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Abstract. We propose an information-theoretic approach to analyze the long-time behavior
of numerical splitting schemes for stochastic dynamics, focusing primarily on parallel kinetic Monte
Carlo (KMC) algorithms. Established methods for numerical operator splittings provide error esti-
mates in finite-time regimes, in terms of the order of the local error and the associated commutator.
Path-space information-theoretic tools such as the relative entropy rate allow us to control long-time
error through commutator calculations. Furthermore, they give rise to an a posteriori representation
of the error which can thus be tracked in the course of a simulation. Another outcome of our analysis
is the derivation of a path-space information criterion for comparison (and possibly design) of nu-
merical schemes, in analogy to classical information criteria for model selection and discrimination.
In the context of parallel KMC, our analysis allows us to select schemes with improved numerical
error and more efficient processor communication. We expect that such a path-space information
perspective on numerical methods will be broadly applicable in stochastic dynamics, for both the
finite and the long-time regime.
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1. Introduction. Recently, schemes that depend on operator splitting have
found wide applicability within the domain of simulation of complex chemical reaction
systems, biological systems, or those that can be modeled by appropriate Markov pro-
cesses, for example, interacting particle systems. The recipe of splitting the system
into components that can be simulated separately in an appropriate manner has led to
more efficient algorithms, sometimes because some of the components can be solved
explicitly, as in chemical reaction systems [1], and sometimes because the splitting
allows for parallel computations [2, 3].

In parallel with the development of those algorithms, there has also been a grow-
ing amount of work toward the numerical analysis of splitting methods for stochastic
dynamics in different contexts [1, 2, 4, 5, 6, 7]. In particular, for the case of parallel
lattice kinetic Monte Carlo (PL-KMC), the authors in [2] developed a general frame-
work, based on semigroup theory, that connects lattice decompositions to operator
splitting. Then, in [4], error estimates were provided for bounded time intervals along
with comparisons between different splitting schemes. One of the important contri-
butions of the work was to highlight the connection of the error with the commutator
associated with the splitting and how it affects the efficiency of the scheme.
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INFORMATION METRICS FOR SPLITTING SCHEMES A3809

Although classical techniques in numerical analysis, such as the study of the local
error of the splitting scheme and expansions of the global error [8], work well in
providing error estimates for bounded intervals, the information they provide is not
of great use when the focus is on long-time results. Given that a common goal is
sampling from a stationary distribution and convergence occurs for large simulation
times, it thus makes sense to develop methodologies for the study of long-time errors.
Approaches to tackling this problem are varied. For instance, in the case of SDEs,
study of the long-time behavior has been done by employing Poisson equations [9].
For Lie–Trotter splittings, backward error analysis [10] has been used to study the
performance of the schemes in capturing the stationary distribution when simulating
Langevin dynamics (but see also [11]).

The main idea in this work is information-theoretical in nature, following similar
successful approaches studying the irreversibility of numerical schemes [12], sensitiv-
ity analysis [13], and quantifying the loss of information in coarse-graining of particle
systems [14]. In those, the authors use the relative entropy, along with other quan-
tities derived from it, to both generate insights and provide computable quantities
that are useful during a simulation. Besides that, approaching the problem from in-
formation theory still allows one to infer results about more classical metrics of error.
For instance, one can derive upper bounds for the weak error of specific observables
through the use of variational inequalities [15].

Our goal is to use another derived quantity, the relative entropy on path space per
unit time, or relative entropy rate (RER), to quantify the long-time loss of information
when using a splitting scheme. For our comparison, we fix a time step ∆t and then
compare the ∆t-skeleton chain arising from the exact process with the discrete chain
we get from the approximate process. Through rigorous asymptotics, we provide an
a posteriori error expansion of RER in terms of ∆t and connect RER with quantities
central to the classical analysis of splitting schemes, like the commutator and the order
of the local error of the splitting method. After deriving computable estimators from
our a posteriori expansions for the highest-order term coefficients, we estimate them
with the use of SPPARKS [3], a parallel KMC simulator, and use them to compare
two well-known splitting schemes, the Lie and Strang splittings. Also, we illustrate
how a practitioner can use the RER as an information criterion for selecting schemes
that takes into account both long-time accuracy and communication cost. We then
proceed to link the connectivity of the exact process with the RER asymptotics, which
in turn allows for greater generality in the study of different operator splittings.

The plan for the following sections is as follows. In section 2, we provide the neces-
sary background for KMC, PL-KMC, construction, and analysis of operator splitting
schemes. Section 3 introduces the pathwise relative entropy and relative entropy per
unit time, which are the principal tools used in this work. In section 4 we discuss
the use of the RER as a metric for studying the long-time loss of information that
operator splitting schemes can have and motivate the use of asymptotic expansions
for its study. Section 5 is particularly important, as we study schemes through the
RER in the context of stochastic particle systems and continue to section 6 with some
discussion about time-step selection and the balance between error and communica-
tion in parallel KMC. Then, in section 7, we highlight some connections between the
proposed framework and model selection with information criteria. Section 8 studies
the RER for operator splitting schemes in a more general setting with the use of ideas
from graph theory. Finally, in section 9, we demonstrate that the RER can also be
applied in transient regimes, before the simulation has converged to stationarity.
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A3810 K. GOURGOULIAS, M. KATSOULAKIS, AND L. REY-BELLET

2. Background. Consider that the stochastic process of interest is an ergodic
continuous time Markov Chain (CTMC) Xt on a finite, but possibly still significantly
large, state space S. This stochastic process can be completely defined by its transition
rates, q(σ, σ′), which describe the probability of an update from state σ to state σ′ in
an infinitesimal period of time. That is,

P (Xt+∆t = σ′|Xt = σ) = P∆t(σ, σ
′) = q(σ, σ′)∆t+ o(∆t), σ 6= σ′.(2.1)

KMC works by simulating the embedded Markov Chain Yn = Xtn , with jump times
tn, tn ∼ exp(λ). The parameter λ(σ) is the total rate when the system is at state σ,

λ(σ) =
∑
σ′ 6=σ
σ′∈S

q(σ, σ′).(2.2)

This allows us to write the transition probabilities of the embedded Markov Chain
p(σ, σ′) = q(σ, σ′)/λ(σ). We can also define the infinitesimal generator L that corre-
sponds to the Markov chain as follows. First, consider f : bounded and continuous
function on the state space S. Then, L acts on f at the state σ as

L[f ](σ) =
∑
σ′∈S

q(σ, σ′) (f(σ′)− f(σ)) .(2.3)

Note that L[δσ′ ](σ) = q(σ, σ′) for all states σ, σ′, where δσ′(σ) = δ(σ, σ′) is a Dirac
probability measure. We shall also use the notation Lk for the resulting operator after
k successive compositions of L. Because Lk[δσ′ ](σ) = Lk−1[L[δσ′ ]](σ), we see that,
for any k, Lk[δσ′ ](σ) is a computable object that depends on the transition rates.

Under fairly general conditions [16], the transition probability of the Markov
process can be written as in semigroup form, i.e., Pt(σ, σ

′) = eLtδσ′(σ). In the case
of interest to us, L is going to be a bounded operator and such operators allow for a
representation of the semigroup with a series expansion.

Lemma 2.1. Let L be a linear and bounded operator, L : Cb(S) → Cb(S), with
Cb(S) being the set of continuous and bounded functions on the space S. Then L
generates a uniformly continuous semigroup etL which we can express in power series
form.

etL =

∞∑
k=0

tk

k!
Lk.(2.4)

Proof. This is a classical result for which many references exist; see, for example,
Chapter 1, p. 2, of Pazy [17].

Thus, making use of Lemma 2.1, we can write the transition probabiliy as

Pt(σ, σ
′) = etLδσ′(σ) =

∞∑
k=0

tk

k!
Lk[δ′σ](σ), σ, σ′ ∈ S.(2.5)

2.1. Constructing approximations by semigroup splitting. We will now
give the foundations of approximations by splitting methods, as applied to the simula-
tion of CTMCs, and proceed with how those ideas are applied in the case of PL-KMC.

As mentioned earlier, the transition probability of the CTMC of interest can
be written as etLδσ′(σ). The goal is for us to design a splitting scheme that can
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INFORMATION METRICS FOR SPLITTING SCHEMES A3811

approximate the action of etL. In our context, this leads to a new CTMC. One way
to build such a scheme is to start with a splitting of the infinitesimal generator L (2.3)
into components L1, L2 with L = L1 + L2. Then, if we consider a positive T and by
using the Trotter product formula [18], we have

eTL = lim
n→∞

(eT/nL1eT/nL2)n.(2.6)

Correspondingly, if we now fix n ∈ N and set ∆t = T/n, we can write approximations
of eTL by using (2.6). For example, two such approximations are

(2.7)
eTL '

(
e∆tL1e∆tL2

)n
(Lie),

eTL '
(
e∆t/2L1e∆tL2e∆t/2L1

)n
(Strang).

