|, θ = ε/(AT). Then, be-

cause rθ is increasing in R+,

rθ(h(σ
x�k)− h(σ))≤ rθ

(
1

|�γ|Cg
)

≤ 1
2

(
1

|�γ|Cgθ
)2

e1/|�γ |θCg for all σ ∈ S�γ�

where we use ex − 1 − x≤ 1
2x

2ex for all x > 0 in the last line. In addition, for ε≤ ε0,

1
|�γ|θCg = 1

|�γ|
ε

AT
Cg ≤ 1

|�γ|
1
2

|S|C2
gCc

A
≤ 1

2e
< 1�

Thus,

∫ T

0
φ(�

γ
t � θ)dt ≤ |S||�γ|1/|�γ|2 1

2
C2
gθ

2e
1

|�γ |θCgCcT ≤ 1
2

1
|�γ| |S|C

2
gCceθ

2T

= 1
2
Aθ2T for allω ∈��

Thus, because ψ(σ�θ)≤φ(σ�θ),

P
{

sup
t≤T

M
g�γ
t > ε

}
= P

{
sup
t≤T

Z
g�γ
t > exp

[
θε−

∫ T

0
ψ(�

γ
t � θ)dt

]}

≤ P
{

sup
t≤T

Z
g�γ
t > exp

[
θε− 1

2
Aθ2T

]}

≤ e(1/2)Aθ
2T−θε = e−|�γ |ε2/(TC)�
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where we choose C := 2|S|C2
gCce. Because the same inequality holds for −Mg�γ

t , we ob-
tain the desired result. �

Convergence

Lemma 5 (Relative compactness). The sequence {Qγ} in P(D([0�T ]; P(� × S))) is rela-
tively compact.

Proof. By Proposition 1.7 in Kipnis and Landim (1999, p. 54), we show that {Qγg−1}
is relatively compact in P(D([0�T ];R)) for each g ∈ C(� × S), where the definition of
Qγg−1 is as follows. For any Borel setA inD([0�T ];R),

Qγg−1(A) := Qγ
{
π· ∈D([0�T ]; P(�× S)) : 〈π·� g〉 ∈A}

�

Thus, from Theorem 1 in Aldous (1978) and the Prohorov theorem in Billingsley (1968,
p. 125), it is enough to show that the following statements hold.

(i) For η> 0, there exists a such that

Qγg−1
{
x ∈D([0�T ];R) : sup

t
|x(t)|> a

}
≤ η for γ ≤ 1�

(ii) For all ε > 0,

P
{
ω : |〈�γτγ+δγ � g〉 − 〈�γτγ �g〉|> ε

} → 0

for (τγ�δγ) that satisfies conditions (a) and (b) in Proposition 5. For (i), because g
is bounded, it is enough to choose a = 2 sup |g(u� i)|, that is, Qγg−1{x ∈ D([0�T ];R) :
supt |x(t)|> a} = Qγ{π· : supt |〈πt�g〉|> a} = 0 because |〈π·� g〉|< a for all π. For (ii),

P
{
ω : |〈�γτγ+δγ � g〉 − 〈�γτγ �g〉|> ε

}

≤ P
{
ω : |Mg�γ

τγ+δγ −Mg�γ
τγ |> ε

2

}
+ P

{
ω : sup

t∈[0�T ]
|Mg�γ

t |> ε

2

}

≤ γdCδγ

ε2 for γ ≤ γ0 chosen in Proposition 5. �

Let Q∗ be a limit point of {Qγ} and choose a subsequence {Qγk} that converges
weakly to Q∗. Hereafter we denote the stochastic process defined on �γ by {��γ } and
denote its restriction on �γ by {��γ }. With this notations, (42) becomes

〈��γt � g〉 = 〈��γ0 � g〉
(44)

+ |�γ|
|�γ|

∫ t

0
ds

∑
k∈S

∫
�×S

c(u� i�k���
γ

s )(g(u�k)− g(u� i))d��γs (u� i)+Mg�γ
t �

Let π ∈ P(�× S) and define dπ� := 1�×S dπ.
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Lemma 6 (Characterization of limit points). For all ε > 0,

Q∗
{
π· : sup

t∈[0�T ]
〈πt�g〉 − 〈π0� g〉

−
∫ t

0
ds

∑
k∈S

[∫
�×S

c(u� i�k�πs)(g(u�k)− g(u� i))dπ��s
]
> ε

}
= 0�

That is, the limiting process is concentrated on weak solutions to the IDE (18).

