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How Biased Is Your Model? Concentration
Inequalities, Information and Model Bias

Konstantinos Gourgoulias, Markos A. Katsoulakis, Luc Rey-Bellet, and Jie Wang

Abstract— We derive tight and computable bounds on the
bias of statistical estimators, or more generally of quantities
of interest, when evaluated on a baseline model P rather
than on the typically unknown true model Q. Our proposed
method combines the scalable information inequality derived
by P. Dupuis, K.Chowdhary, the authors and their collabora-
tors together with classical concentration inequalities (such as
Bennett’s and Hoeffding-Azuma inequalities). Our bounds are
expressed in terms of the Kullback-Leibler divergence R(Q‖P )
of model Q with respect to P and the moment generating
function for the statistical estimator under P . Furthermore,
concentration inequalities, i.e. bounds on moment generating
functions, provide tight and computationally inexpensive model
bias bounds for quantities of interest. Finally, they allow us to
derive rigorous confidence bands for statistical estimators that
account for model bias and are valid for an arbitrary amount of
data.

Index Terms— Uncertainty quantification, information theory,
information bounds, model bias, model uncertainty, goal-oriented
divergence, concentration inequalities, Kullback-Leibler diver-
gence, statistical estimators.

I. INTRODUCTION

AN ESSENTIAL ingredient of predictive modeling is
the reliable calculation of specific statistics/quantities

of interest of the predictive distribution. Such statistics
are typically tied to the application domain, for instance,
moments, covariance, failure probabilities, extreme events,
arrival times, average velocity, energy and so on. Predictive
models can involve (a) statistical aspects or data collection,
and (b) physical/mathematical mechanisms with choices in
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complexity/resolution, some of them potentially computation-
ally intractable. Therefore, to improve the predictive capabili-
ties of models we face fundamental trade-offs between model
complexity, amount of available data, computational efficiency,
and model bias.

The main focus of the paper is the understanding and
control of model bias which often inevitably occurs in model
building and which is itself a measure of reliable predictions.
Our primary tool are information-theoretic Uncertainty Quan-
tification methods. Uncertainty Quantification (UQ) methods
address questions related to model selection, model sensitivity,
model reduction and misspecification, [1]–[3]. Sources of
uncertainty are broadly classified in two categories: aleatoric,
due to the inherent stochasticity of probabilistic models and the
limited availability of data, and epistemic, stemming from the
inability to accurately model all aspects of a complex system,
[2], [4], [5]. Model bias is closely related to epistemic uncer-
tainty, and probability metrics (Wasserstein, total variation)
and divergences (Kullback-Leibler, Rényi, χ2) [6] are impor-
tant tools to quantify uncertainty by comparing models.
Among the divergences, the Kullback-Leibler (KL) divergence
(also known as relative entropy) is widely used because of
its computational tractability. Specifically, KL-based methods
have been used successfully in variational inference and expec-
tation propagation [7], model selection [8], model reduction
(coarse-graining) [9]–[12], optimal experiment design, [13],
and UQ [14]–[17].

Information-theoretic methods for model building will typ-
ically induce bias for the various statistics and the quantities
of interest (QoIs) of the predictive distribution compared to
the “true” model–if known–or the available data. Managing
the corresponding trade-offs between a range of less biased
but more computationally expensive models naturally leads to
the following main question for the paper:

Can we provide performance guarantees for model bias in
models built via KL-based approximate inference, model

misspecification, or model selection methods?

In this paper we ultimately seek to understand how a
decrease in KL-divergence–associated with an increase in
modeling and/or computational effort–can guarantee a model
bias tolerance; and in addition, we seek the tightest possi-
ble control of model bias. Note that bounds on the model
bias of a QoI between two distributions P and Q can be
obtained, for example, in terms of their KL or χ2 divergences
using the classical Pinsker or Chapman-Robbins inequalities
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respectively, [6], [18]. Clearly a decrease in divergence will
improve bounds on the model bias. However, these classical
inequalities are typically non-tight and non-discriminating,
in the sense that they scale poorly with the size of data
sets, with the number of variables in high-dimensional models
(e.g. molecular systems), or with time in the context of
stochastic processes; we refer to Sections 2.2–2.3 in [19] for
a complete discussion, see also the example in Remark 21.

To tackle these challenges a class of new information
inequalities have been introduced in [4] and further developed
in [19], [20] by the authors and their collaborators (see
also [21]–[23]). The resulting bounds on model bias bounds
involve (a) the KL divergence R(Q�P )1 between a baseline
model P and an alternative models Q, and (b) the moment
generating function (MGF) for the QoI under the baseline
model P . This inequality inherits the asymmetry of R(Q�P ),
which in turn allows us to exchange the roles of P and Q,
depending on the context and/or availability of data from
the true model Q or samples from the baseline model P .
Considering a neighborhood of models around the baseline P ,
defined by the KL divergenceR(Q�P ), can be associated with
a specified error tolerance and is non-parametric in nature.
The crucial mathematical ingredient behind the inequality is
the Donsker-Varadhan variational principle [24, Appendix C.]
for the KL divergence, also known as the Gibbs variational
formula [25]. This variational representation actually implies
that the new inequalities are tight, i.e. they become an equality
for a suitable model Q within a KL divergence neighborhood
of the baseline model P . Furthermore, the dependence on
the MGF renders the bounds scalable and discriminating
for high-dimensional data sets and models, e.g. Markov
Random Fields, long-time dynamics of stochastic processes
and molecular models, as demonstrated recently in [19].
Also, broadly related methods in model misspecification
and sensitivity analysis in financial risk measurement and
queuing theory, using a robust optimization perspective, were
proposed recently in [23] and [22], we also refer to references
therein for other related work in operations research, finance
and macroeconomics. Finally we also mention a related
information theoretic approach developed in [26], [27] which
provides uncertainty quantification bounds for rare events
using a variational representation for the Rényi divergence
which generalizes the Gibbs variational principle.

The primary goal of this paper is to use these new the-
oretical advances to develop practical tools to estimate and
control model bias, and this raises new theoretical questions
and implementation challenges. In particular evaluating or
estimating MGFs can be very costly due to high variance
of the estimators thus requiring either a large amount of
data, see also Table 1, or multi-level/sequential Monte Carlo
methods [7], [28]–[30]. In this paper we rather pursue the
use of a variety of QoI-dependent concentration inequalities
[31]–[33] to bypass the evaluation or estimation of the MGF
and this leads to computable, tight bounds for model bias.
Concentration inequalities are a fundamental mathematical
tool in the study of rare events [34], model selection

1Also often denoted by D(Q�P ) in the literature.

methods [35], statistical mechanics [33, Section 8.4] and
random matrix theory [36]. Usually concentration inequalities
are used to bound tail events, i.e. to provide bounds on
the probability that a random variable deviates from typical
behavior. In this paper we use concentration inequalities for the
purpose of uncertainty quantification, specifically to control
model bias, by efficiently implementing the new information
inequalities developed in [4], [19], [20], while at the same
time maintaining and expanding their theoretical advantages.

The new inequalities proved in this paper— which we
call concentration/information inequalities—combine concen-
tration inequalities with the variational principles underlying
the bounds and lead to model bias bounds with the following
key features:

(a) Easily computable bounds in terms of simple properties
of the QoIs such as their mean, upper and lower bounds,
suitable bounds on their variance, and so on; that is,
without requiring the costly computation of MGFs.

(b) Scalability for QoIs that depend on large numbers of
data such as statistical estimators, or for high dimen-
sional probabilistic models.

(c) Derivation of rigorous confidence bands for statistical
estimators that account for model bias and are valid for
an arbitrary amount of data.

(d) Applicability to families of QoIs satisfying a concentra-
tion inequality, and not to just a single QoI.

(e) Tightness of the model bias bounds in the sense that
the bounds are always attained within a prescribed
KL-divergence and the class of QoIs in (d).

We also refer to the recent paper [37] where we applied
the concentration inequalities ideas developed here to obtain
robust uncertainty bounds for QoIs of random partial differen-
tial equations in subsurface flow problems, trained from sparse
data. Furthermore, in the preprint [38] ideas in the present
paper are developed further to provide uncertainty quantifica-
tion bounds for path space QoIs for Markov process where
concentration inequalities are intimately related to functional
inequalities such as Poincaré and log-Sobolev.

The structure of the paper is as follows. In Section II
we set-up the mathematical framework for the paper and
discuss the information inequalities for QoIs of [4], [19], [20].
In Section III we use concentration inequalities to derive
new concentration/information inequalities on model bias that
are typically straightforward to implement. In Section IV,
we discuss the tightness properties of the new concentration/
information bounds. Finally in Section V we study the bias of
statistical estimators, noting that such QoIs will require results
that scale properly with the amount of available data. We also
illustrate the bounds in a variety of examples. In Section VI we
consider two elementary examples with bounded or unbounded
QoIs. Two examples of systems with epistemic uncertainty
are discussed in Section VII; the first one deals with failure
probabilities for batteries and the second with Markov Random
Fields such as Ising systems.

II. TIGHT MODEL BIAS BOUNDS USING KL DIVERGENCE

In coarse-graining, model reduction, model selection,
or variational inference, as well as in other uncertainty
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quantification and approximate inference problems, a baseline
model P is compared to a “true” or simply a different
model Q. In this case the notion of risk or mean square error
plays a key role in assessing the quality of the corresponding
estimators. Namely, if f̂ is an unbiased estimator of the
quantity of interest f for the true model Q (but not of the
baseline model P ) then the risk of the estimator is the mean
squared error

RISK := EQ[(f̂ − EP [f ])2] = VarQ[f̂ ]� �� �
Variance

+ |EP [f ] − EQ[f ]|2� �� �
ModelBias

,

(1)

where we assume that first and second moments of f with
respect to P , Q exist.

The main goal of this work is to understand how to transfer
quantitative results on information metrics, specifically the
KL divergence R(Q�P ) (also known as relative entropy),
to bounds on the bias for quantities of interest f . We formulate
the corresponding mathematical problem next.

Mathematical Formulation. Let us consider a baseline
model given by the probability measure P on the state space
X which we assume to be a Polish (i.e. complete separable
metric) space and we consider a QoI f , that is a measurable
function f : X → R. We specify next a family of alterna-
tive probability distributions in terms of the Kullback-Leibler
(KL) divergence (or relative entropy) R(Q�P ), which is
defined as

R(Q�P ) = EQ[log
dQ

dP
], (2)

if Q is absolutely continuous with respect to P (and +∞
otherwise). Note that R(Q�P ) has the properties of a diver-
gence that is R(Q�P ) ≥ 0 for all Q and R(Q�P ) = 0 if and
only if Q = P , see e.g. [18].

We fix a positive number η which we interpret as a level of
model misspecification, quantified in terms KL divergence or,
alternatively, as an information loss tolerance level between
the baseline model P and alternative models described Q.
We then define the set of alternative models as

Qη = {Q : R(Q�P ) ≤ η2}. (3)

and any Q ∈ Qη is referred to as an η-admissible model.
We remark that our approach is non-parametric, i.e. it does
not rely on any parametric form of the probability distributions
considered. The relative entropyR(Q�P ) is convex and lower-
semicontinuous in (Q,P ). In general the set Qη is infinitely
dimensional, but it is compact with respect to the weak topol-
ogy, [24]. The fact that the KL divergence is not symmetric
in its arguments can be advantageous in some situations.
For example, in variational inference, it naturally imposes a
constraint on the support of the possible approximations Q of
a target model P [7].