Therefore for a one-step transition from t = 0 to ∆t, (2.7) can be written as

(2.8)
eL∆t ' e∆tL1e∆tL2 ,

eL∆t ' e∆t/2L1e∆tL2e∆t/2L1 .

Operator splittings can also be carried out with multiple components, such as
L = L1 + L2 + L3 + L4. Such a splitting is used for two-dimensional (2D) lattice
decompositions in SPPARKS [3]. All arguments can be simply extended to those
cases, but we stick to two components, L1, L2, for notational convenience.

Throughout this work, we use P∆t(σ, σ
′) to denote the probability eL∆tδσ′(σ) and

Q∆t(σ, σ
′) for the approximations arising from splittings of the semigroup. Since L is

a bounded operator, we can express P∆t as expansion (2.5). If we pick L1, L2 so that
they are also bounded, then we can express Q∆t as an expansion too. For example,
for the Lie splitting

exp(∆tL1) exp(∆tL2)δ′σ(σ) =

∞∑
k=0

∆tk

k!

(
k! ·

k∑
m=0

Lm1
m!
· Lk−m2

(k −m)!

)
δσ′(σ),(2.9)

which can be showed by multiplying the semigroup expansions of exp(∆tL1) and
exp(∆tL2). Thus, if we use the notation

LkQ : = k! ·
k∑

m=0

Lm1
m!
· Lk−m2

(k −m)!
(2.10)

we can write (2.9) in the form

Q∆t(σ, σ
′) =

∞∑
k=0

∆tk

k!
LkQ[δσ′ ](σ).(2.11)

By the definition of LkQ in (2.10), L0
Q = I, L1

Q = L, L2
Q = (L2

1 + L2
2 + 2L1L2),

and so on, for the case of the Lie splitting. By a similar argument, we can write
an expansion like (2.11) for other operator splitting approximations. In general, LQ
is not a generator of a Markov process and, in that case, LkQ is not equal LQ after
k compositions but is defined in the context of the expansion in (2.11). The slight
abuse of notation allows us to compare the expansion of the exact process (2.5) with
expansions of the approximating schemes of the form (2.11).
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A3812 K. GOURGOULIAS, M. KATSOULAKIS, AND L. REY-BELLET

One way to compare the accuracy of using Q∆t as opposed to P∆t is to calculate
the local error between expansion (2.5) and (2.11). As an example, here are the

corresponding relations for the Lie and Strang splittings. We use QLie
∆t , Q

Strang
∆t for Lie

and Strang, respectively. We will also use the notation [L1, L2] := L1L2 − L2L1 to
denote the operator that captures the failure of L1 and L2 to commute. By using the
expansions (2.5), (2.11), we can show that

P∆t(σ, σ
′) = QLie

∆t (σ, σ
′) +

1

2
[L1, L2]δσ′(σ)∆t2 +O(∆t3),(2.12)

P∆t(σ, σ
′) = QStrang

∆t (σ, σ′) +
1

24
([L1, [L1, L2]]− 2[L2, [L2, L1]]) δσ′(σ)∆t3(2.13)

+O(∆t4).

From relations (2.12) and (2.13), we observe that the Strang splitting has a better
local error compared to Lie (∆t3 versus ∆t2). Therefore, if we prescribe an error
tolerance, the Strang scheme will be able to accommodate a larger ∆t than the Lie
scheme. With a larger ∆t, we will be able to take larger steps with the same tolerance
during the simulation, and this is especially important for parallel KMC, as we strive
for balance between error accumulation and efficiency.

To be able to discuss more general operator splitting approximations to P∆t, we
introduce the following helpful lemma.

Lemma 2.2 (local order of error and commutator). Let P∆t(σ, σ
′) = eL∆tδσ′(σ)

and Q∆t(σ, σ
′) an approximation of P∆t via a splitting scheme. Then, there is a

function C : S × S → R and an integer p, p > 1, such that

P∆t(σ, σ
′) = Q∆t(σ, σ

′) + C(σ, σ′)∆tp + o(∆tp).(2.14)

We will refer to C(σ, σ′) = (Lp −LpQ)δσ′(σ) as the commutator and to p as the order
of the local error.

Proof. The result is immediate by using representations (2.5), (2.11), since for
σ, σ′ ∈ S,

P∆t(σ, σ
′)−Q∆t(σ, σ

′) =

∞∑
k=0

∆tk

k!

(
Lk − LkQ

)
[δ′σ](σ).

Then, p is the smallest nonnegative integer such that Lp 6= LpQ. This of course implies

that Lk = LkQ for k < p.

Equations (2.12) and (2.13) are examples of this lemma for the cases of the Lie
and Strang splittings, respectively. Although in the case of Lie we were able to write
the form of LkQ explicitly for all k (equation (2.10)), this is not a requirement and we
only need to know LpQ to compute the commutator and that object arises naturally
when subtracting the two expansions, (2.5) and (2.11).

Remark 2.3. Relation (2.14) is central to the numerical analysis of splitting
schemes, as it is the starting point to the derivation of upper bounds for the lo-
cal and global error [2, 4, 5]. Even though our focus in this manuscript is on operator
splitting schemes for parallel KMC, as long as an expression for the local error such
as (2.14) exists, a similar analysis can be carried out for other types of schemes.

As we will see in the follow-up, the commutator has many desired properties.
Since it is equal to (Lp − LpQ)δσ′ [σ], and both Lp[δσ′ ](σ) and LpQ[δσ′ ](σ) depend on
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the known transition rates q, the commutator is a computable object for every pair of
states (σ, σ′). We will see in section 5.1 that for parallel KMC the work required in
order to compute the commutator can scale appropriately with the system size.

2.2. PL-KMC and splitting schemes. We consider the case of PL-KMC as
an application of the ideas in the previous section concerning approximations by
semigroup splitting. Further discussion on the ideas of this section can be found in
Arampatzis et al. [2, 4].

Our main motivating example for PL-KMC is an interacting particle system. Let
Λ ⊂ Zd be a square lattice with N sites. At each site of it, x ∈ Λ, we define an order
parameter σ(x) ∈ Σ = {0, 1, . . . ,K}. This parameter can be, for example, the species
that occupies the lattice site x. For instance, in the Ising model, σ(x) = 0 would
imply that the lattice site x is empty and σ(x) = 1 that a particle occupies x. The
CTMC of interest is {σt}t≥0, σt = {σt(x) : x ∈ Λ}, with state space S = ΣΛ. At
every t, σt represents a snapshot of the different occupancies of the lattice. We can
describe the dynamics of such a system by looking at the individual spin changes at
different lattice sites. Two more properties that are common among such systems and
which we will also assume is that the transitions between states of σt are localized and
that they only involve a finite number of lattice sites per transition step. Localization
implies that the probability that a certain transition will happen (the order parameter
of a finite collection of lattice sites will change) only depends on the values of σ on a
neighborhood around those lattice sites. In other words, transitions depend on local
(neighborhood) rather than global (whole lattice) information (see Figure 1).

We can formalize localization by looking at the implication for the transition rates
of the process σt. Following the notation introduced in [2], let us assume that at time
t, σt = σ. Now, we can express the transition rate for a jump to a new state σx,ω as

q(σ, σx,ω) = q(x, ω;σ),(2.15)

where x ∈ Λ and ω is an index of the set of all possible configurations, Sx, that
correspond to an update at a lattice neighborhood Ωx of the site x. When the only
allowed transition is spin-flipping, that is, starting with σ, we can only go to states σ′

that differ in the order parameter of one lattice site x, we will write σ′ as σx to denote
the resulting state after the transition. It follows that for σt we have an infinitesimal
generator:

Fig. 1. A checkerboard decomposition of a 2D lattice. Red sublattices correspond to group
G1 and white ones to G2. For comparison, a nearest neighborhood region (n.n. region) is also
shown (solid black cross). Transitions involving the center of that region only depend on the state
of its nearest neighbors. So, if we pick the sublattices much larger than the size of an n.n. region,
transitions in different sublattices belonging to the same group are independent. A site x is said to
belong to the boundary of its sublattice if part of its n.n. region is outside that sublattice (the green
region is the collection of all such points for the first sublattice). If a transition occurs at such a site
x, then an update needs to be made to the boundary information of all other sublattices for which x
belongs to an n.n. region.
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L[f ](σ) =
∑
x∈Λ

∑
ω∈Sx

q(x, ω;σ) (f(σx,ω)− f(σ)) .(2.16)

We can simulate the process σt via standard KMC, as described in the beginning
of section 2. Then the system would progress in time steps tn ∼ exp(λ(σ)), where
λ(σ) is the total rate when the system is at state σ, as defined in (2.2). Since the
total rate scales with the size of the lattice and the magnitude of the transition rates,
a large or highly reactive model would be simulated slowly by classical KMC. The
goal then, as realized in [2], is for a fixed ∆t > 0 to design an approximation to the
exact process e∆tL via a splitting method in such a way that allows for asynchronous
computations.