Proof. We first define � :D([0�T ]�P(�× S))→ R,

π· �→
∣∣∣∣ sup
t∈[0�T ]

〈πt�g〉 − 〈π0� g〉 −
∫ t

0
ds

∑
k∈S

[∫
�×S

c(u� i�k�πs)(g(u�k)− g(u� i))dπ��s
]∣∣∣∣�

Then � is continuous and, thus, �−1((ε�∞)) is open. From the weak convergence of
{Qγk} to Q∗,

Q∗{π· :�(π·) > ε} ≤ lim inf
l→∞

Qγl {π· :�(π·) > ε}�

In addition,

Qγ{π· :�(π·) > ε} = P
{
ω : sup

t∈[0�T ]
|Mg�γ

t |> ε
}

≤ γdCT

ε2 (by Proposition 5) for γ < γ0�

The first equality follows from (44) and the equality

���s = 1
|�γ|

∑
x∈�γ∩�

δ(γx���γs (x)) = 1
|�γ|

∑
x∈�γ

δ
(γx��

�γ
s (x))

= |�γ|
|�γ|�

�γ

s � �

Lemma 7 (Absolutely continuity). We have

Q∗{π· :πt is absolutely continuous with respect tom for all t ∈ [0�T ]} = 1�

Proof. We define� :D([0�T ]; P(�×S))→ R�π· �→ supt∈[0�T ] |〈πt�g〉|. Then� is contin-
uous. In addition,

|〈πγ�g〉| ≤ 1
|�γ|

∑
x∈�γ

|g(γx�σ(x))| ≤
∑
l∈S

1
|�γ|

∑
x∈�γ

|g(γx� l)|�

Thus

sup
t∈[0�T ]

|〈πγt � g〉| ≤
∑
l∈S

1
|�γ|

∑
x∈�γ

|g(γx� l)|�

We write π∗· to be a trajectory on which all Q∗’s are concentrated. Then �γ·
D−→π∗·

(convergence in distribution) and, thus, E(�(�γ· )) → E(�(π∗· )). In addition,
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(1/|�γ|)∑x∈�γ |g(γx� l)| → ∫
� |g(u� l)|du for all l by the Riemann sum approximations.

Therefore,

sup
t∈[0�T ]

|〈π∗
t � g〉| = �(π∗· )= lim

γ→0
E(�(�γ· ))≤ lim

γ→0

∑
l∈S

1
|�γ|

∑
x∈�γ

|g(γx� l)|

=
∫
�×S

|g(u� l)|dm(u� i)�

Therefore, for all t ∈ [0�T ] and g ∈ C(�× S),
∣∣∣∣
∫
�×S

g(u� l)dπ∗
t

∣∣∣∣ ≤
∫
�×S

|g(u� l)|dm(u� i)�

and, thus, for all t ∈ [0�T ], π∗
t is absolutely continuous with respect to dm(u� i). �

We also see that all limit points of the sequence {Qγ} are concentrated on the trajec-
tories that are equal to f 0m at time 0 because

Q∗
{
π· :

∣∣∣∣
∫
g(u� i)dπ0 − 1

|�|
∫
g(u� i)f 0(u� i)dm(u� i)

∣∣∣∣> ε
}

≤ lim inf
k→∞

Qγk

{
π· :

∣∣∣∣
∫
g(u� i)dπ0 − 1

|�|
∫
g(u� i)f 0(u� i)dm(u� i)

∣∣∣∣> ε
}

= 0�

where the definition of a sequence of product measures with a slowly varying parameter
implies the last equality by Proposition 0.4 in Kipnis and Landim (1999, p. 44).