Our primary mathematical challenge in this work lies in
quantifying the model bias in (1) if we use an η-admissible
model in Qη rather than the baseline model P . That is we

need to

Compute (or estimate) sup
Q∈Qη

{EQ[f ] − EP [f ]}

and inf
Q∈Qη

{EQ[f ] − EP [f ]}. (4)

Note that this approach is intrinsically goal-oriented since it
includes not only a family of alternative models Q but also a
specific choice of QoI f . In this context, for a fixed f the sup
and the inf in (4) are attained and can be explicitly computed,
see Theorem 2.

Goal-oriented divergence. We now define a divergence
which incorporates the QoI f and hence is called goal-
oriented; it was first introduced in the current form in [20]
based on earlier work in [4]. Consider a QoI f and the
moment-generating function (MGF)

MP (c; f̃) := EP [ecf̃ ] (5)

of the centered QoI f̃ ,

f̃(x) := f(x) − EP [f ]. (6)

In general (see e.g. [34] for details) the MGF MP (c; f̃) is
finite for c in some interval I and equal to +∞ otherwise.
Throughout this paper we will make the standing assumption
that MP (c; f̃) is finite in the interval I = (d−, d+) with d− <
0 < d+, then under this assumption [34], MP (c; f̃) is C∞ in
I and strictly convex in I (unless f is constant) and f has
finite moments of any order. We next define the goal-oriented
(GO) divergence as

Ξ(Q�P ; f) = inf
c>0

�
1
c

logMP (c; f̃) +
1
c
R(Q�P )

�
. (7)

for P,Q with R(Q�p) < ∞. Note that if d+ is finite then
the infimum can be taken on (0, d+) and note also that if
R(Q�P ) = ∞ then the goal oriented divergence can naturally
be then set equal to +∞. We note that for distributions such as
Cauchy or lognormal, the MGF does not exist for c �= 0, and
the presented approach cannot be applied. For such cases new
ideas become necessary, possibly in the same general spirit.

In [4], [20], [22] the following bound on the model bias
was proved, along with certain mathematical properties. In the
sequel the O notation signifies a quantity O = O(x) such that
|O(x)| ≤ C|x| for some positive constant C. Unless otherwise
stated, MP (c; f̃) will be finite in a neighborhood of the origin
and set to be infinite everywhere else.

Theorem 1: Let P be a probability measure and let f be
such that its MGF MP (c; f̃) is finite in a neighborhood of the
origin. Then for any Q with R(Q�P ) <∞ we have

−Ξ(Q�P ;−f) ≤ EQ[f ] − EP [f ] ≤ Ξ(Q�P ; f). (8)

The GO divergence Ξ(Q�P ; f) has the following properties
1) Divergence: Ξ(Q || P ; f) ≥ 0 and Ξ(Q || P ; f) = 0 if

and only if either Q = P or f is constant P -a.s.
2) Asymptotics of Ξ(Q�P ; f) in R(Q�P ) :

Ξ(Q || P ;±f) =
�

varP [f ]
�

2R(Q || P )

± 1
3
γ(f)

�
varP [f ]R(Q�P ) +O

	
(R(Q�P ))3/2



(9)
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where γ(f) = EP

�
(f − EP [f ])3

�
/varP [f ]3/2 is the

skewness of f . In particular

| EQ(f) − EP (f) | ≤
�

varP [f ]
�

2R(Q || P )
+O(R(Q || P )). (10)

Proof: For completeness the proof of properties 1 and 2
in Theorem 1 is given in the Appendix. We explain here how
to obtain the bound (8) which plays a central role in the
paper. The starting point is the Gibbs variational principle
(see e.g [24] for a proof) which relates MGF and KL diver-
gence via convex duality: provided Ep[ef ] is finite we have

log EP [ef ] = sup
Q�P

{EQ[f ] −R(Q�P )} (11)

where the sup is taken over the measures Q that are absolutely
continuous with respect to P . From this we obtain that
EQ[f ] ≤ log EP [ef ]+R(Q�P ) for any Q with R(Q�P ) <∞
and replacing f by ±c(f − EP [f ]) with c > 0 we obtain

±c(EQ[f ] − EP [f ]) ≤ logMP (±c; f̃) +R(Q�P ); (12)

optimizing over c gives the bounds (8).
Note that it is often useful to translate the QoI, f̃ , by some

constant a. For such a translation, the goal-oriented divergence
satisfies:

Ξ(Q�P ; f) = inf
c>0

�
1
c

logMP (c; f̃ − a) +
1
c
R(Q�P )

�
+ a.

(13)

Re-centering the QoI can help to avoid numerical issues when
estimating logMP (c; f̃) from samples x1, . . . , xn ∼ P . This
is often referred to as the “log-sum-exp trick“ in the literature
and a common choice for a is max{f(x1), . . . , f(xn)}.

Tightness of goal-oriented divergence. Our next result
complements Theorem 1 and demonstrates the tightness of
the GO divergence bounds (8) for the bias of a QoI f ;
for the proof, we refer to Appendix. See [4] and [20] for
earlier versions of that tightness result. To state our result we
introduce the exponential family P c given by

dP c

dP
= ecf−log MP (c;f) =

ecf

EP [ecf ]
, (14)

which is well-defined for c in the interval I = (d−, d+) where
MP (c; f) is finite.

Theorem 2: Let P be a probability measure and let f be
such that the MGF MP (c; f̃) is finite in a neighborhood of
the origin. Let Qη = {Q : R(Q�P ) ≤ η2} be the set all
probability measures Q within a KL tolerance η2 of P . Then
there exist η±, 0 < η± ≤ ∞, such that for any η ≤ η± there
are probability measures Q± = Q±(η) that satisfy:

Ξ(Q+�P ; f)=EQ+ [f ]−EP [f ] = max
Q∈Qη

EQ[f ]−EP [f ],

(15)

−Ξ(Q−�P ;−f)=EQ− [f ]−EP [f ] = min
Q∈Qη

EQ[f ]−EP [f ].

(16)

Fig. 1. The schematic depiction of Theorem 2 for the Quantities of Interest
(QoIs) f1, f2 with tolerance η2. The solid lines depict the one-parameter
tilted probability distributions P c (14) corresponding to the QoIs. The theorem
implies that the upper and lower bounds in the family Qη = {Q : R(Q�P ) ≤
η2} are attained at the probability measures Q± = P c± for the QoI f1.

The measures Q± are given by the elements P c± of the
exponential family (14) where c± are the unique solutions of

R(P c±�P ) = η2. (17)

Theorem 2 provides performance guarantees in the sense
that, for all Q ∈ Qη, EQ[f ] belongs to the interval

−Ξ(Q−�P ;−f)+EP [f ] ≤ EQ[f ] ≤ EP [f ] + Ξ(Q+�P ; f)
(18)

and the bounds are tight in Qη , in the sense that inequalities
become equalities for Q = Q∓ respectively. This tightness
property is crucial for our discussion because it implies that
the GO divergence bounds in (8) are the best possible in the
sense that they have attainable worst-case model scenarios Q±

among all probability distributions Q within a KL tolerance
η2 > 0, see the schematic in Figure 1. The constants η± in
Theorem 2 are often equal to +∞ and may be finite only
in special cases. The interested reader will find a detailed
discussion of those cases, as well as a complete proof of
Theorem 2 in the Appendix.

Remark 3: The tightness property (18) is a non-parametric
result: the family Qη of all alternative models Q cannot
be parametrized in general and is only characterized by the
property R(Q�P ) ≤ η2. In spite of this non-parametric
framework, we showed in Theorem 2 that the extremal models
Q± that yield the tight bounds (18) belong to the parametrized
family (14), see also Figure 1.

Remark 4 (Parametric vs. Non-Parametric UQ): The pro-
posed bounds (18) can be pessimistic when considering uncer-
tainty/sensitivity questions for models confined to a particular
parametric family QPAR = {Qθ : δ ∈ Θ} over a parameter set
Θ. Indeed, since the bounds (18) proposed above are based
on the KL divergence, they are necessarily non-parametric
and thus the resulting family of distributions Qη allows for
densities that may not be attainable within the particular
parametric family. For example, if we already know that the
set of models QPAR is a subset of a fixed parametric family, e.g.
Qθ’s correspond to Gaussians, Poisson, or multinomial random
variables, our non-parametric bounds (18) can be too wide
since the family Qη includes many other distributions outside
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TABLE I

FOR THE ESTIMATION OF varP [Y ], WE ASSUME THAT EP [Y ] IS

UNKNOWN AND THAT THE BIAS-ADJUSTED ESTIMATOR IS

USED. FOR THE VARIANCE OF EP [ecY ], A FIRST-ORDER

APPROXIMATION IS USED (SEE [39]),

ASSUMING THAT EP [Y ] IS SMALL

the parametric family at hand, in the sense that the optimal
Q± in Theorem 2 may not belong in QPAR = {Qθ : δ ∈ Θ}.

On the other hand, if Q± ∈ QPAR and QPAR ⊂ Qη then
the bounds (18) are tight due to Theorem 2. An example in
this direction are the exponential families, [7], where the QoIs
f is any sufficient statistics. The exponential family is a very
broad class of models, and the special case of Markov Random
Fields and Ising models is discussed in Section VII-B; see also
Section 4.1 in [20] for the linearized bounds in Theorem 1
in the case of the exponential family with sufficient statistics
considered as QoIs.

Furthermore, in certain problems and due to the sparsity
of available data–see for instance the battery failure proba-
bilities in SectionVII-A–the family of alternative models Qη

is intrinsically non-parametric and is built around a baseline
model P obtained, for example, through maximum likelihood
or maximum a posteriori estimation. In that example the
baseline model P is selected to be a Weibull distribution for
the histogram of the battery failure times in Figure 7. But
many alternative densities to P are possible, e.g. given by
various choices of kernel density estimators of the histogram
in Figure 7. Therefore considering the non-parametric family
of models Q = Qη is a natural and, indeed, necessary choice.

The attractive properties of the GO bounds demonstrated
in Theorem 1 and Theorem 2, come at a potentially signifi-
cant cost since they require the knowledge or calculation of
the MGF MP (c; f̃) with respect to model P . If no simple
formula for MP (c; f̃) is known, this can be a data-intensive
operation—compare the estimator variance of the MGF with
that of other QoIs in Table I. Controlling the variance of an
MGF estimator will require a large amount of data and/or
the use of a multi-level Monte Carlo method, see also the
discussion in Section I and Section VII. In the next section we
introduce a new class of inequalities that share the aforemen-
tioned features of the GO divergence and satisfy Inequality (8),
but they can bypass the estimation of an MGF by using the
concept of concentration inequalities.

III. CONCENTRATION/INFORMATION

INEQUALITIES FOR MODEL BIAS

To bypass the estimation or computation of the MGF in
(7) we will use a QoI-dependent concentration bound for the
MGF, i.e., a function Φ(c) taking values in (0,∞] such that

MP (c; f̃) ≤ Φ(c) (19)

for all c ≥ 0 and/or for c ≤ 0. Since the moment generating
function MP (c; f̃) can take the value +∞ it is natural to allow
the same for Φ(c).