To begin, we note that any decomposition of the lattice into nonoverlapping
sublattices Λi also induces a decomposition of the generator (2.16), that is,

L[f ](σ) =

n∑
i=1

∑
x∈Λi

∑
ω∈Sx

q(x, ω;σ) (f(σx,ω)− f(σ)) .(2.17)

Due to the localization of the system, we can decompose the lattice Λ into n sub-
lattices, Λi, so that transitions in some sublattices are independent from transitions
in others; see Figure 1. With two groups, G1 = {Λi : i even}, G2 = {Λi : i odd}, we
can split L into

(2.18)

Lj [f ](σ) :=
∑
x∈Gj

∑
ω∈Sx

q(x, ω;σ) (f(σx,ω)− f(σ)) , j = 1, 2,

L[f ](σ) = L1[f ](σ) + L2[f ](σ).

Thus, by the formulas in (2.18), we can use the ideas of the previous section to
construct splitting approximations to eL∆t. Those can also be interpreted as compu-
tation schedules for the parallel algorithm. Such schedules set two attributes of the
simulation: (a) in what order to simulate the two groups asynchronously and (b) for
how much time to simulate each group per time step (which the user controls with
the ∆t parameter). A demonstration of how PL-KMC works is shown in Figure 2.

In general, the larger the ∆t, the less different processes need to communicate
to resolve inconsistencies during a run. This is a fact for any simulation algorithm

Fig. 2. One step of PL-KMC in the 1D case, where all of the spin values are set to zero
initially while using the Lie splitting. After the lattice is decomposed into nonoverlapping sublattices,
here blue (indexed as 1) and red (indexed as 2), the algorithm proceeds by first simulating all blue
sublattices independently by standard KMC until a time t = ∆t is reached for all of them. Once
that is done, the lattices in the second group are simulated in the same way. This results to the
process σt on the whole lattice being propagated forward in time by ∆t. Between the simulation of
each group, communication between the processes is required in order to correct for the mismatch
on the boundaries of the sublattices. The resulting error due to the mismatch is controlled by the
commutator C [4].
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that can be expressed in the above operation splitting framework, e.g., SPPARKS
and others [2]. Since communication is the usual bottleneck of PL-KMC algorithms,
a practitioner would like to pick ∆t as large as possible, given a fixed tolerance. One
of the important insights of the analysis in [4] is that the commutator controls this
relationship. Simply put, a small C(·, ·) (as defined in Lemma 2.2) allows for a larger
step size ∆t.

3. Information metrics for comparing dynamics at long times. We will
now introduce the main tools from information theory. In later sections, our focus
will be to compare the exact process, Xt, and an approximation of it, Yt, via their
∆t-skeleton subprocesses. That is, given a fixed ∆t > 0 and M ∈ N, we look at the
discrete-time Markov processes Xn∆t and Yn∆t for n ∈ {0, . . . ,M∆t}, T = M∆t. For
this reason, we now introduce those concepts for discrete-time processes.

Let us assume two discrete-time Markov processes Xn and Yn on a countable
state space S with transition probabilities P and Q, respectively. We also assume
that for each process exists a corresponding unique stationary distribution µP and
µQ. Assuming X0 (Y0) is distributed according to µP (µQ), we can then calculate
the probability of a specific path for each process. For example, if we fix a positive
integer M,T = M∆t, and pick an ~x ∈ SM , then we have

P0:T (~x) = P (XT = xM , . . . , X0 = x0) = µP (x0)P (x0, x1) · · ·P (xM−1, xM ).

Similarly, by changing P to Q, we can calculate the path probability for Yn.
Assuming one would prefer a path of length T of the process Yn to infer results

about a same length path of Xn, how much information about Xn would be lost by
such a method? This is a central question in coding theory and one way to quantify
the information loss is through the idea of relative entropy,

R(Q0:T |P0:T ) :=
∑
~x∈SM

Q0:T (~x) log
Q0:T (~x)

P0:T (~x)
.(3.1)

Our definition here is with respect to the path measures P0:T , Q0:T , but we can apply
the relative entropy to more general probability measures too. For this object to be
properly defined, we need to have that Q0:T is absolutely continuous with respect to
P0:T , that is, P0:T (~x) = 0 implies Q0:T (~x) = 0. Other important properties of the
RER are the following: (1). R(Q0:T |P0:T ) ≥ 0 for any Q0:T , P0:T (Gibbs’ inequality);
(2) R(Q0:T |P0:T ) = 0⇔ P0:T = Q0:T . Note though that the relative entropy does not
qualify as a metric in the classical sense, as it is not symmetric and does not satisfy
the triangle inequality. It can, however, still be thought of as a distance between
distributions and is useful as a building block for other information measures. For
a more complete exposition on relative entropy and its properties, see Cover and
Thomas [19].

Although the pathwise relative entropy is a suitable quantity to measure the
similarity of the two path measures, it is computationally demanding to calculate,
especially in the case of parallel KMC, where we do not have Q0:T and P0:T explicitly.
For this reason, we look at a related object, the relative entropy per unit time, or
RER. Given a probability measure ν0, ν0(~x) = ν0(x0), ~x ∈ ST , the RER with respect
to ν0 is defined as

Hν0
(Q|P ) :=

∑
~x∈SM

ν0(~x)Q(x0, x1) log
Q(x0, x1)

P (x0, x1)
.(3.2)D
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Given another measure µ0, we can use the chain rule for the relative entropy [19] to
relate relative entropy and RER as

R(Q0:T |P0:T ) = R(µ0|ν0) +

M∑
i=1

Hνi(Q|P ),(3.3)

νk(x0, . . . , xk−1) = ν0(x0)

k−1∏
m=1

Q(xm−1, xm).

In particular, when sampling from the stationary distribution corresponding to Q,
that is, ν0 = µQ, then Hνi = HµQ = H for all i. Then,

H(Q|P ) =
∑

x0,x1∈S
µQ(x0)Q(x0, x1) log

Q(x0, x1)

P (x0, x1)
.(3.4)

This also simplifies (3.3) to

R(Q0:T |P0:T ) = M ·H(Q|P ) +R(µQ|µP ).(3.5)

In (3.5), R(µQ|µP ) is the relative entropy of µQ with respect to µP , capturing the
loss of information between the exact and approximate stationary distribution. Note
that R(µQ|µP ) does not depend on the length of the path. Instead, the term that
quantifies the dependence on T is H(Q|P ). Therefore, any difference between the two
stationary measures becomes negligible for large times, which is a first advantage to
studying the pathwise relative entropy through the simpler RER.

3.1. Information metrics and observables. Further justification for the fact
that the RER is the right quantity to track can be given by considering time-averaged
observables. For instance, if f is a function of the state space, then such an observable
would be

M · FM ({Xn : n = 0, . . . ,M − 1}) =

M−1∑
k=0

f(Xk).

An important performance metric for the approximation is the weak error:

|EP [0,T ][FM ]− EQ[0,T ][FM ]|, T = M∆t.(3.6)

In recent work [15], uncertainty quantification bounds have been developed for the
weak error that are of the form

(3.7)
Ξ−(Q[0,T ]‖P[0,T ];M · FM )/M ≤ EP [0,T ][FM ]− EQ[0,T ][FM ]

≤ Ξ+(Q[0,T ]‖P[0,T ];M · FM )/M.

The quantities Ξ±(Q[0,T ]‖P[0,T ];M ·FM ) are defined as goal-oriented divergences [15],
taking into account the observable F , and such that Ξ±(Q[0,T ]‖P[0,T ];M · FM ) = 0,
if Q[0,T ],= P[0,T ] or f is deterministic. Note that the bound in (3.7) is robust (see
Theorem 3.4 in [20], as well as [21]): if we consider a positive η and all Q∆t such that
R(Q∆t|P∆t) < η, then the upper bound in (3.7) is attained.

