
Appendix - For Online Publication Only

This appendix provides missing proofs, details for Section 4, and comparisons

with existing decomposition results.

B. Other proofs

Proof of Proposition 3.1. We show (ii)((i) follows similarly). Let i and si be

fixed. Then from the discussion before the proposition, w(i) is concave in si for all i.

Thus there exists a Nash equilibrium. We next show that Φ(s) =
∑

i maxsi∈Si
w(i)(si, s−i)

is strictly convex. Let t′, t′′ ∈ S be given. Then u′, u′′ ∈ S be given such that

w
(i)
(u′

i, t
′
−i) = maxsi∈Si

w(i)(si, t
′
−i) and w

(i)
(u′′

i , t
′′
−i) = maxsi∈Si

w(i)(si, t
′′
−i) for all i.

Let α ∈ (0, 1) and t∗ be such that w
(i)
(t∗i , ((1−α)t′+αt′′)−i) = maxsi∈Si

w(i)(si, ((1−
α)t′ + αt′′)−i) for all i. Then we have

(1− α)Φ(t′) + αΦ(t′′) = (1− α)
∑

i

w(i)(u′
i, t

′
−i) + α

∑

i

w
(i)

(u′′
i , t

′′
−i)

≥ (1− α)
∑

i

w(i)(t∗i , t
′
−i) + α

∑

i

w
(i)

(t∗i , t
′′
−i) >

∑

i

w(i)(t∗i , (1− α)t′−i + αt′′−i)

= Φ((1− α)t′ + αt′′).

Thus Φf (s) is strictly convex and the minimizer of Φf is unique. Since the Nash

equilibrium is a minimizer of Φf , the Nash equilibrium is unique.

Proof of Corollary 3.1. Let f = w + h, where h is a non-strategic game. Then,

w(1)(σ1, σ2) is convex in σ2 and w(2)(σ1, σ2) is convex in σ1. By Proposition 3.1, the

set of Nash equilibria is convex. Suppose that f has two distinct Nash equilibria, ρ∗

and σ∗, where ρ∗ �= σ∗. Then, for all t ∈ (0, 1), (1− t)ρ∗ + tσ∗ is a Nash equilibrium

since the set of Nash equilibria is convex. This contradicts Condition (N) because

of Lemma 2.2 in Quint and Shubik (1997).

Proof of Proposition 3.2. We let

D := {f ∈ L : f (i)(s) :=
∑

l �=i

ζl(s−l) for all i}
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We first show that

B = (Z + E) ∩ (I + E) = S(P(L)) + E .

Let f ∈ (Z+E)∩(I+E). Then, f = g1+h1, for g1 ∈ Z and h1 ∈ E , and f = g2+h2,

for g2 ∈ I and h2 ∈ E . Thus, we have

g1 + h1 = g2 + h2, (1)

and applying S to (1), we obtain

f = S(h1 − h2) + h2.

Thus, since h1 − h2 ∈ P(L), f ∈ S(P(L)) + E . Conversely, let f ∈ S(P(L)) + E .
Obviously, f ∈ I + E . In addition, f = S(P(g)) + h1, for g ∈ L and h1 ∈ E . Thus,

f = S(P(g)) + h1 = −(I− S)(P(g)) +P(g) + h1 ∈ Z + E .

This shows that

(Z + E) ∩ (I + E) = S(P(L)) + E .

Note that

S(P(L)) + E={f : f (i) =
n∑

l=1

ζl(s−l) for some {ζl}nl=1 and for all i}+ E

= {f : f (i) =
∑

l �=i

ζl(s−l) for some {ζl}nl=1 and for all i}+ E

= D + E .

Now observe that

(
∑

l �=1

ζl(s−l),
∑

l �=2

ζl(s−l), · · · ,
∑

l �=n

ζl(s−l))

∼ (
n∑

l=1

ζl(s−l),
n∑

l=2

ζl(s−l), · · · ,
n∑

l=1

ζl(s−l)).