We have thus far shown that Q∗’s are concentrated on trajectories that are weak
solutions to the integro-differential equations. We now show the uniqueness of
weak solutions defined as follows. Let A(f )(u� i) := ∑

k∈S c(u�k� i� f )f�(t�u�k) −
f�(t�u� i)

∑
k∈S c(u� i�k� f ). For an initial profile f 0 ∈ M, f ∈ M is a weak solution to

the Cauchy problem

∂ft

∂t
= A(ft)� f0 = f 0 (45)

if, for every function g ∈ C(�× S) and for all t < T� 〈ft� g〉 = ∫ t
0 〈A(fs)� g〉ds. Observe that

from C3 that A satisfies the Lipschitz condition that there exists C such that for all f ,
f̃ ∈L∞([0�T ];L∞(�× S)), ‖A(f )− A(f̃ )‖L2(�×S) ≤ C‖f − f̃‖L2(�×S).

Lemma 8 (Uniqueness of weak solutions). Weak solutions to the Cauchy problem (45)
that belong to L∞([0�T ];L2(�× S)) are unique.

Proof. Let ft and f̃t be two weak solutions, and let f̄t := ft − f̃t . Then we have

〈f̄t � g〉 =
∫ t

0
〈A(fs)− A(f̃s)� g〉ds for all g ∈ C(�× S)�

We show that t �→ ‖f̄t‖2
L2(�×S) is differentiable. Define a mollifier η(x) :=

C exp(1/(|x| − 1)) if |x| < 1, := 0 if |x| ≥ 1, where C > 0 is a constant such that
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∫
Rd
η(x)dx = 1. For ε > 0, set ηε(x) := ε−dη(ε−1x). For each u ∈ �, i ∈ S, define

hεu�i(v�k)= ηε(u− v)1{i=k} and

f̄ εt (u� i) :=
∫
�×S

(ft(v�k)− f̃t (v�k))hεu�i(v�k)dm(v�k)�

Then

∣∣〈A(fs)− A(f̃s)�hεu�i〉
∣∣ ≤ ‖A(fs)− A(f̃s)‖L2‖hεu�i‖L2 ≤ C‖fs − f̃s‖L2‖hεu�i‖L2

≤ C sup
s∈[0�T ]

‖fs − f̃s‖L2‖hεu�i‖L2 �

Because fs − f̃s ∈ L∞([0�T ];L2(�× S)) and hεu�i ∈ C(�× S) for each u� i� t �→ f̄ εt (u� i) is

differentiable and its derivative is f̄ ε′t (u� i)= 〈A(fs)− A(f̃s)�hεu�i〉. In addition, it follows

that ‖f̄ εt ‖2
L2 is differentiable with respect to t and that

d

dt
‖f̄ εt ‖2

L2 =
∫
�×S

2〈A(ft)− A(f̃t)�hεu�i〉f̄ εt (u� i)dm(u� i)�

so

‖f̄ εt ‖2
L2 =

∫ t

0

[∫
�×S

2〈A(fs)− A(f̃s)�hεu�i〉f̄ εt (u� i)dm(u� i)
]
ds�

Then, because f εt → ft in ‖ · ‖L2 and f̄t ∈ L∞([0�T ];L2(� × S)) for a given t, we
have |‖f̄ εt ‖2

L2 − ‖f̄t‖2
L2 | → 0� In addition, because 〈A(fs) − A(f̃s)�hεu�i〉 → A(ft)(u� i) −

A(f̃t)(u� i) for a.e. u and all i� t, by the dominant convergence theorem, we have

‖f̄t‖2
L2 =

∫ t

0
2〈A(fs)− A(f̃s)� f̄s〉ds�

Thus, ‖f̄t‖2
L2 is differentiable and

d

dt
‖f̄t‖2

L2 = 〈A(ft)− A(f̃t)� f̄t〉 ≤ 2‖A(ft)− A(f̃t)‖L2‖f̄t‖L2 ≤ C‖f̄t‖2
L2 �

Hence, from the Gronwall lemma, the uniqueness of the solutions follows. �

Lemma 9 (Convergence in probability). We have

�
γ
t −→ 1

|�|ftm in probability�

Proof. We have thus far established Qγ ⇒ Q∗ (converge weakly) and, equivalently,
�γ· → π∗· in the Skorohod topology (topology on D([0�T ]�P(Td × S))). If we show that
�
γ
t → π∗

t weakly in P(�d × S) or, equivalently, �γt →D π∗
t in distribution for fixed time

t < T , then we have

�
γ
t

P→π∗
t in probability. (46)
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Because �γ· → π∗· in the Skorohod topology implies �γt → π∗
t weakly for continuity

points of π∗· Billingsley (1968, p. 112), it is enough to show that π∗· : t �→ π∗
t is contin-

uous for all t ∈ [0�T ] to obtain (46). Let t0 < T and let {gk} be a dense family in C(�× S).
Because ∣∣∣∣