Dividing (3.7) by M and letting M go to infinity gives an inequality with respect
to the stationary measures µQ, µP of the scheme, Q∆t, and the exact process, P∆t,
respectively:
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ξ−(Q∆t‖P∆t; f) ≤ EµQ [f ]− EµP [f ] ≤ ξ+(Q∆t‖P∆t; f),(3.8)

where ξ±(Q∆t‖P∆t; f) = limM→∞ Ξ±(Q0:T ‖P0:T ;F )/M . But ξ± also admit a varia-
tional representation as

(3.9)

ξ+(Q∆t‖P∆t; f) = inf
c≥0

{
1

c
[λQ∆t,P∆t

(c) +H(Q∆t‖P∆t)]

}
,

ξ−(Q∆t‖P∆t; f) = sup
c≥0

{
−1

c
[λQ∆t,P∆t

(−c) +H(Q∆t‖P∆t)]

}
,

with λQ∆t,P∆t
(c) in (3.9) to be the logarithm of the maximum eigenvalue of the matrix

with entries P∆t(x, y) exp(c · (f(y) − EµP [f ])) (see [21] for details). Especially when
H(Q∆t|P∆t) is small and through the asymptotic expansion of ξ±, an upper bound
for the weak error at stationarity can be given (following the ideas in [15, 21]):

|EµQ [f ]− EµP [f ]| ≤
√
υµP (f)

√
2H(Q∆t|P∆t) +O(H(Q∆t|P∆t)),(3.10)

υµP (f) =

∞∑
k=−∞

EµP [f(Xk)f(X0)].(3.11)

Inequality (3.10) connects the long-time loss of accuracy that the weak error
captures with the RER and υµP (f), which is the integrated auto-correlation function
for the observable f and a quantity we can estimate during the simulation. As a
consequence of (3.10), any further results on the asymptotic behavior of H(Q∆t|P∆t)
with respect to ∆t can be simply translated to the weak error point of view.

4. Long-time error behavior of splitting schemes. In this section, we com-
pare the RER between two different processes. One of them will always be the
∆t-skeleton process derived from the CTMC we wish to simulate, with transition
probability

P∆t(σ, σ
′) = eL∆tδσ′(σ).(4.1)

This exact ∆t-process will be compared with the ∆t-skeleton process derived from
an operator splitting of (4.1). Such approximations will be denoted with Q∆t. We
note here that the discretization (4.1) of the original Markov process with semigroup
etL with respect to ∆t is carried out only as a means to compare the original process
with the approximations Q∆t. The transition kernel P∆t is just a particular instance
of the transition matrix of the continuous Markov process with semigroup Pt = etL,
so there is no approximation error in (4.1). In fact, using the ∆t-skeleton corresponds
to subsampling from the CTMC at every ∆t.

Our goal is to show the dependence of the RER to various quantities of interest
that are usually computed for short-time error analysis. We will see that the com-
mutator, the order of the local error, and other quantities make an appearance in
the asymptotic results we develop. We limit our discussion to the case that ∆t is
in (0, 1], as this is the interval where splitting schemes are most accurate. We also
assume throughout this section that L is a bounded operator. We will often refer
to the splittings previously discussed, Lie and Strang, which define discrete processes
with transition probabilities

(4.2)
QLie

∆t (σ, σ
′) = eL1∆teL2∆tδσ′(σ),

QStrang
∆t (σ, σ′) = eL1∆t/2eL2∆teL1∆t/2δσ′(σ).
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Here L is the original generator and L = L1 + L2 with L1, L2 assumed bounded as
operators. For instance, in the case of parallel KMC, L1, L2 will be imposed by the
domain decomposition of the lattice; see Figure 1.

Before we move on to the analysis, we need to address a last issue. As mentioned
before, our main tool will be asymptotic expansions of the RER with respect to ∆t.
We will then use those to do comparisons for different ∆t, so it is important to first
account for the scaling of RER with respect to that parameter. The situation can be
best illustrated by the worst-case scenario, when the order of the local error between
two Markov semigroups, QA∆t, Q

B
∆t, is equal to one.

Lemma 4.1. Let LA, LB be bounded generators of Markov processes, LA 6= LB,
with corresponding transition probabilities QA∆t, Q

B
∆t . Then,

H(QB∆t|QA∆t) = O(∆t).

Proof. The proof follows the ideas in Theorem 5.2. The argument is provided in
the supplementary material (104727SupMat.pdf [local/web 126KB]).

Remark 4.2. Using Lemma 4.1, we can readily see that given an operator splitting
scheme Q∆t that approximates the exact P∆t, we expect a scaling at least of the type
H(Q∆t|P∆t) = O(∆t). To correct for the ∆t scaling, we will instead work with a
∆t-normalized RER. That is, we redefine the RER as

H(Q∆t|P∆t):=
1

∆t

∑
σ,σ′

µQ(σ)Q∆t(σ, σ
′) log

(
Q∆t(σ, σ

′)

P∆t(σ, σ′)

)
.(4.3)

We wish to use the RER (equation (4.3)) to study the long-time loss of information
between Q∆t and P∆t. However, in the case of parallel KMC, those are difficult to
calculate explicitly, hence we turn to asymptotic expansions instead. We will see
that the terms in those expansions depend on the transition rates and, under suitable
ergodic assumptions, can be estimated during the simulation.

5. RER analysis for parallel KMC. We will now study an example from a
class of interacting particle systems, limiting our discussion to the Lie and Strang
splittings. Given two states σ, σ′ ∈ S and x lattice site, σ(x) ∈ {0, 1}, we have that
the transition rates q are

q(σ, σ′) =

{
q(σ, σx) > 0, σ′ = σx,

0 else.
(5.1)

The rates in (5.1) provide a particular example of an adsorption/desorption system.
Other mechanisms can be incorporated into (5.1), such as diffusion or reactions with
multiple components or with particles that have many degrees of freedom [2].

Given a lattice Λ with N sites, we are interested in simulating the process σt =
{σt(x) : x ∈ Λ} in parallel with an operator splitting method, so we apply the
ideas in section 2.2 to that end. We first decompose the lattice into nonoverlapping
sublattices (see Figure 1) and this induces a decomposition of the generator into
new generators L1, L2 as in (2.18). Then, for any T > 0, the adsorption/desorption
system can be simulated in [0, T ] using the parallel KMC algorithm. From the short-
time error analysis, we can control the error by computing the commutator, C(·, ·),
and the order of the local error that corresponds to the operator splitting scheme
we use. For example, we know that for the Lie splitting that order is p = 2 and
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C(σ, σ′) = [L1, L2]δσ′(σ)/2 (see Lemma 2.2 and (2.12)). By using the properties of
the generators L1, L2 along with our assumption in (5.1), we can show that

(5.2)

C(σ, σ′) = [L1, L2]δσ′(σ)/2 =
1

2

∑
x,y∈Λ

f1(x, y;σ)δσ′(σx,y)− f2(x, y;σ)δσ′(σx)

− 1

2

∑
x,y∈Λ

f3(x, y;σ)δσ′(σy),

where f1, f2, and f3 only depend on the transition rates q. We recall here that σx,y

stands for the resulting state σ′ after a spin-flip of an initial state σ at lattice sites
x, y, x 6= y. A full description of the above formula along with a proof can be found
in the supplementary material (104727SupMat.pdf [local/web 126KB]).

Remark 5.1. Formula (5.2) for the Lie commutator has two important properties.
First, it is computable for any pair (σ, σ′) ∈ S×S as it only depends on the transition
rates q. Second, it is surely equal to zero if σ′ 6= σx,y and σ′ 6= σx for all x, y ∈ Λ, x 6=
y, due to the δσ′ appearing in the different sums. We will also see that the sum in
(5.2) needs to be evaluated only for the neighboring lattice sites x, y that are not both
in the same group. For instance, in Figure 1, we would only need to evaluate the sum
over the green boundary regions of every sublattice, which makes the computation
of the commutator much simpler (see Remark 6.1 for a complexity analysis). Those
properties hold for commutators of other operator splitting schemes too; see [4] and
section 8.

To study the asymptotic behavior of the RER, we will need to quantify the de-
pendence of various combinations of P∆t and Q∆t to ∆t. To this end, we use the
following facts, both of which stem from Lemma 2.2:

P∆t(σ, σ
′)−Q∆t(σ, σ

′) = C(σ, σ′)∆tp + o(∆tp),(5.3)

P∆t(σ, σ
′) +Q∆t(σ, σ

′) = 2δσ′(σ) + 2q(σ, σ′)∆t+ o(∆t)(5.4)

= 2Q∆t(σ, σ
′) + C(σ, σ′)∆tp + o(∆tp).(5.5)

We are now able to write an asymptotic result for RER for the Lie and Strang operator
splittings in parallel KMC under the assumption in relation (5.1).