Hence, the first result follows from D+E = (I+E)∩ (Z+E). For the second result,
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observe that

(
∑

l �=1

ζl,
∑

l �=2

ζl, · · · ,
∑

l �=n

ζl) ∼ (
∑

l �=1

ζl − (n− 1)ζ1,
∑

l �=2

ζl − (n− 1)ζ2, · · · ,
∑

l �=n

ζl − (n− 1)ζn)

= (
∑

l �=1

(ζl − ζ1),
∑

l �=2

(ζl − ζ2), · · · ,
∑

l �=n

(ζl − ζn))

= (
∑

l>1

(ζl − ζ1), ζ1 − ζ2, ζ1 − ζ3, · · · , ζ1 − ζn)

+ (0,
∑

l>2

(ζl − ζ2), ζ2 − ζ3, · · · , ζ2 − ζn) + · · ·

+ (0, 0, · · · ,
∑

l>n−1

(ζl − ζn−1), ζn−1 − ζn)

=
n∑

i=1

n∑

l>i

(0, · · · , 0,−ζi + ζj︸ ︷︷ ︸
i−th

, 0, · · · 0, ζi − ζj︸ ︷︷ ︸
j−th

, 0, · · · , 0)

=
∑

i<j

(0, · · · , 0,−ζi + ζj︸ ︷︷ ︸
i−th

, 0, · · · 0, ζi − ζj︸ ︷︷ ︸
j−th

, 0, · · · , 0).

Proof of Corollary 3.2. (i) This immediately follows from Proposition 3.2. (ii)

From the second part of Corollary 3.2, (s∗1, s
∗
2) ∈ (argmaxs1 ζ2(s1), argmaxs2 ζ1(s2))

is a Nash equilibrium. If there are two distinctive maximizers, then since the set of

maximizers is convex, there exist infinitely many Nash equilibria, contradicting Con-

dition (N) again by Lemma 2.2 in Quint and Shubik (1997). Thus, the maximizer

is unique and constitutes the strictly dominant Nash equilibrium.

Proof of Proposition 3.3. Let dσi(si) =
1

m(Si)
dmi(si) be player i’ uniform mixed

strategy. We define a uniform mixed strategy profile as a product measure of uniform

mixed strategies: i.e.,

dσ(s) =
∏

i

dσi(si).

Let i and si be fixed. We show that

f (i)(si, σ−i) = 0.
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Identity payoff Zero-sum Both Potential
Normalized Normalized and Zero-sum

I ∩ N Z ∩N B
Dimensions (l−1)l

2
(l−2)(l−1)

2 2l − 1

Basis Games

(
1 −1
−1 1

)
⎛

⎝
0 −1 1
1 0 −1
−1 1 0

⎞

⎠
(
1 1
0 0

) (
1 0
1 0

) (
0 1
0 1

)

Table 1: Dimensions of subspaces and basis games for two-player symmetric games

Then, the desired result follows since f (i)(si, σ−i) = 0 = f (i)(σi, σ−i) for all i and si;

hence, f (i)(σi, σ−i) = maxsi f
(i)(si, σ−i) for all i. First, by the definition of the mixed

strategy extension,

f (i)(si, σ−i) =

∫

s−i∈S−i

f (i)(si, s−i)
∏

l �=i

dσl(sl).

If f is a zero-sum normalized game, then

f (i)(si, σ−i) = −
∫

s−i∈S−i

∑

j �=i

f (j)(sj, s−j)
∏

l �=i

dσl(sl) = −
∑

j �=i

∫

s−i∈S−i

f (j)(sj, s−j)
∏

l �=i

dσl(sl) = 0

where the last equality follows from the normalization,
∫
sl∈Sl

f (l)(sl, s−l)dσl(sl) = 0

for all l and Fubini’s Theorem. If f is an identical interest game, then similarly

f (i)(si, σ−i) =

∫

s−i∈S−i

v(si, s−i)
∏

l �=i

dσl(sl) = 0

where the last equality again follows from the normalization,
∫
sl∈Sl

v(sl, s−l)dσl(sl) =

0 for all l. Thus, we obtain the desired result.

C. Details for Section 4

C.1. Finite strategy games

Lemma C.1. We have the following results:

(i) The set of games {S(ij)}i=1,··· ,l,j>i forms a basis set for I ∩ N
(ii) The set of games {Z(ij)}i=2,··· ,l,j>i forms a basis set for I ∩ N
(iii) The set of games {D(i)}i=1,··· ,l−1, {E(i)}i=1,··· ,l forms a basis set for B
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Proof. (i) We note that there are precisely l(l−1)
2

number of different S(ij)’s. Thus,

we only need to show that these S(ij)’s are independent. Let S be

S :=
l∑

i=1

l∑

j=i+1

α(ij)S(ij).

Then it is easy to check that Sij = α(ij).Thus if S = O, then α(ij) = 0 for all i, j.