Bounds of the form (19), for explicitly computable functions
Φ(c), are called concentration inequalities and we discuss
several such examples in Section III-A and Section III-C,
as well as in Section V. Although we use only the simplest
concentration inequalities here, the results are indicative to
what can be accomplished using such information on f and P .
In a continuation of this work, [38], using spectral gap estimate
and log-Sobolev inequalities, concentration inequalities for
path space observables for Markov processes are used to derive
bounds for QoIs valid in the long-time regime. In upcoming
work we will consider further applications for interacting
particle systems with large number of degrees of freedom,
arising in Kinetic Monte Carlo or molecular dynamics. Con-
centration inequalities is an important mathematical tool since
they allow, via a Chernov bound, to control tail events, i.e.
they provide explicit bounds on the probability that a random
variable deviates from typical behavior. More specifically,
such methods can address, among others, questions on rare
events [34], model selection methods [35], statistical mechan-
ics [33, Section 8.4] and random matrices [36]. Here we pro-
pose the use of concentration inequalities in tandem with the
information inequalities (8) for uncertainty quantification and
especially for providing model bias guarantees. In Theorem 5
we show how to construct new bounds for the model bias
using a function Φ satisfying (19).

Theorem 5: Let P be a probability measure and let f be a
QoI such that its MGF MP (c; f̃) is finite in a neighborhood of
the origin. Let Φ : R → (0,∞] be a function with Φ(0) = 1,
Φ�(0) = 0 and such that

MP (c; f̃) ≤ Φ(c) (20)

for all c ∈ R.
We define the set of admissible QoIs by

FP = {g : MP (c; g̃) ≤ Φ(c)}. (21)

Then, f ∈ FP , and for every Q ∈ Qη = {Q : R(Q�P ) ≤ η2}
and g ∈ FP we have

−U−(η;FP ) ≤ EQ[g] − EP [g] ≤ U+(η;FP ), (22)

where

U±(η;FP ) := inf
c>0

�
1
c

log Φ(±c) +
1
c
η2

�
. (23)

Proof: The proof follows immediately from the definition
of GO divergence in (7), the bound (8) in Theorem 1, com-
bined with the concentration inequality (20) and the definition
of the admissible QoIs, FP .

We discuss specific examples of inequalities of the
type (20) and their corresponding admissible sets FP , in
Sections III-A, III-B, and III-C below.

Remark 6 (Admissible set of QoIs): We note that the
function Φ depends both on the QoI f and on P through (20)
and therefore the set of admissible functions FP also depends
on the QoI f and on P . However, to keep notation simple,
we suppress this dependence for both Φ and FP .
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Remark 7 (Computing U±(η;FP )): Some concentration
bounds (20) such as the sub-Gaussian, sub-gamma and Hoeffd-
ing and Bernstein bounds discussed below provide explicit
formulas for U±(η;FP ), see for instance (32) and (38).
However, in general—see the sharper Bennett bounds in
(39) and (41)—we have an explicit formula for Φ but no
explicit closed form solution of the optimization over c.
However the elementary one-dimensional optimization in (23)
can be easily carried out with standard solvers, e.g., Newton’s
method.

Divergence structure of U±(η;FP ): The following prop-
erties of the bounds U± in (23) are analogous to the properties
of the GO divergence (7) outlined in Theorem 1. One notable
difference is that here the divergence structure defined by
U±(η;FP ) contains information about the entire family FP

in (21) and not just a single QoI f as was the case in the GO
divergence (7).

Theorem 8: Under the assumptions of Theorem 5 and,
in addition, if

Φ(c) = MP̄ (c; h̃), (24)

i.e. Φ(c) is a MFG for some probability P̄ and QoI h then
U±(η;FP ) satisfy:

1) Divergence Properties:

a. U±(η;FP ) ≥ 0, and
b. U±(η;FP ) = 0 if and only if η = 0 or FP is trivial,

i.e. consists only of functions which are constant
P -a.s.

2) Linearization: If Φ = Φ(c) is twice differentiable in a
neighborhood of c = 0, then we have the asymptotics
U±(η;FP ) =

�
2Φ��(0)η +O(η2) and thus,

|EQ[g]−EP [g]| ≤
�

2Φ��(0)η +O(η2)
for all g ∈ FP and all Q ∈ Qη. (25)

Proof: The proof follows from Theorem 1. Indeed since,
by assumption, Φ(c) = MP̄ (c; h̃) we have

U±(η;FP ) = Ξ(Q�P̄ ;±h) (26)

for any probability Q such that R(Q�P̄ ) = η2. Therefore,
by Theorem 1, U±(η;FP ) ≥ 0 and U±(η;FP ) = 0 if and
only if η = 0 or h is constant P̄ a.s. But if h is constant P̄
a.s then Φ(c) = MP̄ (c; h̃) = 1 for all c and thus the set of
admissible QoIs (21) becomes:

FP = {g : MP (c; g̃) ≤ Φ(c) = 1}. (27)

However for any g ∈ FP , by Jensen’s inequality,
MP (c; g̃) ≥ 1 since EP [g̃] = 0. Therefore the admissible set
FP consists only of constant functions thus g is constant P -a.s.
Finally, the asymptotic result in (25) is proven in exactly the
same way as for the GO divergence in Theorem 1, (see the
proof in Appendix or in Section 3 of [20]).

Theorem 5 and Theorem 8 motivate the following definition,
in analogy to the goal oriented (GO) divergence (7) defined
for a single QoI f :

Definition 9 (Concentration/Information Divergence):
Given the notation and assumptions of Theorem 5 and

Theorem 8, we define the concentration/information
divergence between a baseline model P and the family
of models Qη, satisfying (22) for all QoIs in FP :

U±(η;FP ) := inf
c>0

�
1
c

log Φ(±c) +
1
c
η2

�
, (28)

where Qη and FP , are defined in (3) and (21) respectively.
Remark 10 (Features of Concentration/Information Inequal-

ities): While the GO divergence bounds (8) are defined for a
specific QoI f , key features of the new bounds in Theorem 5
include: (a) allow to consider whole families of admissible
QoIs FP defined in (21), and (b) they bypass the costly MGF
calculations needed in the GO divergence (7). Finally, we next
show that the new bounds (22) still share the advantages of the
GO divergence bounds, namely: in Section IV we prove that,
under suitable assumptions, (22) is, (c) tight in the family of
models Qη, (3), and the family of QoIs FP , (21). in Section V
we show that (22) is, (d) scalable to QoIs that depend on
large numbers of data such as statistical estimators and to high
dimensional probabilistic models.

Remark 11 (Why Concentration/Information Inequalities?):
As shown in Lemma 2.11, Equation (2.28) of [20], the c∗ that
solves the optimization problem of the GO divergence bound
in Equation (7) behaves like

c∗ = c1η +O(η2), (29)

for some explicit constant c1 and η2 = R(Q�P ). Due to (29)
and since estimator variance for the MGF increases exponen-
tially with c, a larger uncertainty threshold η will quickly
make the accurate estimation of MP (c∗; f) more demanding,
as is readily clear from Table I and (29). This drawback
becomes especially problematic when sampling from P is
computationally expensive, e.g., requires MCMC sampling,
P is multi-modal, etc. , see also the Markov Random Field
example in Section VII-B, where sampling challenges can
become more pronounced in higher dimensions. Even when
P is simple to sample, as is the case with the baseline models
in [40] and here, avoiding the estimation of MP (c∗; f) in the
GO divergence can still save significant computational time,
as Table I strongly suggests. For instance, the Bennett-(a,b)
bound in (41) only requires (a) the bounds on the QoI, a, b, and
(b) the expected value of the QoI with respect to P . Similarly,
the Hoeffding bound (44) requires only the bounds on the
QoI, a, b.

We will next discuss specific examples of the bound Φ(c)
in the concentration bounds (20) and Theorem 5; furthermore,
we also demonstrate how we can select such concentration
bounds depending on the information we have regarding the
distribution P . We divide our presentation into two cases,
namely bounded and unbounded QoIs f .

A. Sub-Gaussian Bounds

For an unbounded QoI f and a probability distribution P ,
we can characterize the type of concentration by bounding
either the tail probabilities P (f(X) − EP [f ] > a) for all a
or MP (c; f̃) for all c for which the MGF is finite. In this
section, we discuss the (classical) sub-Gaussian concentration

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 25,2020 at 16:42:46 UTC from IEEE Xplore.  Restrictions apply. 



GOURGOULIAS et al.: HOW BIASED IS YOUR MODEL? CONCENTRATION INEQUALITIES, INFORMATION AND MODEL BIAS 3085

bounds which are characterized by Gaussian decay of the tails.
Sub-gamma bounds are discussed in Section III-B (see also
Section VI-A); sub-Poissonian bounds could also be useful in
various situations but we will not discuss them further here
(see e.g. [33]).

Sub-Gaussian concentration bounds [31]: We say that
f = f(X) is a sub-Gaussian random variable if there exists a
σB > 0 such that

MP (c; f̃) ≤ Φ(c) := exp(c2σ2
B/2) for all c ∈ R. (30)

Now given a fixed σB , we can consider the family of QoIs
defined in (21),

FP := {g : MP (c; g̃) ≤ Φ(c) = exp(c2σ2
B/2)}, (31)

i.e. we consider all random variables with MGF bounded by
the MGF of a normal random variable with variance σ2

B .
Furthermore, using (23) we can write an explicit formula for
U±(η;FP ) = infc>0{ cσB

2 + η2

c } as

U±(η;FP ) = σB

√
2η. (32)

By expanding MP (c; f̃) around c = 0, we can readily show
that σ2

B is an upper bound of varP [f(X)]. Relation (32) also
implies that there is no η-admissible model Q ∈ Qη for which
the QoIs under consideration lie beyond the uncertainty region
given by Theorem 5:

−σB

√
2η ≤ EQ[g] − EP [g] ≤ σB

√
2η (33)

for all models Q ∈ Qη and QoIs g ∈ FP . In Corollary 12,
we consider the special case where P is a normal distribu-
tion which is compared against any models Q–possibly not
normal–from Qη.

Corollary 12: Consider the QoI f(x) = x where
P = N(μ, σ2). Also, let Q be any distribution such that
R(Q�P ) ≤ η2. Then, if the coefficient of variation (also
known as relative standard deviation) is cv := σ/|μ|, the rel-
ative model bias satisfies:

−cv
√

2η ≤ EQ[f ] − EP [f ]
|EP [f ]| ≤ cv

√
2η. (34)

In general, sub-Gaussianity is a strong assumption for an
unbounded random variable. For example Poisson, gamma,
and exponential random variables are not sub-Gaussian (see
Section III-B). We also note that results like the McDiarmid’s
inequality, see Section V below, or the logarithmic Sobolev
inequalities [32], [41], can provide values for the constant
σ2

B for QoIs that satisfy specific properties, e.g., (60).

B. Sub-Gamma Bounds

We discuss here a bound which applies, in principle, to any
QoI with a MGF finite in a neighborhood of the origin, that
is to any QoI f which satisfy the conditions of Theorems 1
and Theorem 2. If MP (c; f̃) is bounded for some c > 0
this implies at least exponential tails for the distribution of
f and a typical example of random variables with (one-
sided) exponential tails are the gamma random variables with
parameters a, b > 0 which have the density xa−1e−x/b/Γ(a)ba

(Γ(a) is the Euler’s Gamma function), mean ab, variance ab2,
and moment generating function (1− cb)a. Then for f(X) =
X and using the elementary inequality − log(1 − u) − u ≤
u2/2(1 − u) we have,

logMP (c; f̃) = −cab−a log(1 − cb) ≤ ab2c2

2(1 − cb)
. (35)

This calculation motivates the following definition.
Sub-gamma concentration bounds [31]: We say that f =

f(X) is a sub-gamma random variable if there exists constants
σB > 0 and b > 0 such that

MP (c; f̃) ≤ Φ(c) := exp(c2σ2
B/2(1 − cb)) (36)

or all 0 ≤ c < b−1. Now given a fixed σB and 0 ≤ c < b−1,
we can consider the family of QoIs defined in (21),

FP := {g : MP (c; g̃) ≤ Φ(c) = exp(c2σ2
B/2(1 − cb))}.