Theorem 5.2. Let ∆t ∈ (0, 1) and σn∆t on the lattice Λ with transition probabil-
ity P∆t(σ, σ

′) = eL∆tδσ′(σ) for σ, σ′ ∈ S. Then, let L1 + L2 be a splitting of L based
on a decomposition of the lattice Λ. Assuming that property (5.1) holds for the rates,
if there exists a state σ ∈ S and lattice sites distinct x, y such that the Lie commutator
C(σ, σx,y) 6= 0, we have that

H(QLie
∆t |P∆t) = O(∆t1) (Lie).(5.6)

Similarly, if there exists a state σ ∈ S and distinct lattice sites x, y, z such that
C(σ, σx,y,z) 6= 0,

H(QStrang
∆t |P∆t) = O(∆t2) (Strang).(5.7)

Proof. We will first show the result for the Lie case and then note the differences
in the proof for the Strang case. Thus, we denote QLie

∆t by Q∆t and µLie by µQ and
consider a ∆t ∈ (0, 1). As we wish to construct an asymptotic expansion for the RER
(equation ((4.3)), we first need to expand the logarithm. Given a positive x and by
the definition of tanh−1,
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log(x) = 2atanh

(
x− 1

x+ 1

)
= 2

∞∑
k=0

1

2k + 1

(
x− 1

x+ 1

)2k+1

.(5.8)

This expansion of the logarithm converges for every x > 0, as can be seen by applying
the root convergence test. Thus, expanding the logarithm part of the RER, we get

∆t ·H(Q∆t|P∆t) =− 2
∑
σ,σ′

µQ(σ)Q∆t(σ, σ
′)
P∆t(σ, σ

′)−Q∆t(σ, σ
′)

Q∆t(σ, σ′) + P∆t(σ, σ′)
(5.9)

+ 2
∑
σ,σ′

µQ(σ)J(∆t;σ, σ′),

J(∆t;σ, σ′) := Q∆t(σ, σ
′)

∞∑
k=1

1

2k + 1

(
Q∆t(σ, σ

′)− P∆t(σ, σ
′)

Q∆t(σ, σ′) + P∆t(σ, σ′)

)2k+1

.(5.10)

We will study the asymptotic behavior of both parts of the RER in (5.9). First,
applying (5.4) to the denominator of the fraction in (5.9) and carrying out the sim-
plifications, we have

(5.11)

∆t ·H(Q∆t|P∆t) =− 2
∑
σ,σ′

µQ(σ) (P∆t(σ, σ
′)−Q∆t(σ, σ

′) +G(∆t;σ, σ′))

+ 2
∑
σ,σ′

µQ(σ)J(∆t;σ, σ′).

Now, since Q∆t, P∆t are transition probabilities,
∑
σ′∈S P∆t(σ, σ

′) − Q∆t(σ, σ
′) = 0

for all σ ∈ S, and thus the corresponding part of (5.11) is zero. To progress, we need
to study the dependence on ∆t of J,G. First, for G in (5.11),

G(∆t;σ, σ′) =
(P∆t(σ, σ

′)−Q∆t(σ, σ
′))C(σ, σ′)∆t2

(2Q∆t(σ, σ′) + ∆t2C(σ, σ′) + o(∆t2))
+ o(∆t2).(5.12)

To expose the dependence of the numerator of (5.12) to ∆t, we use (5.3) to get

G(∆t;σ, σ′) =
(C(σ, σ′))2

2Q∆t(σ, σ′) + ∆t2C(σ, σ′) + o(∆t2)
∆t4 + o(∆t2).(5.13)

We wish to show that G(∆t;σ, σ′) = O(∆t2). From the explicit form of the com-
mutator in (5.2) and Remark 5.1, we can see that we need to study G only in the
cases that σ′ = σx or σ′ = σx,y, given a state σ and lattice sites x, y, since other-
wise C(σ, σ′) = 0. Let us consider σ′ = σx,y. Since the order of the local error is
equal to two, from expansion (2.11) and the fact that LQ[δσx,y ](σ) = L[δσx,y ](σ) and
L[δσx,y ] = q(σ, σx,y) = 0 (see the property in (5.1)), we have

Q∆t(σ, σ
x,y) =

∆t2

2
L2
Q[δσ′ ](σ) + o(∆t2).(5.14)

Thus, applying (5.14) to the denominator of (5.13),

G(∆t;σ, σx,y) =
(C(σ, σx,y))2

∆t2 · (L2
Q[δσx,y ](σ) + C(σ, σx,y)) + o(∆t2)

∆t4 + o(∆t2)

=
(C(σ, σx,y))2

L2
Q[δσx,y ](σ) + C(σ, σx,y)

∆t2 + o(∆t2).(5.15)
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By similar calculations, we can show that G(σ, σx) = O(∆t3), if C(σ, σx) 6= 0 for that
x ∈ Λ. Regardless, this would be a lower order, since ∆t < 1. Thus, G(∆t;σ, σ′) is
indeed of order ∆t2. Next, we will account for J(∆t;σ, σ′). If σ′ = σx,y, then

J(∆t;σ, σx,y) = Q∆t(σ, σ
x,y)

∞∑
k=1

1

2k + 1

(
Q∆t(σ, σ

x,y)− P∆t(σ, σ
x,y)

Q∆t(σ, σx,y) + P∆t(σ, σx,y)

)2k+1

.(5.16)

Because Q∆t(σ, σ
x,y) = O(∆t2) and Q∆t(σ, σ

x,y)± P∆t(σ, σ
x,y) = O(∆t2), we get

J(∆t;σ, σx,y) = O(∆t2),

since, for σ′ = σx, J(∆t;σ, σx) = O(∆t4) and this is a lower order when ∆t < 1.
Therefore, H(Q∆t|P∆t) = O(∆t1). Note that all of the terms of the series in (5.16)
contribute a term of order ∆t2, so the coefficient of ∆t2 in the asymptotic expansion
of the RER will be a result of the summation of all those terms.

Finally, we discuss the differences in our argument for the proof of the Strang
case. First, the order of the local error for Strang is p = 3, so every time we use
formula (5.3) in the proof, we would introduce a term of order ∆t3 instead of ∆t2.
Then, using an expression for C(·, ·) similar to (5.2) but for the Strang case, we would
show that

J(∆t;σ, σx,y,z) = O(∆t3) = G(∆t;σ, σx,y,z)

for x, y, z ∈ Λ and x 6= y 6= z. This would then give the result for Strang.

5.1. Building biased a posteriori estimators for the RER. Theorem 5.2
shows that the long-time accuracy with respect to the RER of the two operator
spllitting schemes, Lie and Strang, scales with ∆t in the same way the global error
does. However, it also exposes the first terms in the asymptotic expansion of the RER
for Lie and Strang. Essentially,

H(QLie
∆t |P∆t) = A∆t+ o(∆t),(5.17)

H(QStrang
∆t |P∆t) = B∆t2 + o(∆t2),(5.18)

where A,B are the corresponding highest-order RER coefficients. Those have an
explicit form that depends on the system one wishes to simulate and the commuta-
tor C(σ, σ′) corresponding to the scheme. We focus on the case of the Lie operator
splitting, though similar comments can also be made for Strang. For systems with
transition rates satisfying the property in (5.1), the highest-order coefficient A ap-
pearing in (5.17) has the form

A =
∑
σ

µLie(σ)
∑
x,y∈Λ

CLie(σ, σx,y)FLie(σ, σx,y),(5.19)

where CLie is the Lie commutator (see (2.12)) and FLie is a quantity that depends on
the splitting (see (A.1) and (A.3) in the appendix for examples on how this F can look
for different splittings). Both C and F can be expressed in terms of the transition rates
of the process q, i.e., they are computable for any state σ and x, y ∈ Λ. Therefore,
A in (5.19) can be estimated via an ergodic average when simulating with the Lie
scheme and hence, for small ∆t, H(QLie

∆t |P∆t) ' A∆t.
At first glance, computing coefficient (5.19) involves work that scales with the size

of the lattice. However, it was shown in Lemma 5.15 of [4] that the commutator only
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depends on the boundary regions between sublattices (see Figure 1). We will continue
this discussion in section 6, where we consider an adsorption-desorption system. We
will also see that, apart from a comparison of the schemes in terms of the long-time
loss of information, the estimators of RER can also be of use in tuning parameters of
the scheme (∆t, domain decomposition, etc.). We will then consider the behavior of
the RER when simulating other systems in section 8.

6. Error versus communication and time-step selection. In this section,
we explore the balance between numerical error and processor communication in par-
allel KMC, in the context of a specific example. Let us assume a bounded 2D lattice,
Λ ⊂ Z2 with 100×100 sites. At each site x, we have a spin variable, σ(x) ∈ Σ = {0, 1},
with σ(x) = 0 denoting an empty site and σ(x) = 1 an occupied one. Our model in
this case is going to be an adsorption-desorption one, although the analysis would sim-
ilarly apply for other mechanisms (diffusions, reactions, etc.; see [2] for more details).
The transition rates we will use correspond to spin-flip Arrhenius dynamics. Given a
lattice site x, we may also define the nearest-neighbor set Ωx = {z ∈ Λ : |z − x| = 1}.
The transitions rates are then

q(σ, σx) = q(x, σ) = c1(1− σ(x)) + c2σ(x)e−βU(x),(6.1)

U(x) = J0

∑
y∈Ωx

σ(y) + h,(6.2)

where c1, c2,−β, J0, and h are constants that can be tuned to generate different dy-
namics. We recall that σx denotes the result of a spin-flip at lattice position x if we
start from state σ. Note that the transition rates (6.1) have the property (5.1). When
considering a jump from σ to σx, q only depends in the spin values of the sites close to
x (through U(x)). Since transitions are localized, we can thus employ a geometrical
decomposition of the lattice, as described in section 2.1, and simulate the system in
parallel. To accomplish this, we used Sandia Labs’ SPPARKS code, a kinetic Monte
Carlo simulator [3].