(ii) Again we note that there are precisely (l−2)(l−1)
2

number of different Z(ij)’s. Let

Z be

Z :=
l∑

i=2

l∑

j=i+1

ζ(ij)Z(ij).

Then it is also easy to check that Zij = −ζ(ij).Thus if Z = O, then ζ(ij) = 0 for all

i, j.

(iii) Again we note that there are precisely l − 1 number of different D(i)’s and l

number of different E(i)’s. Let K be

K =
l−1∑

i=1

δiD
(i) +

l∑

i=1

ηiE
(i)

Then ifK = O, then ηi = 0 for all i (because the last row ofK is given by (η1, · · · , ηl))
and this, in turn, implies that δi = 0 for all i.

We would have the following results.

Proposition C.1. We have the following results:

(i) Suppose that γij < 0 for all i, j. Then #(G) = 1.

(ii) Suppose that γij > 0 for all i, j. Suppose that δi ≥ 0 for all i and γ > δ̄ + ζ̄.

Then #(G) = 2l − 1.

Proof of Proposition C.1 (ii). We will show that G satisfies the total band

wagon property defined by Kandori and Rob (1998). Then for any A ⊂ {1, 2, · · · , l},
there exists a unique Nash equilibrium, which is completely mixed in A and thus there

exist precisely 2l − 1 Nash equilibria (See Kandori and Rob (1998)). Thus, we will

show that for all q ∈ Δ, BR(q) ⊂ Σq, where BR(q) is the set of all pure strategy

best responses for q. Suppose that there exists q ∈ Δ such that BR(q) �⊂ Σq. Then

we must have Σq �= {1, · · · , l} (the set of all pure strategies) and there exists k �∈ Σq
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such that

ek ·Gq ≥ q ·Gq

We define γji = γij for j > i. First observe that we have

q ·Sq =
∑

i<j

γij(qi−qj)
2, ek ·Sq =

∑

j<k

γjk(qk−qj)+
∑

j>k

γkj(qk−qj) =
∑

j �=k

γkj(qk−qj)

Next we define ζji = −ζij for j > i. Again observe that we have

q · Zq = 0, e1 · Sq =
∑

i<j

ζij(qj − qi), ek · Sq =
∑

j �=k

ζij(q1 − qj)

Thus

e1 · Sq ≤
∑

i<j

max
i<j

|ζij||qj − qi| ≤ max
i<j

|ζij|
∑

i<j

≤ ζ̄

ek · Sq ≤
∑

j �=k

max
i<j

|ζij||q1 − qj| ≤ max
i<j

|ζij|
∑

i<j

≤ ζ̄

Next we let d = (δ1, · · · , δl)T and find that

q ·Dq = q · d ≥ 0, ek ·Dq = δk

since δi ≥ 0 for all i. Then since k �∈ Σq so qk = 0. Thus

0 ≤ q · Sq + q · Zq + q ·Dq = q ·Gq ≤ ek ·Gq =
∑

j �=k

γkj(qk − qj) + ζ̄ + δ̄

= −
∑

j �=k

γkjqj + ζ̄ + δ̄ ≤ −
∑

j∈Σq

γkjqj + ζ̄ + δ̄ ≤ −γ + ζ̄ + δ̄ < 0

which is a contradiction. The last inequality in the above follows from

∑

j∈
∑

q

γkjqj ≥
∑

j∈
∑

q

min
j∈

∑
q

γkjqj ≥
∑

j∈
∑

q

min
j �=k

γkjqj ≥ min
j �=k

γkj
∑

j∈
∑

q

qj = min
j �=k

γkj ≥ γ

To show (i) of Proposition C.1, we recall the following definitions (from Hofbauer and Sandholm
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(2009)).

Definition C.1. We say that

(i) a symmetric game G is stable if (q − p) ·G(q − p) ≤ 0 for all p, q ∈ Δ

(ii) a symmetric game G is strictly stable if (q − p) ·G(q − p) < 0 for all p �= q ∈ Δ

(iii) a symmetric game G is null-stable if (q − p) ·G(q − p) = 0 for all p, q ∈ Δ

Next we have the following well-known observation.

Lemma C.2. If p satisfies

(q − p) ·Gq < 0 for all q �= p ∈ Δ

then p is a unique Nash equilibrium for a symmetric game, G.

Proof. Since G is finite, there exist a Nash equilibrium, say p′. We will show that

p′ = p. Suppose that p′ �= p. Then we find

p ·Gp′ > p′ ·Gp′

which shows that p′ is not a Nash equilibrium, a contradiction. Thus we must have

p′ = p. And this also shows that there cannot exist any other Nash equilibrium.