(37)

The form of the bound is very convenient since, by straight-
forward calculation we obtain an explicit solution for the
optimization problem (23): U±(η;FP ) = infc>0{ cσB

2(1−cb) +
η2

c } as

U±(η;FP ) = σB

√
2η + bη2 (38)

Furthermore (see Sections 2.4 and 2.8 in [31]) one can show
that any random variable with a finite moment generating
function in a neighborhood of 0 is a sub-gamma random
variable although it may not be easy in general to explicitly
determine the constants σ2

B and b in (36).

C. Bennett, Hoeffding and Bernstein Bounds

Many quantities of interest are bounded such as failure prob-
abilities or functions of random variables with bounded sup-
port. Bounded random variables are necessarily sub-Gaussian
and and sub-gamma [31], but much sharper bounds for their
MGFs, (20), can be derived and used to bound the worst-case
bias through Theorem 5. In this direction, we next discuss
some additional concentration bounds for bounded QoIs that
we will also showcase in examples in this work. This list is not
complete by any means and other concentration inequalities
can be used here; see for instance [32] for other bounds. For
each case below, the family of QoIs FP is defined in terms of
the concentration bound on the MGF, (21), as in Theorem 5.

Bennett concentration bound [34, Lemma 2.4.1]:
Consider the random variable X where X ∼ P and the QoI
f = f(X) such that f(X) ≤ b, for some 0 ≤ b <∞. Setting
μ := EP [f(X)], b̃ := b− μ, we have

MP (c; f̃) ≤ Φ(c) :=
b̃2

b̃2+σ2
B

exp(−cσ2
B/b̃)+

σ2
B

b̃2+σ2
B

exp(cb̃),

(39)

for all c ≥ 0 and where σ2
B is any upper bound of varP [f ].

Therefore, keeping in mind Remark 6, we define

FP ={g : MP (c; g̃) ≤ Φ(c) }, where Φ is defined in (39).

(40)
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TABLE II

THE DIFFERENT MGF BOUNDS ALONG WITH THE CONDITIONS THEY IMPOSE ON P AND f AND THE QUANTITIES THEY DEPEND ON FOR THEIR

IMPLEMENTATION IF WE ARE INTERESTED IN QUANTIFYING THE WORST-CASE BIAS. HOWEVER, BOUNDING THE WORST-CASE EQ[f ] DOES

NOT REQUIRE EP [f ]. GAUSSIAN DECAY OF THE TAILS OF THE DISTRIBUTION OF f(X) IMPLIES THE SUB-GAUSSIAN MGF BOUND (SIMILAR

ASSUMPTIONS ABOUT THE TAILS EXIST FOR THE REST OF THE BOUNDS). IN TERMS OF INFORMATION REQUIREMENTS, THE HOEFFDING

BOUND REQUIRES THE LEAST AMOUNT, BUT IT IS ALSO THE LEAST TIGHT. AS AVAILABLE INFORMATION/

DATA FOR THE BOUNDS GROW, THE BOUNDS GET TIGHTER

Bennett-(a, b) concentration bound [34, Corollary 2.4.5]:
If the QoI f is such that a ≤ f(X) ≤ b, X ∼ P , then
σ2

B = (μ− a)(b−μ) is a bound on the variance and from the
Bennett bound we obtain, for all c ∈ R, (with ã = a− μ)

MP (c; f̃) ≤ Φ(c) :=
b̃

b− a
exp(cã) − ã

b− a
exp(cb̃). (41)

The right-hand side of (41) is the MGF of a Bernoulli-
distributed random variable with values {a, b}. Note that the
Bernoulli is the distribution with the most “spread” around the
mean value between all bounded random variables in [a, b].
Similarly to (40) we have,

FP ={g : MP (c; g̃) ≤ Φ(c) }, where Φ as in (41). (42)

Hoeffding concentration bound [34], [42]: When the QoI
f is bounded as in the Bennett-(a, b) case, we can further
bound the Bennett-(a, b) bound by a Gaussian MGF, giving
rise to the (less tight) Hoeffding MGF bound,

MP (c; f̃) ≤ Φ(c) := exp(c2(b − a)2/8) for all c ∈ R. (43)

This bound can be obtained by Hoeffding’s Lemma. Since a ≤
f ≤ b, we have a− EP [f ] ≤ f̃ ≤ b− EP [f ]. By Hoeffding’s
Lemma applied on f̃ , we obtain

MP (c; f̃) =EP [ecf̃ ]≤exp(c2
((b−EP [f ]) − (a− EP [f ]))2

8
)

= exp(c2(b− a)2/8).

Unlike the Bennett bounds, the Hoeffding bound is indepen-
dent of the location of the mean μ = EP [f ] within the interval
(a, b) and only depends on the length of the interval [a, b].
As such, it requires the least amount of information about f
and P and is the least sharp of the bounds, as can be also seen
in the example in Section VI-B. As in the sub-Gaussian case
of Section III-A, we can now calculate U±(η;FP ) explicitly:

U±(η;FP ) = (b − a)
√

2η, (44)

where the set of QoIs is

FP ={g : MP (c; g̃) ≤ Φ(c) }, where Φ as in (43) (45)

Bernstein concentration bound [31]: As in the Bennett
bound we assume that f(X) ≤ b and varP [f ] ≤ σ2

B and use
the notation b̃ = b− μ. We have

MP (c; f̃) ≤ Φ(c) := exp(c2σ2
B/2(1 − b̃c)), c ∈ [0, 1/b̃)

(46)

which states that f is sub-gamma and as in the sub-gamma
case of Section III-B we can compute U+(η;FP ) explicitly:

U+(η;FP ) =



2σ2
Bη + b̃η2. (47)

where the set of QoIs is

FP ={g : MP (c; g̃) ≤ Φ(c) }, where Φ as in (46) (48)

A similar bound for c < 0 can be derived if f > a is bounded
below in which case we obtain,

U−(η;FP ) =



2σ2
Bη − ãη2, (49)

where ã = a− μ.
Remark 13 (Hierarchy of Bounds): It is straightforward to

demonstrate that we can order the bounds in terms of accuracy,
noting that if the QoI f is bounded in [a, b], then we always
have the bound σ2

B ≤ (EP [f ]− a)(b− EP [f ]) in the Bennett
bound (39). Therefore, we have the hierarchy of concentration
bounds:

MP (c; f̃) ≤ Bennett ≤ Bennett-(a,b) ≤ Hoeffding. (50)

Unlike the two Bennett bounds, the Hoeffding bound is inde-
pendent of the location of the mean μ within the interval [a, b]
and only depends on the length of the interval, b−a. As such, it
requires the least amount of information about f and P and is
the least sharp of the bounds, see Table II and the requirements
for the QoI families FP , (40), (42) and (45). The Bernstein
bound and Hoeffding bounds are not directly comparable: for
small η, the Bernstein bound is better than Hoeffding, indeed it
captures the exact asymptotic of the GO divergence, see (9) in
Theorem 1, however for large η the Bernstein bound is worse
than Hoeffding and for large η both those bounds are overly
pessimistic and not informative for bounded QoIs. On the
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Fig. 2. Level curves of the upper model bias bound (22) with the Bennett
bound (39) and assuming b = 1, varP [f ] ≤ σ2

B . Knowing η2 = R(Q�P )
for some model Q and an upper bound on the variance provides model-bias
guarantees (through Theorem 5). Further reduction of the model bias bound
requires a corresponding—and potentially expensive—decrease in KL and/or
a tighter upper-bound for varP [f ], for example, by incorporating additional
data. The tightest possible guarantee afforded by the Bennett bound is gained
when σ2

B = varP [f ] and η2 = minQ R(Q�P ).

other end, the GO divergence bound—involving MP (c; f̃)—
is the tightest, as we see in (50), but also the most expensive
to implement, see Table I. We also refer to a demonstration
of this hierarchy in the example in Section VI-B. Overall, as
available information/data on the QoI f and and the baseline
model P grows, concentration bounds and therefore model
bias bounds become tighter. Finally, we refer to Figure 2,
where we demonstrate the tightness of the model bias bounds
(22), (23), in terms of both η2 = R(Q�P ) and σB , for the
Bennett bounds (39).

Remark 14 (How Large Is the Class FP ?): A plausible
question is how rich is the set of admissible QoIs, FP , derived
by the various concentration bounds on the MGF MP (c; g̃) in
(31), (40), (42) and (45). Here we address this question in the
context of the Bennett bound, however the same argument also
applies to the Bennett-(a, b) and Hoeffding bounds, as well as
to the sub-Gaussian case in Section III-A. We can get a simple
first insight in this direction based on (39). Indeed, based on
the conditions for this inequality to hold, we readily have that

FP ⊃ {g : g(X) ≤ b, varP [g] ≤ σ2
B, EP g = μ }. (51)

We also note that enforcing the condition on the mean,
EP g = μ, is trivial and involves only a translation of the QoI g.

IV. TIGHTNESS OF THE CONCENTRATION/
INFORMATION INEQUALITIES

In this section we show that, under suitable assumptions, for
the concentration/information bounds derived in Section III the

Fig. 3. The schematic depiction of Theorem 15 for a family of Quantities
of Interest (QoIs) FP and tolerance η2. The solid lines depict the one-
parameter tilted probability distributions P c in (14) corresponding to the QoI
g1, g2, f ∈ FP . The theorem implies that the upper and lower bounds in the
family Qη = {Q : R(Q�P ) ≤ η2} are attained at the probability measures
Q± = P c± .

divergence U±(η;FP ) retains some of the tightness properties
of the GO divergence Ξ(Q�P ; f) established in Section II.

Theorem 15: Let P be a probability and Qη = {Q :
R(Q�P ) ≤ η2}. Assume Φ(c) = MP (c; f̃) is a MGF for
some QoI f with respect to P and let

FP = {g : MP (c; g̃) ≤ Φ(c) for all c ∈ R}. (52)

Then there exist η± such that η ≤ η± and probabilities P c± ∈
Qη (see (14)) that satisfy R(P c±�P ) = η2 as well as

U+(η;FP ) = EP c+ [f ] − EP [f ]
= max

Q∈Qη ,g∈FP

EQ[g] − EP [g], (53)

−U−(η;FP ) = EP c− [f ] − EP [f ]
= min

Q∈Qη ,g∈FP

EQ[g] − EP [g], (54)

i.e., the maximum and minimum for model bias is attained
within the family of models Qη and the family of QoIs FP ,
see the schematic in Figure 3.

As a consequence we have the “confidence band” around
the baseline model P ,

−U−(η;FP ) + EP [g] ≤EQ[g] ≤ EP [g] + U+(η;FP )
for all Q ∈ Qη, g ∈ FP , (55)

with the two equalities holding if Q = P c∓ respectively and
for g = f ∈ FP .