From Table 1 and Remark 6.1, we can see that the cost of computing quantities
that depend on the commutator scales as O(N) for an N ×N lattice. As the highest-
order coefficients of the RER also depend on the commutator (see section 5.1), those
also scale as O(N). We can take advantage of the knowledge of the scaling by defining
a per-particle RER (pp-RER). That is,

Hpp(Q∆t|P∆t):=
1

N
H(Q∆t|P∆t).(6.3)

This way, setting a tolerance for the pp-RER will have the same meaning across
different system sizes. We confirmed that O(N) is the right scaling of the pp-
RER with respect to system size via simulation, as we saw that for increasing N ,
Hpp(Q∆t|P∆t) ' o(1).

To estimate the top-order coefficients of the pp-RER expansion, we simulated the
system until convergence to the stationary distribution was established. After that,
every sample simulated by SPPARKS [3] was used to calculate the estimates. Note
that, in this case, we show an overestimate of B, so results for the Strang splitting will
be even better than the ones presented in Figure 3. It is possible to get an estimator
that converges to the exact value of B by adding all of the positive terms in L3

S [δ′σ](σ)
to the denominator of (A.5). Figure 3 illustrates the difference in long-time accuracy
between the two splittings. Since this is a logarithmic plot, most of the difference is
made by Strang having a different order than Lie.
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10-2 10-1 100

∆t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
ER

A
N

·∆t

B
N

·∆t2

Lie
Strang

Fig. 3. Logarithmic scale: Comparison between ∆t and the estimate of the pp-RER for Lie
and Strang. Estimates for the constants A,B come from the simulation of a 2D Ising model on a
100 × 100 lattice with final time T = 1000. Simulation was done in parallel with SPPARKS.

Table 1
Upper bounds (normalized by lattice size) on the number of lattice sites we need to evaluate the

transition rates at in order to calculate the commutator for each operator splitting, assuming that
a checkerboard decomposition into m2 sublattices of an N ×N lattice is used, as in Figure 1. The
commutator also encodes the cost of communication between the processes. As N grows, the cost
of communication is smaller, as the processes spend more time simulating on the sublattices than
updating each others’ boundaries.

Lie Strang
Upper bound of the commutator cost
(normalized by number of sites, N2) 2(m+ 1)/N 6(m+ 1)/N

Remark 6.1 (on the efficiency of computing the highest-order coefficients of the
expansion of the RER for the Lie and Strang operator splittings.). In the case of a
checkerboard decomposition of the lattice (see Figure 1), we can calculate in exactly
how many sites we need to evaluate the rates in order to calculate the commutator.
However, for our purposes, upper bounds will be more appropriate. Table 1 offers a
comparison of those bounds when we decompose an N×N lattice into m2 sublattices,
assuming nearest neighbor interactions. Notice that the cost is larger for Strang due
to the complexity of the corresponding commutator.

On a more practical note, a user of a splitting scheme may instead like to see
the flipped relationship. That is, given a fixed tolerance, what is the maximum time
window during which the simulation can run asynchronously? If we interpret tolerance
as a fixed value of Hpp(Q∆t|P∆t) during the simulation, then the relationship with
∆t is the one in Figure 4. There we can see that if our error tolerance with respect to
the pp-RER is 10−3, then any ∆t smaller than 0.7 works for the Strang splitting. To
get within the same tolerance with Lie, ∆t has to be less than 0.02, a substantially
smaller step-size for parallel computations. As is expected, a smaller step-size comes
with larger communication cost and thus a longer computation for the same tolerance.
This can be seen in Figure 5.

Remark 6.2. Figures 4 and 5 illustrate the very practical consequences of the the-
ory. Interest in highly accurate splitting schemes in PL-KMC stems from a tolerance-
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105 104 103

Tolerance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

∆
t

Lie
Strang

Fig. 4. Comparison between tolerance and ∆t. The difference in order of the pp-RER between
the two splittings allows for a larger splitting time step ∆t given a fixed tolerance. This is similar
to the behavior of the error in [4], although the RER allows us to make this statement for T � 1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
% of total time devoted to communication between processes

Lie, ∆t=0.02

Strang, ∆t=0.7

Lie, ∆t=0.02

Strang, ∆t=0.7

N=500
N=100

Fig. 5. Percentage of time each scheme devotes to communication in a fixed time interval,
[0, T ], for a square N × N lattice when simulating an Ising-type system, using four processes and
for T = 3000. Note that for the ∆t considered, the pp-RER tolerance is 10−3 for both schemes.
Due to the considerably smaller step size of the Lie scheme, a larger chunk of time is devoted to
communication. This is more apparent in the case of a moderately small lattice, N = 100, where
the time spent updating the other processes is over 60% of total time. Communication cost is more
severe when N is smaller. By Remark 6.1, as N grows, communication should take less of the total
time, as the processes spent more time simulating than updating their boundaries.

versus-communication point of view. A user of such a scheme would like for it to be
as accurate as possible; therefore the step size, ∆t, should be relatively small. How-
ever, for the scheme to be efficient, ∆t should be large enough for every processor
to have a substantial amount of work to do before communications are in order. A
good balance can be reached in between and a scheme that is more accurate allows
for a larger ∆t while holding the same error tolerance. Given that the RER captures
long-time behavior, this is an important comparison between the schemes.

6.1. The pp-RER as an efficient diagnostic quantity for parallel KMC.
The discussion above about the pp-RER, (6.3), suggests the use of these estimates
as efficient diagnostic quantities for comparing schemes. As discussed in the previous
section, we can infer the scaling of the top-order coefficient of the RER by the prop-
erties of the commutator. Consequently, we can “normalize” the RER (as in (6.3)) by
that scaling to derive a similarity measure that does not depend on system size. This
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is significant as it allows practitioners to compare schemes and tune parameters (∆t,
domain decomposition, etc.) on a system of smaller size and thus avoid further slow-
ing down of the target simulation, which is crucial for complicated systems. Overall,
our approach can be viewed as a diagnostic tool that allows us to compare different
parallelization schemes based on operator splitting.

7. Some connections with model selection and information criteria.
The interacting particle system application considered in section 6 allows us to look
at the RER via a statistical lens. The goal is to compare two models, Q1

∆t, Q
2
∆t,

of the actual distribution P∆t by utilizing simulated data. From this standpoint,
our methodology is nothing more than model selection. There is an abundance of
literature toward tackling the comparison of different models, given a sufficiently large
amount of data. A prominent example is the use of information criteria in the model
selection literature, like Akaike [22] and Bayesian [23]. Those provide estimates for
the information lost compared to a given data set by using one approximate model
instead of another, without requiring knowledge of the true model.

The approach in this work is very similar in nature. As stated before, motivated
by Theorem 5.2, we can express the RER in each case as

H(Qi∆t|P∆t) = Ai∆t
pi + o(∆tpi), pi ≥ 1, i ∈ {1, 2}.

For instance, in the case of the Lie splitting, A1 = A as defined in (A.1), p1 = 2, and
for Strang A2 = B, p2 = 3, as defined in (A.3). Given simulated data and for a small
fixed ∆t, we can estimate the coefficients Ai. Comparison of the schemes can now be
done through

H(Q1
∆t|P∆t)−H(Q2

∆t|P∆t) = A1∆tp1 −A2∆tp2 + o
(

∆tmin(p1,p2)
)
.(7.1)

The difference A1∆tp1 − A2∆tp2 shares the properties of the information criteria
previously mentioned while also introducing some new ones:

1. It is a computationally tractable quantity.
2. It compares the schemes in terms of long-time information loss (through
p1, p2).

3. It takes into account communication cost of each scheme (through A1, A2 and
associated commutators).

Thus, as an information criterion, RER differences like in (7.1) offer a different per-
spective through which to pick a splitting scheme over another. A new element in our
approach, compared to the earlier vast literature on information criteria, is the use
of RER instead of the standard relative entropy. Using RER allows us to compare
stochastic dynamics models and in a data context, correlated time series.