We have the following characterization for the strict stability of G.

Lemma C.3. Suppose that G is given by (31).

(i) G is strictly stable if γij < 0 for all i < j.

(iii) G is null stable if γij = 0 for all i < j.

Proof. (i) Let TΔ be the tangent space of Δ and z �= 0 and z ∈ TΔ. Then since

G = S + Z +B, Bz = 0,and z · Zz = 0, we have

z ·Gz = z · Sz = z ·
∑

i<j

γijS
(ij)z =

∑

i<j

z · S(ij)z =
∑

i<j

γij(zi − zj)
2 ≤ 0

because γij < 0 for all i < j. If
∑

i<j γij(zi − zj)
2 = 0, γij(zi − zj)

2 = 0 for all i < j

and thus zi − zj = 0 for all i > j which is a contradiction to z �= 0. Thus we have

z ·Gz < 0. (ii) Let z ∈ TΔ. If γij = 0, then we again have

z ·Gz =
∑

i<j

γij(zi − zj)
2 = 0
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Proof of Proposition C.1 (i). Suppose that γij < 0 for all i > j. Since G is a

finite game, there exists a NE, p∗, for G. Since G is strictly stable, for all q �= p∗, we

have

(q − p∗) ·G(q − p∗) < 0 for all q �= p∗ ∈ Δ

Thus

(q − p∗) ·Gq < (q − p∗) ·Gp∗ ≤ 0

where the last inequality follows from p∗ is a NE. Thus we find that #(G) = 1.

C.2. Contest games

First note that s = (0, 0, ·, 0) cannot be a Nash equilibrium since any player i can

deviate to si > 0. Thus we let

S = {(s1, · · · , sn) : si ≥ 0 for all i, and sj > 0 for some j}.

Lemma C.4. Let i be fixed and si ≥ 0. Then w(i)(si, ·) : S−i → R is convex.

Proof. We will show that p(i)(si, ·) : S−i → R is convex and then the desired result

follows. Suppose that si > 0. Define g : s−i 
→
∑

l �=i sl and h : t 
→ s1
s1+t

. Then g is

convex, h is convex and decreasing, thus p(i)(si, ·) is convex. If si = 0, then

p(i)(0, s−i) =

{
1
n
, if s−i = 0

0, otherwise.

Thus p(i)(0, ·) is convex for all s−i �= 0. Thus we obtain the desired result.

Since it is known that the rent-seeking game admits a Nash equilibrium, Propo-

sition 3.1 and Lemma C.4 show that the set of Nash equilibrium for the rent-seeking

game is convex. Let b◦i (s−i) be the best response when an interior solution occurs.

That is, b◦i (s−i) satisfies

ci(b
◦
i (s−i) +

∑

l �=i

sl)
2 =

∑

l �=i

sl.
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Then

Φf (s) =
∑

l=i

w(i)(max{b◦i (s−i), 0}, s−i)

For P ⊂ {1, · · · , n} such that |P | ≥ 2, we define

w
(i)
P (si, s−i) = (p(i)(si, s−i)−

1

|P |)−
1

|P | − 1

∑

j �=i,j∈P

(cisi − cjsj)

for s ∈
∏

i=1 Si.

Lemma C.5. Suppose that s∗ is a Nash equilibrium and s∗i > 0 for all i ∈ P and

s∗i = 0 for all i �∈ P where P ⊂ {1, · · · , n}. Let s∗P = (s∗i )i∈P . Then we have

Φf (s
∗) =

∑

i∈P

w
(i)
P (b◦i (s

∗
P,−i), s

∗
P,−i)

Proof. Let P ⊂ {1, · · · , n} such that for all i ∈ P , si > 0, bi(s−i) > 0 and for all

i �∈ P , si = 0, bi(s−i) = 0. Then we have

n∑

i=1

w(i)(bi(s−i), s−i) =
∑

i∈P

w(i)(b0i (s−i), s−i) +
∑

i �∈P

w(i)(0, s−i)

=
∑

i∈P

[p(i)(b◦i (s−i), s−i)− cib
◦
i (s−i)) +

1

n− 1

∑

j �=i,j∈P

cjsj]

+
∑

i �∈P

1

n− 1

∑

j �=i,j∈P

cjsj − 1

=
∑

i∈P

w
(i)
P (b◦i (sP,−i), sP,−i)

where we use b◦i (s−i) = b◦i (sP,−i), since b
◦
i (s−i) depends

∑
l �=i sl. Using this, we obtain

the desired result.
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Lemma C.5 leads us to define

Φ◦
P (s) :=

∑

i∈P

w
(i)
P (b◦i (s−i), s−i)

=
1

|P | − 1

∑

i∈P

ci(
∑

i∈P

∑

l �=i

sl)− 2
∑

i∈P

√
ci

√∑

l �=i

sl + |P | − 1 (2)

for s ∈ S(P ).