∫ t

t0

〈A(π∗
s )� gk〉ds

∣∣∣∣ ≤ (t − t0) sup
s∈[0�T ]

〈A(π∗
s )� gk〉�

we choose δ≤ min{1� ε}. Then for |t − t0| ≤ δ,

| ∫ tt0〈A(π∗
s )� gk〉ds|

1 + | ∫ tt0〈A(π∗
s )� gk〉ds|

≤ δ sups∈[0�T ]〈A(π∗
s )� gk〉

1 + δ sups∈[0�T ]〈A(π∗
s )� gk〉

≤ δ sups∈[0�T ]〈A(π∗
s )� gk〉

1 + sups∈[0�T ]〈A(π∗
s )� gk〉

≤ δ

and, thus, ‖πt − πt0‖P(�×S) ≤ ε, and π∗· : t �→ π∗
t is continuous for all t ∈ [0�T ]. Thus, all

t ∈ [0�T ] are continuity points of π∗· �

Proof of Theorem 2 From Lemma 9, we have

��γ
t

P→ 1
|�|f��tm

for t < T . Thus, from (21) we obtain

〈ft� g〉 = 〈f0� g〉 +
∫ t

0
ds

∑
k∈S

∫
�×S

c

(
u� i�k�

1
|�|fsm(u� i)(g(u�k)− g(u� i))

)
f��s dm(u� i)�

Because |�γ|��γt = |�γ|��γt + |�γc|��γc0 , |�|��γt P→ ftm, |�|��γt P→ f��tm, and |�c|��γc0
P→

f�cm, we have ft = f��t + f�c for all t.

A.3 Proof of Theorem 3

For this, we first define the reduction mapping φ :S�
n → �n as

σ �→φ(σ)� φ(σ)(i) := 1
|�n|

∑
y∈�n

δσ(y)({i})�

For g ∈L∞(�n;R), we let f := g◦φ ∈L∞(S�n;R), wheref (σ)= g(η). Then forη=φ(σ),
we have f (σx�k)− f (σ)= g(ησ(x)�k)− g(η) because

φ(σx�k)(i)= 1
nd

∑
y∈�n

δσ(y)({i})+ 1
nd
δk({i})− 1

nd
δσ(x)({i})= ησ(x)�k(i)�

Proof of Theorem 3. We check the case of noninnovative and comparing rates. Other
cases can be treated as special cases. By writing mn(k) := ∑

l a(k� l)η
n(l), we find that

Lnf(σ) =
∑
k∈S

∑
x∈�n

η(k)F
(
mn(k)−mn(σ(x)))(g(ησ(x)�k)− g(η))
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=
∑
k∈S

∑
j∈S

[ ∑
x∈�n

δσ(x)({j})
]
η(k)F(mn(k)−mn(j))(g(ηj�k)− g(η))

=
∑
k∈S

∑
j∈S
ndη(j)η(k)F(mn(k)−mn(j))(g(ηj�k)− g(η))

:=
∑
k∈S

∑
j∈S
ndcM(η� j�k)(g(ηj�k)− g(η))�

Thus we obtain

Lng(η)=
∑
k∈S

∑
j∈S
ndcM(η� j�k)(g(ηj�k)− g(η))�

This makes {ηt} a Markov chain and the rate is given by cM(η� j�k). �

A.4 Proof of Corollary 4

Proof. It is enough to prove the exponential estimate. From (21), we recall that

〈�γ

t � g〉 = 〈�γ

0� g〉 +
∫ t

0

∑
k∈S

∫
Td×S

c(u� i�k��
γ

s )(g(u�k)− g(u� i))d�γ

s (u� i)ds+Mg�γ
t

for g ∈ C(Td × S). By taking g(u� i)= 1 if i= l and g(u� i)= 0 otherwise, we find