8. Generalizations, connectivity, and relative entropy rate. Up to this
point, we have analyzed the RER with respect to the leading order in ∆t for the case
of a stochastic particle system (see Theorem 5.2). In this section, we study the RER
in a more general setting and illustrate that it captures more details about the system
and the scheme used than one would expect. We will also see how the order of the
RER can change depending on those details, resulting in some cases in schemes of
higher accuracy.

Definition 8.1 (restriction of a generator). Let us have a set A with A ⊂ S×S
and L be an infinitesimal generator of a Markov process with associated transition
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rates q. Then, the restriction L|A of L is defined as

(8.1) L|A[f ](σ) =
∑
σ′∈S

qA(σ, σ′) (f(σ′)− f(σ)) , σ ∈ S,

where qA(σ, σ′) = q(σ, σ′) · χA(σ, σ′), χA is the characteristic function of set A, and
f is a continuous and bounded function on the state space S.

We assume that the operator L is split into L1, L2 and that both are restrictions
of L. Note that Definition 8.1 is general enough to include the splittings used in
PL-KMC. For example, the generators L1, L2 in (2.18) are precisely of that form,
with the groups Gi playing the role of the sets “A.” From another point of view,
restrictions respect the original process in that the transition rates that correspond
to L|A are either the same as the old ones or zero.

Before we can construct an asymptotic estimate for the RER, we need to first
introduce some of the tools we will use. Let σ, σ′ be states of a CTMC on a countable
state space and let q be the associated transition rates. Then, a path ~z = (z0, . . . , zn)
from σ to σ′ is a finite sequence of distinct states zi such that z0 = σ, zn = σ′, and∏n
i=0 q(zi, zi+1) > 0. The length of a path will be denoted by |~z| = |(z0, . . . , zn)| = n

and we will use Path(σ → σ′) for the set of all paths from σ to σ′. Thus, we are now
able to define a distance between states by looking at the length of the shortest path
that connects them.

Definition 8.2 (distance between states). Let q be the transition rates of a
CTMP over a countable state space S. Then, let σ, σ′ ∈ S, σ 6= σ′. The distance dq
between the two states is defined as

dq(σ, σ
′) := min {|~z| : ~z ∈ Path(σ → σ′)} .(8.2)

In the case that the two states are disconnected, i.e., Path(σ → σ′) = ∅, then d(σ, σ′) =
+∞. Given those distances, one can also define the diameter of the space as

diam(S) = max
(σ,σ′)∈S×S

{d(σ, σ′)}.

This notion of distance comes from graph theory and is known as the geodesic
distance. When there is no ambiguity concerning the transition rates used, we will
drop the q from the notation, using d instead of dq. d is not a metric in the classical
sense, since it does not have to be symmetric, that is, d(σ, σ′) 6= d(σ′, σ) in general.
However, it satisfies the triangle inequality. In addition, the distances depend only on
the transition rates, i.e., they are time independent. We will refer to those distances
as the connectivity of the state space for the Markov chain with transition rates q.
The importance of using such a distance can be seen in the following result concerning
compositions of the infinitesimal generator L.

Lemma 8.3. Let L be an infinitesimal generator of a Markov process, with corre-
sponding transition rates q, and let σ′ be some state of the process. Then,

{σ : Ln[δσ′ ](σ) 6= 0} ⊆ {σ : d(σ, σ′) ≤ n} = Bn(σ′).

Proof. The proof is by induction. The argument can be found in supplementary
material (104727SupMat.pdf [local/web 126KB]).

In other words, for a fixed state σ′, if d(σ, σ′) > n, then Ln[δ′σ](σ) = 0. The set
Bn(σ′) contains all states that are connected with σ′ with n − 2 or less in between
states. We will also use the notation Sn(σ′) := {σ : d(σ, σ′) = n}.
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Since our primary interest is in studying approximations based on splitting our
generator L to L1, L2, it makes sense to have an extension of the previous result
to compositions of L1, L2. The following lemma is the generalization of Lemma 8.3
to compositions of restrictions. We will use the notation Lk|A to denote the kth
composition of generator L, where, instead of the original transition rates, we use qA.

Lemma 8.4. Let us have the state space S and S × S = A ∪B,A ∩B = ∅, along
with generators L1 = L|A, L2 = L|B. We fix σ′ ∈ S and k,m ∈ N. Then,{

σ : Lk1 [Lm2 [δσ′ ]] (σ) 6= 0
}
⊆ {σ : d(σ, σ′) ≤ k +m}.

Proof. The proof is an induction argument similar to that of Lemma 8.3; see
supplementary materials (104727SupMat.pdf [local/web 126KB]).

Lemma 8.4 can be simply extended to more complicated compositions by the use
of similar arguments. Thus, if every composition of L1, L2 is controlled in the sense
of Lemma 8.4, then it is not difficult to see that the same control holds for collections
of them of the same order, i.e., if we fix σ′ ∈ S and k ∈ N,

{σ : LkQ[δ′σ](σ)} ⊆ {σ : d(σ, σ′) < k}.(8.3)

We can use restrictions of generators as building blocks for splitting schemes.
A point often made in this work is the importance of the commutator in studying
those schemes. Thus, it makes sense to have a relation between connectivity and the
commutator.

Lemma 8.5 (support of the commutator). Let L be the generator of a Markov
process and L1, L2 restrictions of that generator. Let also ∆t > 0. Then, assume
Q∆t is an approximation of P∆t by using a splitting scheme of order p with associated
commutator C. Then, for fixed σ′ ∈ S,

{σ : C(σ, σ′) 6= 0} ⊆ {σ : d(σ, σ′) ≤ p}.

Proof. In Lemma 2.2, we defined the commutator as C(σ, σ′) = (Lp−LpQ)δσ′(σ).
From Lemma 8.3, we have that if d(σ, σ′) > p, then Lp[δ′σ](σ) = 0 and from (8.3),
LpQ[δ′σ](σ) = 0. This gives the result.

When the state space is finite, as in the case of stochastic particle systems on
finite lattices, then the commutator C is a matrix indexed by the different states.
An implication of Lemma 8.5 is that there is a reordering of the rows/columns that
turns C into a banded matrix. Regardless, we can now prove a general result for the
asymptotics of the RER.

Theorem 8.6. Consider ∆t ∈ (0, 1) and let P∆t(σ, σ
′) = eL∆tδσ′(σ), Q∆t(σ, σ

′)
be an approximation of P∆t based on a splitting scheme with L1, L2 restrictions of
the generator L and µQ the stationary measure corresponding to Q∆t. Then, if the

splitting scheme is of order p, we define the bounded diameter of the state space as k̂,

k̂ = min{diam(S), p} = min{max
σ,σ′
{d(σ, σ′)}, p}.

Then, if C(σ, σ′) 6= 0 for at least one pair σ, σ′ ∈ S such that d(σ, σ′) = k̂, we have
that

H(Q∆t|P∆t) = O(∆t2p−(k̂+1)).
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Proof. The proof of this theorem is the generalization of the argument given for
Theorem 5.2. Picking up from formula (5.13),

J(∆t;σ, σ′) =
(C(σ, σ′))2

2Q∆t(σ, σ′) + ∆tpC(σ, σ′) + o(∆tp)
∆t2p + o(∆t2p−k̂).(8.4)

Our goal is to show that J(∆t;σ, σ′) = O(∆t2p−k̂) for some (σ, σ′) and that this is

the highest order attainable. Next, let us have (σ, σ′) ∈ S × S such that d(σ, σ′) = k̂.
Then, from (2.11) and (8.3), we have that

Q∆t(σ, σ
′) =

∞∑
k=k̂

LkQ[δσ′ ](σ)

k!
∆tk = O(∆tk̂), ∆t ∈ (0, 1].(8.5)

Thus from (8.4) and (8.5), we can expose the first term of the asymptotic expansion
of F as

J(∆t;σ, σ′) =


(C(σ, σ′))2

2Lk̂Q[δσ′ ](σ)/k!
∆t2p−k̂ + o(∆t2p−k̂), k̂ < p,

(C(σ, σ′))2

2Lk̂Q[δσ′ ](σ)/k! + C(σ, σ′)
∆tp + o(∆tp), k̂ = p.

(8.6)

Next, we need to address the contribution of the rest of the expansion used (see
the proof of Theorem 5.2), that is,

G(∆t;σ, σ′) = Q∆t(σ, σ
′)

∞∑
k=1

1

2k + 1

(
Q∆t(σ, σ

′)− P∆t(σ, σ
′)

Q∆t(σ, σ′) + P∆t(σ, σ′)

)2k+1

.

If k̂ < p, then G(∆t;σ, σ′) = O(∆t3p−2k̂), which are lower-order terms given that

∆t ≤ 1. However, if k̂ = p, G(∆t;σ, σ′) = O(∆tp) and in fact every term of the series
in G is of that order.