Lemma C.6. Φ◦
P (s) : S(P ) → R is strictly convex.

Proof. From (2), it is enough to consider the following function:

Ψ(s) :=
n∑

i=1

αih(
∑

l �=i

sl)

where αi > 0 and h is strictly convex. We will show that Ψ is strictly convex. Let

s, t ∈ S+ and s �= t and ρ ∈ (0, 1). Then for some k,
∑

l �=k sl �=
∑

l �=k tl. Otherwise,

if
∑

l �=i sl =
∑

l �=i tl, then
∑

l sl =
∑

l tl, which again implies si = ti, a contradiction.

Thus from the strict convexity of h, we have

h((1− ρ)
∑

l �=k

sl + ρ
∑

l �=k

tl) > (1− ρ)h(
∑

l �=k

sl) + ρh(
∑

l �=k

tl)

and

Ψ((1−ρ)s+ρt) =
n∑

i=1

αih(
∑

l �=i

(1−ρ)sl+ρtl) >
n∑

i=1

αi(1−ρ)h(
∑

l �=i

si)+ρh(
∑

l �=i

tl) = (1−ρ)Ψ(s)+ρΨ(t)

Lemma C.7. Suppose that s∗ and t∗ are Nash equilibria for a rent-seeking game

defined in (34) such that s∗i , t
∗
i > 0 for all i ∈ P and s∗i , t

∗
i = 0 for all i �∈ P for some

P ⊂ {1, · · · , n}. Then s∗ = t∗.

Proof. Suppose that s∗ and t∗ are Nash equilibria for Γ(n) such that s∗i , t
∗
i > 0 for all

i ∈ P and s∗i , t
∗
i = 0 for all i �∈ P . Let s∗P := (s∗i )i∈P and t∗P := (t∗i )i∈P . Then we have

0 = Φ(s∗) = Φ◦
P (s

∗
P ) and 0 = Φ(t∗) = Φ◦

P (t
∗
P ).
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Since Φ◦
P (sP ) ≥ 0 for all sP ∈

∏
i∈P Si (This is to be shown) and the strict convexity

of Φ◦
P (s) implies that the minimum is unique. We have s∗P = t∗P , and thus s∗ = t∗.

Proposition C.2. The Nash equilibrium for the rent-seeking game defined in (34)

is unique.

Proof. Suppose that s∗ and t∗ such that s∗ �= t∗ are Nash equilibria. Let P ′ := {i :
s∗i > 0} and P ′′ := {i : t∗i > 0}. Then from Lemma C.7, we must have P ′ �= P .

Since the set of Nash equilibria is convex by Lemma C.4, ρs∗ + (1 − ρ)t∗ is a Nash

equilibria for all ρ ∈ [0, 1]. Then for 0 < ρ < 1, (ρs∗ + (1 − ρ)t∗)i > 0 if i ∈ P ′ and

(ρs∗ + (1− ρ)t∗)j > 0 if j ∈ P ′′. Thus there are infinitely many Nash equilibrium for

the set P ′ ∪ P ′′, which is contradiction to Lemma C.7.

D. Existing decomposition results

Our decomposition methods extend two kinds of existing results: (i) Kalai and Kalai

(2010), (ii) Hwang and Rey-Bellet (2011); Candogan et al. (2011). First, Kalai and Kalai

(2010) decompose normal form games with incomplete information and study the im-

plications for Bayesian mechanism designs. Their decomposition is based on the or-

thogonal decomposition L = I ⊕Z in equation (11). Second, Hwang and Rey-Bellet

(2011) similarly provide decomposition results based on the orthogonality between

identical interest and zero-sum games and between normalized and non-strategic

games, mainly focusing on finite games. Candogan et al. (2011) decompose finite

strategy games into three components: a potential component, a nonstrategic com-

ponent, and a harmonic component. When the numbers of strategies are the same for

all players, harmonic components are the same as zero-sum normalized games, and

their harmonic games, in this case, refer to games that are strategically equivalent to

zero-sum normalized games. Also, their potential component is obtained by remov-

ing the non-strategic component from the potential part (I + E) of the games. Note

that we can change our definition of zero-sum normalized games to their definition

of harmonic games, with all the decomposition results remaining unchanged. Thus,

their three-component decomposition of finite strategy games follows from Theorem

2.1, L = (I + E)⊕ (Z ∩N ) (see the proof of Corollary D.1 for more detail).
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Corollary D.1. We have the following decomposition.