ηnt�l = ηn0�l + nd
∫ t

0

[∑
i∈S
cM(i� l�ηns )η

n
s�l −

∑
k∈S

cM(l�k�ηns )η
n
s�l

]
ds+Ml�n

t �

We define βl(x) := ∑
i∈S cM(i� l�x)xl −

∑
k∈S cM(l�k�x)xl. Thus, we have

ηnt�l = ηn0�l + nd
∫ t

0
βl(η

n
s )ds+Ml�n

t � ρt�l = ρ0�l +
∫ t

0
βl(ρs)ds�

From Lemma 4, we have P{supt≤T |Ml�n
t | ≥ δ} ≤ 2e−ndδ2/(TC0) for each l and for δ ≤ δ0,

where we note that the choices of C0 and δ0 do not depend on g because |g(u� i)| ≤
1 for all u� i. Thus, P{supt≤T ‖Mn

t ‖u ≥ δ} ≤ 2|S|e−ndδ2/(TC0). Thus, using the Lipschitz
condition for β, we obtain

sup
τ≤t

‖ηnτ − ρτ‖u ≤ ‖ηn0 − ρ0‖u +L
∫ t

0
sup
τ≤s

‖ηnτ − ρτ‖u ds+ sup
t≤T

‖Mn
t ‖u

for t ≤ T . For ε0 in Lemma 4, we let δ= 1
3e

−LT ε for ε < ε0 and define

�0 = {ω :‖ηn0 − ρ0‖u ≤ δ}� �1 =
{
ω : sup

t≤T
‖Mn

t ‖u ≤ δ
}
�
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Then, for ω ∈ �0 ∩ �1, we have supτ≤T ‖ηnτ − ρτ‖u ≤ 2δeLT by the Gronwall lemma.
Choose n0 such that ‖ηn0 − ρ0‖u ≤ δ for a.e. ω for n≥ n0. Then for ε≤ ε0 and n≥ n0,

P
{

sup
τ≤T

‖ηnτ − ρn‖ ≥ ε
}

≤ P(�c0)+ P(�c1)

≤ P{ω :‖ηn0 − ρ0‖u ≥ δ} + P
{
ω : sup

t≤T
‖Mn

t ‖u ≥ δ
}

≤ 2|S|e−ndδ2/(TC0) = 2|S|e−ndε2/(TC)�

where C := 9C0e
2LT . �

A.5 Solutions to Linear IDE’s

Applying the Fourier transform to (29) on an element-by-element basis, we obtain

∂Ẑ(k)

∂t
= (Dr�(f0� f0)Ĵ (k)+Ds�(f0� f0))Ẑ(k) (47)

for each k ∈ Z
d and Ẑ(k) ∈ C

|S|. By solving the ODE system (47) for each k and using the
inverse formula, we obtain

D(x� t)=
∑
k∈Z

e(Dr�(f0�f0)Ĵ (k)+Ds�(f0�f0))t ĝ(k)e2πix·k�

where e(Dr�(f0�f0)Ĵ (k)+Ds�(f0�f0))t is an |S| × |S| matrix and ĝ(k) is an |S| × 1 vector.

A.6 Proof of Proposition 4

Proof. We first note that p1 > ζ, p2�p3 < ζ. Then for α := a11 − a21 + a22 − a12,

βα
(
1 − lβ(α(pi − ζ))

)
lβ(α(pi − ζ)) < 1 for i= 1�3

βα
(
1 − lβ(α(pi − ζ))

)
lβ(α(pi − ζ)) > 1 for i= 2�

Suppose that β > βC and consider p1. Because lβ(α(p1 − ζ)) = p1, we have
βα(1 −p1)p1 < 1. Then, because Ĵ (k)≤ 1 for all k, we have

λL(k)= βα(1 −p1)p1 Ĵ (k)− 1<βα(1 −p1)p1 − 1< 0�

Thus p1 is linearly stable. A similar argument shows that p3 is linearly stable. The case
of the Hawk–Dove type game follows from α< 0. �
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