Finally, H(Q∆t|P∆t) can never have higher order than p−1, as that would require
(σ, σ′) such that d(σ, σ′) > p+ 1 and then C(σ, σ′) = 0 (from Lemma 8.5).

The assumption on the commutator in Theorem 8.6 is simple to check for parallel
KMC, as we can write down the commutator C(σ, σ′) explicitly. For example, for Lie,
C(σ, σ′) is given by (5.2), so checking the assumption is just a matter of calculation.

Additionally, to find the bounded diameter k̂ = min{diam(S), p}, it is sufficient to
have lower bounds for the diameter, diam(S), as the order of the local error of the
scheme, p, will typically be much smaller. Example 8.1 shows a case where p is close
to diam(S) and the implications this has for the RER.

8.1. Markov chain example. In order to illustrate the connectivity-RER re-
lation, we are studying a simple example where we can compute the RER and all
related quantities explicitly, either by hand or by any symbolic algebra system. All
calculations of the RER in this example are not from sampling but by using definition
(3.4).

We study the case of a Markov process with transition rate matrix, Q and
diam(S) = 2. We consider a positive ∆t, ∆t < 1, and

Q =

 −3 1 2
3 −4 1
1 0 −1

 .D
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Given this, we can calculate the transition probability matrix of the Markov chain as
the matrix exponential of Q, P∆t(σ, σ

′) = exp(∆tQ)δσ′(σ). Our system has diameter
equal to two since Q3,2 = 0 but Q3,1 · Q1,2 6= 0. We can construct approximations
of P∆t by splitting Q into components A,B with Q = A + B, similarly to how we
expressed the generator L as L1 + L2. One way to do this is

A =

 −3 1 2
3 −4 1
0 0 0

 , B =

 0 0 0
0 0 0
1 0 −1

 .

Thus, one approximation of exp(Q∆t) could be exp(A∆t) exp(B∆t), which corre-
sponds to the Lie splitting. From Theorem 8.6, since diam(S) = p = 2, we expect
H(QLie

∆t |P∆t) = O(∆t1). This is indeed the case, as

H(QLie
∆t |P∆t) ' 0.124∆t− 0.0566∆t2 +O

(
∆t3

)
.

The use of ' comes from a truncation of the coefficients to three significant digits.
We can work similarly with the Strang splitting, now using exp(A∆t/2) exp(B∆t) ·
exp(A∆t/2) as the approximation to P∆t. The local order of the Strang splitting is p =

3, so we expect that H(QStrang
∆t |P∆t) = O(∆t2·3−3) = O(∆t3) (see Theorem 8.6). This

can be readily demonstrated by a calculation of the RER, followed by the derivation
of its asymptotic expansion:

H(QStrang
∆t |P∆t) ' 0.0279∆t3 + 0.000672∆t4 +O

(
∆t5

)
.

9. Quantifying information loss in transient regimes. In this last section,
we consider the case where we wish to study the performance of the operator splitting
scheme in a transient regime, before convergence to the stationary distribution takes
place. Note that in the proofs of Theorems 5.2 and 8.6, we derived the asymptotic
expressions of the various quantities without referring to the stationary measure µQ.
Therefore those results do not depend on the choice of the sampling measure. That
is, with the assumptions of Theorem 8.6 and ν a probability distribution on the state
space SM such that ν(σ) > 0 for all states σ, then

Hν(Q∆t|P∆t) =
∑
σ∈SM

ν(σ)Q∆t(σ0, σ1)
Q∆t(σ0, σ1)

P∆t(σ0, σ1)
= O(∆t2p−k̂).(9.1)

Therefore, the order of the RER is independent of the sampling measure. As a result,
we gain Theorem 9.1, an extension of Theorem 8.6 to transient time regimes.

Theorem 9.1. With the assumptions of Theorem 8.6 for the RER, we have that
for any T > 0

R(Q0:T |P0:T )

T
=
R(µ0|ν0)

T
+O

(
∆t2p−k̂

)
.(9.2)

Theorem 9.1 is implied by the decomposition of the relative entropy in terms of
rates that depend on νi (first discussed in section 3). If M is a positive integer, ∆t is
the scheme’s time step, and T = M∆t, then

R(Q0:T |P0:T ) = R(µ0|ν0) +

M∑
i=1

Hνi(Q∆t|P∆t).(9.3)D
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Proof of Theorem 9.1. From (9.1) we have that the order of the RER does not
depend on the sampling measure ν, as long as ν(σ) > 0 for all σ. Therefore,

Hνi(Q∆t|P∆t) = O(∆t2p−k̂) for i = 1, . . . ,M . This, combined with (9.3), implies
the result.

Therefore, our results about the RER are applicable for parallel KMC even for
practitioners that are interested in simulating the dynamics in the transient regime.

Remark 9.2 (RER versus pathwise relative entropy). In section 3, we saw that,
in the stationary regime, we can relate the pathwise relative entropy with the RER
via

R(Q0:T |P0:T ) = TH(Q∆t|P∆t) +R(Q∆t|P∆t).

In this section, we connected the RER with the relative entropy for transient regimes
by using relation (9.3). Ultimately, those relations motivate the use of the RER as
an information criterion in place of the pathwise relative entropy, but there are other
advantages too:

1. The RER does not depend on the length of the simulated path. Additionally,
it can be estimated from a single path, while the pathwise relative entropy
requires several.

2. For large T , the relative entropy and RER encapsulate the same amount of
information about the similarity of Q∆t and P∆t.

10. Conclusions. We introduced the RER, i.e., path-space relative entropy per
unit time, as a means to quantify the long-time accuracy of splitting schemes for
stochastic dynamics and in particular parallel KMC algorithms. We demonstrated,
using a posterirori error expansions, the dependence of RER on the following elements:
the local error analysis of the splitting schemes captured by the operator commutators;
the local error order p and the splitting time step ∆t, which in the case of Parallel
KMC controls the asynchrony between processors; and the diameter of the graph
associated with the approximated Markov jump process.

Based on this analysis, we showed that RER defines a computable path-space
information criterion that allows us to compare, select, and design different splitting
schemes, taking into account both error tolerance (e.g., accuracy of the scheme) and
practical concerns such as asynchrony and processor communication cost. It is also
appropriate to think of the RER as a diagnostic quantity that can be estimated
on systems of smaller size and consequently be used to compare schemes and tune
parameters without slowing down the target simulation.

Finally we note that numerical analysis of stochastic systems is typically con-
cerned with controlling the weak error for observable functions φ,

sup
0≤n≤N

|EP0:T
[φ(X(n∆t))]− EQ0:T

[φ(Xn)]| ,(10.1)

where Xn represents the approximate chain and X(n∆t) the ∆t-skeleton chain of the
exact process, T = M ·∆t. However, our results measure the information loss on path
space between the approximate chain and the ∆t-skeleton chain of the exact process,
using RER. Controlling RER also implies upper bounds for observables at long times,
using uncertainty quantification information inequalities developed in [15, 21]. We
also showed how those results can be extended to finite-time regimes.
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Appendix A. Coefficients of the relative entropy rate for Lie and Strang.
For the adsorption-desorption example considered in section 6 of the main text we
need to estimate the highest-order coefficients A,B for Lie and Strang, respectively.
To accomplish this, we have to collect all the coefficients of ∆t and ∆t2 that appear
in the expansion of RER in the proof of Theorem 5.2. The result is a summable series
for each coefficient. For Lie, we have

A = EµL(σ)

 ∑
x,y∈Λ

FL(σ, σx,y)

 =
∑
σ

µL(σ)
∑
x,y∈Λ

FL(σ, σx,y),

(A.1)

FL(σ, σ′) := CL(σ, σ′)ML(σ, σ′)− 2L2
L[δσ′ ](σ)(arctanh(ML(σ, σ′))−ML(σ, σ′)),

(A.2)

ML(σ, σ′) := CL(σ, σ′)/(L2
L[δσ′(σ)] + CL(σ, σ′)),

where we remind the reader that L2
L stands for all the coefficients of ∆t2/2 in the ex-

pansion of the Lie splitting and CL(σ, σ′) = 1/2[L1, L2][δσ′ ](σ) is the Lie commutator
term. Similarly, for the Strang case,

B = EµS(σ)

 ∑
x,y,z∈Λ

FS(σ, σx,y,z)

 =
∑
σ

µS(σ)
∑

x,y,z∈Λ

FS(σ, σx,y,z),

(A.3)

FS(σ, σ′) := CS(σ, σ′)MS(σ, σ′)− 2L3
S [δσ′ ](σ)(arctanh(MS(σ, σ′))−MS(σ, σ′)),

(A.4)

MS(σ, σ′) := CS(σ, σ′)/(L3
S [δσ′ ](σ) + CS(σ, σ′)).

(A.5)

Since both (A.1) and (A.3) are expected values, we can estimate them as ergodic
averages.
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