L = ((I + E) ∩N )
︸ ︷︷ ︸
Potential Component

⊕ E︸︷︷︸
Nonstrategic
Component

⊕ (Z ∩N )
︸ ︷︷ ︸
Harmonic
Component

Proof. This proof follows from Theorem 2.1 by showing that ((I+E)∩N )⊕E = I+E .
First, observe that (I+E)∩N ⊂ I+E , which implies that ((I+E)∩N )⊕E ⊂ I+E .
Now, let f ∈ I+E . Then, f = g+h, where g ∈ I, h ∈ E , and g = (v, v, · · · , v). Then,
by applying the map, P, we find that f = P(f) + (I −P)(f). Obviously, P(f) ∈ E .
In addition, (I − P)(f) = (I − P)(g) = (v − T1v, v − T2v, · · · , v − Tnv) ∈ I + E .
Thus, (I −P)(f) ∈ (I + E) ∩N .

Ui (2000) provides the following characterization for potential games:

f is a potential game if and only if f (i) =
∑

M⊂N
M�i

ξM for some {ξM}M⊂N for all i (3)

where ξM depends only on sl, with l ∈ M . Let

D := {f ∈ L : f (i)(s) :=
∑

l �=i

ζl(s−l) for all i}.

From our decomposition results, we have D ⊂ I + E and E ⊂ I +D. In particular,

the second inclusion holds because

ζi(s−i) =
n∑

l=1

ζl(s−l)−
∑

l �=i

ζl(s−l).

Thus, D ⊂ I+E implies that I+D+E ⊂ I+E and E ⊂ I+D implies I+D+E ⊂
I +D. From this, we find

I +D = I +D + E = I + E (4)

Note that all games in I and in D satisfy Ui’s condition in (3); hence, games in

I + D satisfy Ui’s condition. Then, equalities in (4) show that the condition in (3)

is a necessary condition for potential games. The sufficiency of Ui’s condition is
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deduced by adding the non-strategic game

(
∑

M⊂N
M ��1

ξM ,
∑

M⊂N
M ��2

ξM , · · · ,
∑

M⊂N
M ��n

ξM)

to game f satisfying Ui’s condition.

As explained in the main text, Sandholm (2010) decomposes n-player finite strat-

egy games into 2n components using an orthogonal projection. When the set of games

consists of symmetric games with l strategies, the orthogonal projection is given by

Γ := I − 1
l
11T , where I is the l × l identity matrix and 1 is the column vector

consisting of all 1’s. Using Γ, we can, for example, write a given symmetric game,

A, as

A = ΓAΓ︸︷︷︸
=(I∩N )⊕(Z∩N )

+ (I − Γ)AΓ + ΓA(I − Γ) + (I − Γ)A(I − Γ)
︸ ︷︷ ︸

=B

.1 (5)

Thus, our decompositions show that ΓAΓ can be decomposed further into games with

different properties—identical interest normalized games and zero-sum normalized

games—and every game belonging to the second component in (5) is strategically

equivalent to both an identical interest game and a zero-sum game. Sandholm (2010)

also shows that a two-player game, (A,B), is potential if and only if ΓAΓ = ΓBΓ. If

P = (P (1), P (2)) is a non-strategic game, it is easy to see that ΓP (1) = O and P (2)Γ =

O, where O is a zero matrix. Thus, the necessity of the condition ΓAΓ = ΓBΓ for

potential games is obtained. Conversely, if ΓAΓ = ΓBΓ, then game (A,B) does not

have a component belonging to Z ∩ N because (ΓAΓ,ΓBΓ) ∈ (I ∩ N ) ⊕ (Z ∩ N ).

Thus, (A,B) is a potential game.

1In fact, for two player symmetric game, using Table 4 we can verify that

fB = (I − (I − T1)(I − T2))f
(1), fI∩N + fZ∩N = (I − T1)(I − T2)f

(1).
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