Proof: Since f ∈ FP , Theorem 2 implies that the proba-
bilities P c± in (14), with c± chosen such thatR(P c±�P ) = η2

satisfy

Ξ(P c±�P ;±f) = U±(η;FP ). (56)

Therefore, by Theorem 5, (22), for all Q ∈ Qη, g ∈ FP

−Ξ(P c− ||P ;−f) ≤ EQ[g] − EP [g] ≤ Ξ(P c+ ||P ; f). (57)

Finally, we apply (15) and (16) of Theorem 2 and use (56) to
conclude the proof.

Remark 16 (Connections to Mass Transport): Here we
discuss one possible approach to verify the crucial assumption
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of Theorem 15, namely that

Φ(c) = MP (c; f̃) for some QoI f . (58)

One natural way to ensure (58) holds is intimately related to
mass transport methods, [43]. Instead of (58), we may assume
the more easily checkable hypothesis that Φ(c) = MP̄ (c; h̃)
for some h and some model P̄ ; e.g. h(x) = x and P̄
a Gaussian distribution for the Hoeffding’s bound, see also
Example 18 below. To prove (58) one shows then that there
exists a transport map between P and P̄ , namely a map T
such that P̄ (A) = P (T−1(A)) for any measurable set A [43].
If a transport map exists we have

EP [h ◦ T ] =
�
h(Tx)P (dx) =

�
h(y)P̄ (dy) = EP̄ [h].

and hence with f = h ◦ T
f̃ = f − EP [f ] = h ◦ T − EP̄ [h] = h̃ ◦ T.

This implies that

Φ(c) =MP̄ (c; h̃) =
�
ech̃(y)P̄ (dy)

=
�
ech̃(Tx)P (dx) = MP (c; f̃), (59)

and thus the assumption (58) holds.
To ensure the existence of such a transport map T one needs

some assumptions on P (and P̄ ). For example, if P and P̄
are non-atomic measures then a transport map always exists.
If the measure P has a density then T can be constructed
using the Knothe-Rosenblatt rearrangement or Brenier’s L2

optimal transport map; we refer to Chapter 1 [43], [44] for
more details on these maps, and several other such transport
maps and relevant conditions for their existence.

Next we demonstrate how to use Theorem 15 by interpreting
Φ(c) as the MGF of a suitable QoI f with respect to the
distribution P . In Example 17, we illustrate the tightness of
the concentration bounds for the case of bounded random
variables supported in [−1, 1], while the arguments can be
trivially generalized to any other bounded interval.

Example 17 (Bennett-(a,b) QoIs): Consider a distribution P
such that there is an event A ⊂ R such that P (A) = 1/2; we
consider the family of QoIs, FP , for which (41) is true with
a = −1, b = 1, EP [g] = 0 for all g ∈ FP . The corresponding
Bennett-(a,b) bound is

Φ(c) =
1
2
ec +

1
2
e−c.

Then, if we choose f(x) := 2 · 1A(x) − 1, where 1A is the
characteristic function of the set A, we have Φ(c) = MP (c; f̃).
Therefore Theorem 15 is immediately applicable.

The next example covers the case of sub-Gaussian
QoIs which contains both bounded and unbounded random
variables.

Example 18 (sub-Gaussian QoIs): Consider a probability
measure P on R which has a density. For sub-gaussian QoIs
(30) we have the bound Φ(c) = exp(c2σ2

B/2), however,
we can rewrite the bound as

Φ(c) = MP̄ (c; h̃)

where h(x) = x and P̄ = N(0, σ2
B) is a normal distribution.

Since P has a density, we can use the measurable isomor-
phism, or any other applicable map discussed in Remark 16,
to construct a transport map T between P and P̄ . Thus, we can
show the existence of a QoI f that satisfies the condition (58)
and we can readily apply Theorem 15 to show the tightness
of the bounds given by (32).

V. MODEL BIAS FOR STATISTICAL ESTIMATORS

As discussed in Section II a key challenge is to control
the risk involved in evaluating statistical estimator using the
baseline model P rather than the true model Q. In addition
it is important to control the bias of QoIs which are not
necessarily expected values, for example the bias in the
variance, i.e, varPX − varQX , or other statistics such as cor-
relation, skewness or quantiles; see [39]. Generally, given data
X1, . . . , Xn, we aim to control the bias of statistical estimator
ψ = ψ(X1, . . . , Xn), for example the sample variance (69).

To obtain useful bounds on the bias of statistical estimators
ψ, we need to exhibit and control the dependence of the
inequalities in Sections III-C and III-A on the amount of data
available, i.e. the dependence on n. We will exhibit a large and
natural class of statistical estimators for which inequalities are
asymptotically independent on n. As demonstrated in [19] the
Concentration/Information inequalities of Sections II and III
are the only known information equalities which scale properly
with n.

The main tool we shall use is the key result used in the
proof of the McDiarmid’s inequality, see also the Hoeffding-
Azuma bound, [34]. We refer to Chapter 2 of [32] or [45] for
the proof.

Proposition 19: Let X1, . . . , Xn be independent random
variables with joint distribution Pn = P1 × · · · × Pn. Let
ψ(x1, . . . , xn) satisfy the Lipschitz condition

sup
x1,...,xn,x�

k

|ψ(x1, . . . , xk, . . . , xn)−ψ(x1, . . . , x
�
k, . . . , xn)|

≤ dk (60)

for some constants dk, k = 1, . . . , n. Then ψ(X1, . . . , Xn) is
a sub-Gaussian random variable and for all c ∈ R we have

MP n(c; ψ̃) = EP n [exp(c(ψ − EP n [ψ]))]

≤ exp

�
c2

8

n�
k=1

d2
k

�
. (61)

By combining the bound in (61) with the definition of
U±(η;FP ) in Theorem 5 for the sub-Gaussian case (30) we
obtain immediately

Theorem 20: Consider two joint distributions Pn = P1 ×
· · · × Pn and Qn = Q1 × · · · × Qn. For X1, . . . , Xn and
ψ(x1, . . . , xn) as in Proposition 19 we have

|EP n [ψ(X1, . . . , Xn)] − EQn [ψ(X1, . . . , Xn)]| (62)

≤
�

n�
k=1

d2
k

�1/2
����1

2

n�
k=1

R(Qi�Pi). (63)
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If X1, . . . , Xn are identically distributed with common distri-
bution P and Qi = Q, for i = 1, 2, ..., n, and if there exists a
constant C such that

dk ≤ C

n
, k = 1, . . . , n

then we have for any n

|EP n [ψ(X1, . . . , Xn)] − EQn [ψ(X1, . . . , Xn)]|

≤ C

�
1
2
R(Q�P ).

Proof: First, by independence it is easy to show that

R(Qn�Pn) =
n�

i=1

R(Qi�Pi). (64)

By Proposition 19, we have

EP n [exp(c(ψ − EP n [ψ]))] ≤ exp

�
c2

8

n�
k=1

d2
k

�
. (65)

Consider the definition of U±(η;FP ) in Theorem 5, where
η =

�
R(Qn�Pn) =

��n
i=1R(Qi�Pi); then we readily

obtain

U±(η;FP ) = inf
c>0

�
1
c

log Φ(±c) +
1
c
η2

�

= inf
c>0

�
c

8

n�
k=1

d2
k +

1
c
R(Qn�Pn)

�

=
1√
2

���� n�
k=1

d2
k

���� n�
i=1

R(Qi�Pi).

If X1, . . . , Xn are identically distributed with common distri-
bution P and if dk ≤ C

n for some constant C then
�n

k=1 d
2
k ≤

C2

n and
�n

i=1R(Qi�Pi) = nR(Q�P ) and thus we obtain

U±(η;FP ) =
1√
2

���� n�
k=1

d2
k

���� n�
i=1

R(Qi�Pi)

≤ 1√
2
C
�
R(Q�P ).

Remark 21 (Poor Scalability of Certain Information
Inequalities): A notable feature of the concentra-
tion/information inequalities is that they scale independently
of the number of data/random variables n, at least for classes
of QoIs that satisfy (60), as demonstrated in Theorem 20 and
the subsequent examples. Furthermore, the bias bound (64)
remains discriminating even if n → ∞. The same scaling
features are also shared with the GO divergence bounds (8),
see [19]. On the other hand, classical information inequalities
scale poorly with n. For example, in the case of the Pinsker
inequality [6], [18], let us consider the QoI (estimator) (71)
for the i.i.d. random variables X1, . . . , Xn,

ψn(X1, . . . , Xn) =
1
n

n�
i=1

f(Xi).

Then, the Pinsker inequality becomes

|EP n [ψ(X1, . . . , Xn)] − EQn [ψ(X1, . . . , Xn)]|
≤ �f�∞

�
2R(Qn || Pn) = O(

√
n), (66)

where we used that �ψ�∞ = �f�∞, and R(Qn || Pn) =
nR(Q || P ). Therefore the Pinsker bound (66) blows up as
n� 1, in contrast to the concentration/information inequality
(64) that remains discriminating and informative for any n.
Other model bias bounds based on the Renyi or χ2 diver-
gences (the latter known as the Chapman-Robbins inequality)
or the Hellinger metric, also scale poorly with the size of
data set and/or with the number of variables n; we refer to
Sections 2.2–2.3 in [19] for a complete discussion.

Next, we apply these results towards obtaining model bias
bounds for statistical estimators.

CDF estimator: If X is a real-valued random variable with
cumulative distribution function (CDF) FP (x) = P{X ≤ x},
then given i.i.d. data X1, . . . , Xn,

F̂n(x) =
1
n

n�
k=1

I{Xk≤x}, (67)

where IA is the indicator function of the set A, F̂n(x) is an
estimator for the CDF, FP = FP (x). It is easily verified that
the conditions of Theorem 20 are satisfied with C = 1. Since
the bound is uniform in x, and F̂n(x) is an unbiased estimator
of FP (x), we obtain

sup
x
|FQ(x) − FP (x)| = sup

x

���EQn

�
F̂n(x)

�
− EP n

�
F̂n(x)

����
≤
�

2R(Q�P ), (68)

for any alternative model Q to the baseline P . As we also note
in the sample variance example below, the estimator does not
need to be unbiased.

Sample variance and general statistical estimators:
McDiarmid’s inequality and condition (60) can be used to
control bias of QoIs which are not simply expected values,
for example the sample variance

Vn(X1, . . . , Xn) =
1

n− 1

n�
i=1

⎛
⎝Xi − 1

n

n�
j=1

Xj

⎞
⎠2

=
1

2n(n− 1)

n�
i,j=1

(Xi −Xj)2. (69)

If we assume that |Xi| ≤M for some M > 0 then we have

sup
|xi|≤M,
|x�

k|≤M

|Vn(x1, . . . , xk, . . . , xn)−Vn(x1, . . . , x
�
k, . . . , xn)|

≤ 8M2

n− 1
.

Then the sample variance satisfies (60) with dk = 8M2/
(n−1) for all k. Thus, we can bound the corresponding model
bias by

|varP [X ] − varQ[X ]| = |EP n [Vn] − EQn [Vn]|
≤ 8M2 n

n− 1

�
2R(Q�P ), (70)
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which is valid for all n > 1. Note that if we take n→ ∞ we
obtain the variance bound

|varP [X ] − varQ[X ]| ≤ 8M2
�

2R(Q�P )

which shows how the KL-divergence R(Q�P ) controls the
misspecification for QoIs beyond their expected values. The
same analysis also applies to the (biased) plug-in estimator for
the variance, namely

Ṽn(X1, . . . , Xn) := varF̂n
[X ] =

1
n

n�
i=1

⎛
⎝Xi − 1

n

n�
j=1

Xj

⎞
⎠2

.

Finally, we can easily generalize the sample variance cal-
culation to more general QoIs and statistical estimators. The
sample variance depends (up to a factor n−1

n ) only on the two
sample averages 1

n

�n
i=1Xi and 1

n

�n
i=1X

2
i . It is not difficult

to see that if |Xi| ≤M and the QoI has the form

ψn(X1, . . . , Xn) = g

�
1
n

n�
i=1

f1(Xi), . . . ,
1
n

n�
i=1

fk(Xi)

�

(71)

for some f1, · · · fk (say the the first k moments), and for
some Lipschitz continuous function g, then one can apply
Theorem 20 for a constant C which depends on M , the Lip-
schitz constant for g and f1, · · · fk. One important exam-
ple of the type (71) is the sample correlation, we refer to
Example 2.16 in [46].

Confidence Bands and Model Bias To further illustrate
our results we construct a non-parametric confidence band
for the CDF FQ(x), in the same context as the setting in
(68). We combine the bound (68) with the Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality [39], [46], i.e. the bound

P

�
sup

x
|F̂n(x) − FP (x)| ≥ �

�
≤ 2e−2n�2 , (72)

which itself is obtained though concentration inequalities. For
any n and α > 0, we set �n =

�
log(2/α)/2n and

Ln(x; η) = max{F̂n(x) −
√

2η − �n, 0}
Un(x; η) = min{F̂n(x) +

√
2η + �n, 1}. (73)

Since F̂n(x) is an unbiased estimator for the baseline model
P rather than for the (unknown) “true” model Q we obtain
the α–confidence band for FQ(x):

P{Ln(x; η) ≤ FQ(x) ≤ Un(x; η) for all x} ≥ 1 − α,

for all Q ∈ Qη. (74)

Due to the fact that both our bound (68) and the DKW inequal-
ity (72) are valid for any data size n, the confidence band (74)
does not require any asymptotic normality assumptions or a
large data set n� 1.

Connections to the Vapnik-Chervonenkis inequality The
DKW inequality is an effective tool for controlling devia-
tions from the average for one dimensional distributions and
their corresponding CDFs. However, the Vapnik-Chervonenkis
(VC) theory [46] allows us to address the same issues in a
more general setting that is applicable to higher-dimensional

distributions, by considering the empirical probability dis-
tribution instead of the CDF. In particular, corresponding
inequalities to (72), but for the empirical probability dis-
tribution, can be derived based on the VC theory, see for
instance Theorem 2.41 and Theorem 2.43 in [46]. In turn
the VC inequalities, along with our concentration information
bounds (64) can allow us to obtain confidence intervals for
higher dimensional distributions, similarly to (74).

VI. ELEMENTARY EXAMPLES

Prior to discussing applications involving more complex
models in Section VII, here we demonstrate the concentration/
information inequalities we developed earlier to two elemen-
tary examples that allow easy analytic and computational
implementations.

A. Exponential Distribution

We first consider the model bias bounds using the GO
divergence in Theorem 1, contrasted to the concentration/
information divergence in Theorem 5. In our first example, the
baseline model P is an exponential distribution. The models Q
can be any distributions which are absolutely continuous with
respect to P , hence R(Q�P ) < ∞. Let P be an exponential
distribution with parameter βP = 1. The QoI is f(X) = X .
The MGF of P is MP (c;X) = 1/(1 − c) and thus it is
finite in (0, 1), while otherwise it is infinite. Next, we let η
be a model uncertainty threshold and Q any distribution, not
necessarily exponential or in any parametric family, such that
R(Q�P ) ≤ η2. We note that the distribution P exhibits sub-
exponential behavior, namely

MP (c; f) = 1 + c+
c2

1 − c
≤ 1 + c+ 2c2

≤ exp(c+ c2/(2σ2
B)) := Φ(c), c ∈ (−0.5, 0.5),

(75)

where σB = 1/2 and the interval (−0.5, 0.5) is selected so
that the bounds remain finite. In general, if we have additional
information on the location of βP , e.g., from data, then
we can adjust the interval that c lies in accordingly. Here,
the concentration/information bound (23) is then adjusted
according to (75), using Theorem 5 and the general concentra-
tion bound (20). Although the MGF is known in this particular
example, the use of the concentration bound (75) allows us to
quantify the worst-case model bias for all QoIs g ∈ FP , where

FP = {g : MP (c; g̃) ≤ Φ(c), c ∈ (−0.5, 0.5), σ2
B ≤ 1/4}.

(76)

Figure 4 is a comparison of the GO-divergence and the
concentration/information bound based on (75), along with the
exact model bias for the case that Q is also an exponential
distribution with R(Q�P ) ≤ η2 and η ∈ [0, 1.6].

Finally, we can consider other types of tail decay, and
thus corresponding concentration inequalities, besides the sub-
Gaussian and the sub-exponential cases discussed thus far. For
example, we can also consider Poisson-type tail decay, see for
instance [32, Section 3.3.5] and [47].
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Fig. 4. Comparison of model bias bounds based on the GO divergence
and the concentration/information (75), with the exact model bias 1 − λQ,
λQ ∈ (1.01, 10), where Q is an exponential distribution with mean λQ. The
sub-exponential bound (75) is less sharp as the KL divergence increases, since
it captures the worst-case performance over the family of QoIs FP . Although
R(Q�P ) is computed with Q being an exponential distribution, the bounds to
the model bias are valid for any Q that is absolutely continuous with respect
to P and has R(Q�P ) in the range of the figure.

Remark 22: The bias is an unbounded function of the
KL divergence in this example—a consequence of the QoI
f(X) = X being unbounded under P . Therefore, any decrease
in KL divergence translates to an improvement in worst-case
model bias, see Figure 4; this fact is in sharp contrast with the
truncated Normal example in Section VI-B, where even large
improvements to larger values of the KL divergence may not
help much in reducing model bias, see Figure VI-B.

B. Truncated Normal

In this example the distributions we consider are bounded,
allowing us to deploy the hierarchy of concentration/ informa-
tion bounds (50) developed in Section III-C. We assume the
random variable X follows the truncated Normal distribution,
P = TN(0, 1,−1, 1), where [−1, 1] is the interval of support.
Here we will bound the model bias, EQ[f ]−EP [f ], for any Q
such that R(Q�P ) = η2, where η ∈ [0.01, 1] and for any f in
a suitable family of QoIs, FP . Apart from these, the bounds
make no other assumptions on Q and f . Figure 5 contains a
comparison of the different concentration/information bounds
(50) from Section III-C.

As a general observation, we notice that for large values
of η =

�
R(Q�P ), small perturbations of η will not change

the Bennett/GO (see Relations (7) and (39)) bounds signif-
icantly. Therefore, for some QoIs, e.g., f(X) = X , small
improvements to large values of the KL will barely improve
the worst-case bias (as captured by the bounds, see Figure 5).
The existence of such QoIs is guaranteed by the sharpness of
the bounds demonstrated in Section IV. Finally, we note that

Fig. 5. Comparison of the different bounds for the bias in the truncated
Normal example (see Section VI-B), assuming that the observable of interest
is f(X) = X. This plot makes no assumptions on the form of Q except
that R(Q�P ) = η2 ∈ (0.0, 4.0). As in Figure 4, here the concentra-
tion/information bounds capture the worst-case performance over the family
of QoIs FP , hence perform worse than the GO divergence bounds which are
suitable only for a single QoI, see also (50). Notice that Bennett and Bennett-
(a, b) track better the bound of the GO divergence for large values of the KL
whereas the Hoeffding is sufficient only for small values of the KL, i.e., at
the linearized regime of the GO bounds. Only the upper bounds for the bias
are shown here.

even for the tighter concentration/information bounds, i.e., the
ones associated with the two Bennett bounds (39) and (41),
there is some discrepancy with the GO divergence bound. This
discrepancy is due to the fact that the GO bound is applied
only for a specific QoI, while the concentration/information
bounds are tight over the broad classes of QoIs defined in
Section III-C, see also Remark 14.

VII. EPISTEMIC UNCERTAINTY QUANTIFICATION VIA

CONCENTRATION/INFORMATION INEQUALITIES

We apply the concentration/information inequalities to con-
trol model bias between baseline and alternative models in
two more complex examples. The type of model bias con-
sidered here arises in epistemic uncertainty quantification,
where modelers are unsure if their baseline model included
all necessary complexity or lacks sufficient data, [2], [5].
The KL divergence and in particular the GO divergence
bounds provide a non-parametric framework to mathematically
describe this type of epistemic uncertainties, as first shown
in [4]. Here, we consider two such examples that illustrate
different aspects of epistemic uncertainty, namely a data-driven
model for the lifetime of lithium batteries, as well as a high-
dimensional Markov Random Field model subject to various
localized uncertainties such as local defects. A key aspect
of our discussion in both examples is the necessity and the
(ease of) implementation of concentration/information model
bias bounds, see for instance Remark 11.
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TABLE III

FAILURE TIMES OF TEST SAMPLES [48]

A. Epistemic Uncertainty for Failure Probabilities

Here, we apply the bounds of Theorem 5, and in particular
the inequalities in Section III-C, to the life-time analysis of
lithium secondary batteries. Firstly, we introduce the Weibull
distribution which is widely used in for analyzing life-time
data, see [48] and references therein. The probability density
function of a Weibull random variable is

f(t) =
β

γ

 
t

γ

!β−1

e−( t
ξ )β

, t > 0, (77)

where β > 0 is called a shape parameter and γ > 0 is a
scale parameter of the distribution [49]. The shape parameter
explains the types of failure and the scale parameter explains
the characteristic life cycle of devices. The cumulative distri-
bution function F can be expressed as:

F (T ) = 1 − e−( T
ξ )β

,

where T denotes the time of failure (or the lifetime) of the
battery.

In Table III, experimental data based on life cycle tests
are obtained from [48]. By fitting the data in Table III to
the parameters of the Weibull distribution, we obtain the
corresponding maximum likelihood estimator (MLE) for γ and
β are γ̂ = 1138 and β̂ = 3.55, respectively. Now, we consider
this MLE Weibull distribution as the baseline model P , which
is a data-driven approximation to the unknown true model.
Next we consider the family of alternative models within
a fixed tolerance η2, namely the non-parametric family of
models Qη, see (3). This family accounts for unknown features
not necessarily captured in the baseline model which was
arbitrarily assumed to be Weibull. Furthermore, the family
Qη can account for perturbations in the baseline model—
constructed based on the specific dataset in Table III—due
to additional data that may become available or for any errors
in the data used in the MLE step. Next, we assess the impact
of model uncertainty within the family of models Qη on two
QoIs associated with lifetime probabilities of the batteries:

f1(t) = 1{0≤t≤T}(t), t > 0, (78)

f2(t;w) =
1

1 + ew(t−T )
, t > 0. (79)

The function f2(t;w) is a commonly used smooth approxima-
tion to the indicator function f1(t) and is usually referred as
the logistic function, see Section 39.1 of [50]). The parameter
w, w ≥ 1, controls the smoothness of the approximation.
The QoI for the life-time probability is defined exactly as
FP [T ] := EP [f1(t)] = P (0 ≤ t ≤ T ) or through the smooth
approximation EP [f2].

Since the QoI f1(t) is bounded in [0, 1], we can apply the
Bennett (39), Bennett-(a,b) (41) and Hoeffding bounds (43))

Fig. 6. The blue line is the failure probability based on the logistic function
f2; The red line is the failure probability based on the indicator function
f1; The black lines are the GO bounds based on f1 with η2 = 0.1; The
green lines are the Bennett-(a,b) bounds based on f2 with model uncertainty
η2 = 0.1. The magenta lines are the Bennett-(a,b) bounds based on f2 with
η2 = 0.01.

to obtain the uncertainty region, where a = 0, b = 1, ã1 =
−FP (T ), b̃2 = 1 − FP (T ) and σ2

B = V arP [f1(t)], the latter
needed just in the Bennet bound. For f2, we estimate EP [f2]
by sampling from P , thus computing μ2 = EP [f2], needed
in both Bennett bounds. Then, ã2 = −μ2 and b̃2 = 1 − μ2.
In Figure 6 we compare the lifetime probabilities given by
f1 and f2, where for the latter we set w = 5. In this
figure, we also observe that the logistic function f2 gives a
good approximation of the indicator function f1 since lifetime
probabilities based on them are almost the same. Moreover,
we set η2 = 0.1 and also plot the GO divergence bounds
of Theorem 1 based on f1 and Bennett-(a,b) bounds based
on f2. We notice that the bounds almost coincide. We also
consider the Bennett-(a,b) bounds based on a smaller tolerance
η2 = 0.01. As we see in the figure, we obtain a significantly
narrower model bias region.

The non-parametric setting using KL divergence is natural
in this example where the available data is sparse, induc-
ing significant epistemic uncertainty in the predictions of
failure probabilities. In this general line of thought, instead
of considering the MLE Weibull distribution as the baseline
model and the non-parameteric family Qη, we can also apply
Bayesian estimation to calculate a posterior P (γ, β|data) for
(γ, β). Then we can consider the Weibull corresponding to
the maximum a posteriori estimator (MAP) parameter as our
baseline model P. In this case we can consider other alternative
models Q = Qθ where Qθ is a parametric family of Weibull
models and the parameters δ are distributed according to
the posterior, δ ∼ P (γ, β|data). Here our setting is entirely
parametric although one can also consider non-parametric
Bayesian methods; we also refer to the discussion in Remark 4.
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Fig. 7. The Histogram is represented for the data in Table III; The red line
is the baseline model P , which is the MLE Weibull distribution.

How to choose η? In Figure 6, we set η at various arbitrary
fixed values that correspond to model perturbations associated
with local (η small) or global (η larger) sensitivity analysis,
in a single unified framework for both. On the other hand,
from a practical point of view η can be calculated as the KL
distance of the baseline model P from the available data set
from real model. To this end, if Q can be constructed from a
data set coming from the real model by using the histogram or
more generally with a kernel density estimator; then we can
estimate η = R(Q||P ) directly. For example, we consider Q
to be a histogram with density given by

qhist(x) =
m�

k=1

νk

nh
IBk

(x). (80)

Here B1, . . . , Bm denote the histogram bins, h is the bin
width, n is the number of observations and νk is the number
of data in Bk, while IBk

is the indicator function on the
bin Bk. We plot the histogram of the data with h = 100
as well as the fitted Weibull distribution in Figure 7. The
corresponding relative entropy between the histogram Q and
the baseline model P is η = R(Q||P ) ≈ 0.8. In fact, as we
also readily see in Figure 7, the Weibull is not a good fit for
the data, and that is why we have a larger value of η here.
In order to improve the performance of the predictive model,
we can either acquire more data or choose a better family of
parametric or nonparametric densities to fit the data in place
of the Weibull, but at the same time avoid overfitting.

B. Uncertainty Quantification for Markov Random Fields

Here we consider the impact on QoIs of localized perturba-
tions to statistical probability distributions of Markov Random
Fields [50] such as Gibbs measures. Such distributions are
inherently high-dimensional, allowing us to focus on this
aspect of model bias bounds. In particular, we consider Gibbs
measures for particle systems defined on a fixed finite subset
ΛN of the infinite dimensional lattice Z

d. Specifically we
consider ΛN = {x ∈ Z

d, |xi| ≤ n} the square lattice
with N = (2n + 1)d lattice sites, where typically n � 1.
Before we describe the model, we will specify some necessary
notation: we let S be the configuration space of a single

particle at a lattice site x ∈ Z
d. For example in a lattice

gas model S = {0, 1}, i.e. the lattice site can be empty or
occupied, and in a Potts model S = {0, 1, ..., q}, i.e. the
site is empty or occupied by particles of q different species.
In Ising magnetization models studied below, we have that S =
{−1, 1}, corresponding to down or up spins respectively. Then
SX is the configuration space for the particles in any subset
X ⊂ Z

d; we denote by σX = {σx}x∈X an element of SX .
Next, in order to define a Gibbs measure on ΛN , we first
specify the Hamiltonian HN (σΛN ) of a set of particles in the
region ΛN . An interaction Φ = {ΦX : X ⊂ Z

d, X finite}
associates to any finite subset X a function ΦX(σX) which
depends only on the particle configuration in X and accounts
for all particle interactions within X , see [25] for details.
Given an interaction Φ we then define the Hamiltonian HΦ

N

(with free boundary conditions) by

HΦ
N (σΛN ) =

�
X⊂ΛN

ΦX(σX), (81)

and Gibbs measure μΦ
N by

dμΦ
N (σΛN ) =

1
ZΦ

N

e−HN (σΛN
)dPN (σΛN ), (82)

where PN is the counting measure on SΛN and ZΦ
N =�

σΛN
e−HN (σΛN

) is the normalization constant, also known
as the partition function, [25].

Here we consider classes of perturbed models with corre-
sponding interaction Ψ that includes only local perturbations to
the interaction Φ, e.g. local defects encoded in the interaction
potential J , or localized perturbations to the external field h
in the example of the Ising-type Hamiltonian (84). We also
note that defects of finite temperature multi-scale probability
distributions are a continuous source of interest in the compu-
tational materials science community, see, for instance, [51];
in fact, lattice probability distributions such as (82), constitute
an important class of simplified prototype problems. In the
case of localized perturbations to the interaction Φ in (81),
the Hamiltonians scale as follows:

HΨ
N (σΛN ) = HΦ

N (σΛN ) +O(1).

Thus the corresponding relative entropy satisfies

R(μΨ
N || μΦ

N ) = logEμΨ
N

(eΔH) + EμΨ
N

(−ΔH)

= O(1), (83)

uniformly in the system size N , where we define ΔH =
HΨ

N −HΦ
N . However, in most cases, we do not know the exact

local perturbation as well as the perturbed Gibbs measure μΨ.
Instead, based on (83) we can consider a family of perturbed
models

Qη = {μΨ : R(μΨ
N�μΦ

N) ≤ η2}.
This family will include any perturbation within that tolerance
η2, for example: defects located at different lattice sites,
and of different magnitudes, as the scaling (83) demonstrates
rigorously.

As a concrete example of a Hamiltonian (81), we consider
μΦ to be a one-dimensional Ising model probability distribu-
tions on the one-dimensional lattice ΛN , labeled successively

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 25,2020 at 16:42:46 UTC from IEEE Xplore.  Restrictions apply. 



3094 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

Fig. 8. (a) The red line is the mean of the QoI (85) with m = 1 for the
baseline model (84) with J = 1 and β = 1. The green and blue lines are
the Bennett bounds for η2 = 0.05 and η2 = 0.5, respectively. (b) The red
line is the mean of the same QoI for the baseline model (84) with J = 1 and
β = 1; The green and blue lines are the Bennett-(a,b) bounds for η2 = 0.05
and η2 = 0.5, respectively. In both figures the lattice size is N=100.

by x = 1, 2, ..., N . To each site corresponds a spin σ(x), with
two possible values: +1 or −1. The Hamiltonian is given by

HΦ
N (σΛN ) = −β

N−1�
x=1

J(x)σ(x)σ(x + 1) − βh

N�
x=1

σ(x).

(84)

Using the concentration/information inequalities developed in
Section III, we can obtain model bias bounds for QoIs, such
as the localized average around any lattice site x,

f(σΛN ) =
1

2m+ 1

�
{y:|y−x|≤m}

σ(y), (85)

for a fixed radius m. In the demonstration below we we pick
m = 1 for concreteness. Since the QoI f (85) is bounded,
−1 ≤ f ≤ 1, we can use the Bennett-(a,b) bound (41).
Alternatively, we can use the Bennett bound (39)), which how-
ever requires estimating in addition to EμΦ

N
[f ], the variance

V arμΦ
N

[f ] by sampling from μΦ, see also Section III-C. The
latter is not unreasonable given that variance computations are
necessary in many applications because they ensure suitable
confidence intervals for the averaged QoIs. In Figure 8,

we implement both Bennett and Bennett-(a,b) bounds by
considering two different KL divergence tolerances, η2 =
0.5, 0.05. A comparisons between Figure 8a and Figure 8b
indicates that Bennett and Bennett-(a,b) bounds are fairly close
for this example.

Notable computational advantages of these concentra-
tion/information inequalities over direct numerical simulation
of alternative models Q = μΨ, as well as over the GO
divergence bounds in Theorem 1 are the following: (1) when
using Theorem 5 along with Bennett-type bounds (39) or (41),
we can deploy computational resources to estimate EμΦ

N
[f ] or

possibly VarμΦ
N

[f ]—see also Table II—just for the baseline
model P = μΦ, instead of simulating all alternative models
Q = μΨ models; (2) we do not need to use the full GO
divergence bounds in Theorem 1, which require potentially
expensive full MGF calculations, also recalling Remark 11.

VIII. CONCLUSION

In this paper we combined the uncertainty quantification
information inequality of [4], [19], [20] together with classical
concentration inequalities [31] to obtain easily implementable
bounds for the model bias of quantities of interest (QoIs). The
bounds control the model bias in terms of the relative entropy
between different models and intrinsic statistical quantities
associated to the QoIs in a baseline model, e.g. mean, variance,
L∞ bound. Our results improve substantially on classical
information bounds such as the Pinsker inequality. First, our
bound scales correctly with the size of the data sets/number
of degrees of freedom while classical inequalities do not, see
Remark 21. This scaling property is illustrated in Section V
where we discuss bias bounds for general statistical estimators.
In addition, we demonstrate the tightness of our bounds in
Sections II and IV: given suitable families of QoIs and a family
of models whose Kullback-Leibler divergence with respect
to a given baseline model is less than a tolerance η2, there
always exists a QoI and models which saturate the upper
and lower bounds. This demonstrates rigorously the precise
sense our model bias bound is optimal. This approach can be
generalized in various ways. The recent preprint [38] proves
UQ bounds for Markov process in the long-time regime by
using concentration inequalities obtained via spectral gap esti-
mates, Poincaré and log-Sobolev inequalities. In forthcoming
work we will study further bias in phase diagrams of Gibbs-
Markov random fields and for molecular dynamics, as well as
model bias of coarse-grained models for equilibrium and non-
equilibrium molecular dynamics built via variational inference
methods, [9], [52].

APPENDIX

PROOFS OF THEOREM 1 AND THEOREM 2

In the appendix we use the notation Λ(c) = logMP (c; f̃)
so that the GO divergence is

Ξ(Q�P ;±f) = inf
c>0

�
Λ(±c) +R(Q�P )

c

�
Note that Λ(c) is convex function which we assume to be
finite on an interval (d−, d+) with d− < 0 < d+. On that
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interval Λ(c) is infinitely differentiable and strictly convex.
Since we centered the QoI we have Λ(0) = Λ�(0) = 0 and
Λ��(0) = varP [f ].

Proof of Theorem 1: We first establish the property 1) of
the GO divergence. To show that the GO divergence is non-
negative we note that the KL divergence R(Q�P ) is non-
negative and that by Jensen’s inequality,

Λ(c) = logEP [ec(f−EP [f ])] ≥ log eEP [c(f−EP [f ])]

= EP [f − EP [f ]] = 0.

and thus Ξ(Q�P ; f) is non-negative.
If f = EP [f ] is constant then Λ(c) = 0 and since

R(Q�P ) ∈ [0,∞),

Ξ(Q�P ; f) = inf
c>0

R(Q�P )
c

= 0.

If Q = P then R(Q�P ) = 0 and

0 ≤ Ξ(Q�P ; f) = inf
c>0

Λ(c)
c

≤ lim
c→0

Λ(c)
c

= Λ�(0) = 0.

Conversely assume that Ξ(Q�P ; f) = 0, then we may
assume that R(Q�P ) > 0 otherwise we have Q = P . Then
we must have d+ = ∞ and the infimum must be obtained
in the limit c → ∞. Since Λ(c)/c = 1

c

" c

0
Λ�(s)ds and Λ� is

non-decreasing then Λ(c)/c is also non-decreasing. Since we
have limc→0

Λ(c)
c = 0 and limc→∞

Λ(c)
c = 0 we must have

Λ(c) = 0 for all c ≥ 0. But then Λ��(0) = varP [f ] = 0 which
implies that f is constant P -a.s. This concludes the proof of
Property 1) in Theorem 1.

We turn next to Property 2). We set η =
�
R(Q�P ) so that

Ξ(Q||P ; f) = inf
c≥0

�
Λ(c) + η2

c

�
.

Recall that we have Λ(0) = Λ�(0) = 0 and

Λ��(0) ≡ κ2 = μ2 Λ���(0) ≡ κ3 = μ3,

where κk = Λ(k)(0) is the k-th cumulant and μk = EP [(f −
EP [f ])k] is k-th the centered moment of f . For c∗ = c∗(η) to
be a minimum we must have

c∗Λ�(c∗) − Λ(c∗) − η2 = 0

and then the minimum is equal to

inf
c≥0

Λ(c) + η2

c
= Λ�(c∗)

Since c(0) = 0 we expand c in powers of η

c(η) = c1η + c2η
2 +O(η3)

and Λ in powers of c

Λ(c) =
1
2
κ2 c

2 +
1
6
κ3 c

3 + 0(c4).

We have

c2(η) = c21η
2 + 2 c1c2η3 +O(η4) c3(η) = c31η

3 +O(η4)

and thus

η2 = cΛ�(c) − Λ(c)

= κ2 c
2 +

1
2
κ3 c

3 − (
1
2
κ2 c

2 +
1
6
κ3 c

3) +O(c4)

=
1
2
κ2c

2 +
1
3
κ3 c

3 +O(c4)

=
1
2
κ2c

2
1η

2 +
 
κ2 c1c2 +

1
3
κ3c

3
1

!
η3 +O(η4)

from which we obtain

1 =
1
2
κ2 c

2
1 =⇒ c1 =

�
2
κ2

0 = κ2 c1 c2 +
1
3
κ3 c

3
1 =⇒ c2 = −1

3
κ3

κ2
c21 = −2

3
κ3

κ2
2

Finally we have

Λ�(c) = κ2 c+
1
2
κ3 c

2 + 0(c3)

= κ2 c1η + κ2 c2η
2 +

1
2
κ3 c

2
1η

2

=
√

2
√
κ2η +

1
3
κ3

κ2
η2

If we use the skewness

γ(f) =
EP

�
(f − EP [f ])3

�
varP [f ]3/2

=
κ3

κ
3/2
2

we have

inf
c≥0

Λ(c) + η2

c
=
�

2varP [f ]η± 1
3

�
varP [f ]γ(f)η2 +O(η3).

By replacing f by −f we obtain the optimization problem for
Λ(−c) and thus

Ξ(Q || P ;±f) =
�

varP [f ]
�

2R(Q || P )

+
1
3
γ
�

varP [f ]R(Q�P ) +O((R(Q�P ))
3
2 )

and this proves Property 2).
Proof of Theorem 2: Theorem 2 is contained in parts

1) and 2) of the following Theorem which gives more details
on the case where η± is finite. Most ingredients of the proof
of Theorem 2 are already present in [4], [20], (see in particular
[20][Theorem 2.9]). In its present form Theorem 23 is proved
in [27][Proposition 3]. We note that the proof can also be
carried out using Lagrange multipliers taking into account the
KL inequality constraint, see for instance [23].

Theorem 23: Suppose (d−, d+) is the largest open set such
that Λ(c) = logMP (c; f̃) <∞ for all c ∈ (d−, d+).

1) For any M ≥ 0 the optimization problems

inf
c>0

Λ(±c) +M

c

have unique minimizers c± ∈ [0,±d±]. Let M± be
defined by

M± = lim
c�±d±

±cΛ�(±c) − Λ(±c).

Then the minimizers c± = c±(M) are finite for M <
M± and c±(M) = ±d± if M ≥M±.
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2) If c±(M) < ±d± then

Λ(±c±) +M

c±
= inf

c>0

Λ(±c) +M

c

= ±Λ�(±c±)=±
	

EP±c± [f ] − EP [f ]


,

(86)

where c±(M) is strictly increasing in M and is deter-
mined by the equation

R#P±c± ||P $ = M. (87)

3) M± is finite in two distinct cases.

a) If ±d± <∞ (in which case g must be unbounded
above/below) M± is finite if limc→±d± Λ(±c) :=
Λ(d±) < ∞ and limc→±d± ±Λ�(±c) :=
±Λ�(d±) <∞, and for M ≥M± we have

inf
c>0

Λ(±c)+M
c

=
Λ(d±) +M

±d±
=±

	
EPd± [f ]−EP [f ]



+
M−M±
±d± .

(88)

b) If ±d± = ∞ and M± is finite then f is P -a.s.
bounded above/below and for M ≥M± we have

inf
c>0

Λ(±c)+M
c

=ess supx∈X{±(f(x) − EP [f ])}.
(89)

Proof of Theorem 23: First note that it is enough to prove
the result for Λ(c) since the result for Λ(−c) is obtained
by replacing f by −f . We also use the notation f̃+ =
ess sup{f(x) − EP [f ]}.

We first claim that automatically

Λ(d+) = lim
c�d+

Λ(c),

where Λ(d+) may be infinite. By monotone convergence

EP [1{f̃≥0}e
cf̃ ] � EP [1{f̃≥0}e

d+f̃ ]

as c� d+. By dominated convergence

EP [1{f̃<0}e
cf̃ ] � EP [1{f̃<0}e

d+f̃ ]

as c � d+, and the claim follows. A very similar argument
shows that Λ�(c) also has a limit as c� d+.

Let

B(c;M) =
Λ(c) +M

c
. (90)

We divide into cases.

1) f̃+ < ∞. In this case Λ�(c) � f̃+ < ∞ as c → ∞
and Λ�(0) < f̃+. If M = 0 then the infimum is Λ�(0)
and attained at c+ = 0 since Λ(c)/c is an increasing
function. If M > 0 then

B�(c;M) =
cΛ�(c) − Λ(c) −M

c2

for c ≥ 0. The function cΛ�(c) − Λ(c) strictly increases
from 0 at c = 0 to some limit M+ > 0 at c = ∞, and the

minimizer is at the unique finite root of cΛ�(c)−Λ(c) =
M for M < M+ and c+ = ∞ for M ≥M+.

2) f̃+ = ∞. In this case there are two subcases.

a) d+ = ∞. In this case since f̃+ = ∞ we have
Λ�(c) � ∞ as c→ ∞ and cΛ�(c)−Λ(c) → ∞ as
c → ∞. Since 0Λ�(0) − Λ(0) = 0, in all cases of
M ≥ 0 there is a unique root to cΛ�(c)−Λ(c) = M
and hence a unique minimizer.

b) d+ <∞. We know that Λ�(c) converges as c� d+

to a well defined left hand limit which we call
Λ�(d+) (note that this value could be ∞). Thus we
have that cΛ�(c) −Λ(c) ranges from 0 at c = 0 to
M+ = d+Λ�(d+)−Λ(d+). For M ∈ [0,M+) there
is a unique minimizer in [0, d+). For M ≥M+ the
unique minimizer is at c+ = d+.

To conclude the proof we note that if c+ < d+ then an easy
computation shows that

c+Λ�(c+) − Λ(c+) = R(Pc+ ||P ) = M,

and thus

B(c+,M) = Λ�(c+) = EPc+
[f ] − EP [f ]

which proves (86) and (87). Finally if d+ = ∞ and g is P -a.s.
bounded above then the infimum is equal to limc→∞

Λ(c)
c and

this establishes (89). If d+ <∞ and M+ <∞ then the bound
takes the form (88). �
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parametrized coarse-graining of non-equilibrium extended systems,”
J. Chem. Phys., vol. 139, no. 7, Aug. 2013, Art. no. 074115.

[11] J. F. Rudzinski and W. G. Noid, “Coarse-graining entropy, forces, and
structures,” J. Chem. Phys., vol. 135, no. 21, Dec. 2011, Art. no. 214101.

[12] A. J. Majda, R. V. Abramov, and M. J. Grote, Information Theory and
Stochastics for Multiscale Nonlinear Systems (CRM Monograph Series).
Providence, RI, USA: American Mathematical Society, 2005.

[13] A. Atkinson, A. Doney, and R. Tobias, Optimum Experimental Designs,
With SAS. London, U.K.: Oxford Univ. Press, 2007.

[14] A. J. Majda and B. Gershgorin, “Quantifying uncertainty in climate
change science through empirical information theory,” Proc. Nat. Acad.
Sci. USA, vol. 107, no. 34, pp. 14958–14963, Aug. 2010.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 25,2020 at 16:42:46 UTC from IEEE Xplore.  Restrictions apply. 



GOURGOULIAS et al.: HOW BIASED IS YOUR MODEL? CONCENTRATION INEQUALITIES, INFORMATION AND MODEL BIAS 3097

[15] A. J. Majda and B. Gershgorin, “Improving model fidelity and sensi-
tivity for complex systems through empirical information theory,” Proc.
Nat. Acad. Sci. USA, vol. 108, no. 25, pp. 10044–10049, Jun. 2011.

[16] M. Komorowski, M. J. Costa, D. A. Rand, and M. P. H. Stumpf, “Sen-
sitivity, robustness, and identifiability in stochastic chemical kinetics
models,” Proc. Nat. Acad. Sci. USA, vol. 108, no. 21, pp. 8645–8650,
May 2011.

[17] Y. Pantazis and M. A. Katsoulakis, “A relative entropy rate method
for path space sensitivity analysis of stationary complex stochastic
dynamics,” J. Chem. Phys., vol. 138, no. 5, Feb. 2013, Art. no. 054115.

[18] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, Jul. 2006.

[19] M. A. Katsoulakis, L. Rey-Bellet, and J. Wang, “Scalable information
inequalities for uncertainty quantification,” J. Comput. Phys., vol. 336,
pp. 513–545, May 2017.

[20] P. Dupuis, M. A. Katsoulakis, Y. Pantazis, and P. Plecháč, “Path-space
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