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Abstract: In this paper we study the physical and statistical properties of the periodic
Lorentz gas with finite horizon driven to a non-equilibrium steady state by the combi-
nation of non-conservative external forces and deterministic thermostats. A version of
this model was introduced by Chernov, Eyink, Lebowitz, and Sinai and subsequently
generalized by Chernov and the third author. Non-equilibrium steady states for these
models are SRBmeasures and they are characterized by the positivity of the steady state
entropy production rate. Ourmain result is to establish that the entropy production, in this
context equal to the phase space contraction, satisfies the Gallavotti–Cohen fluctuation
relation. The main tool needed in the proof is the family of anisotropic Banach spaces
introduced by the first and third authors to study the ergodic and statistical properties of
billiards using transfer operator techniques.

1. Introduction

The periodic Lorentz gas (or Sinai billiard) is obtained by placing finitely many disjoint
scatterers with smooth boundaries of strictly positive curvature on the 2-torus. The
dynamics is the motion of a point particle traveling at unit speed and undergoing elastic
reflections at the boundaries and is purely Hamiltonian. The associated two-dimensional
collisionmap (the billiardmap) preserves a smooth invariantmeasureμ0 with very strong
ergodic properties: see the works by Sinai, Bunimovich and Chernov [S,BS,BSC,Ch1]
on ergodicity,mixing and the central limit theorem, the proof byYoung [Y]of exponential
decay of correlations, and many other statistical properties [RY,MN1,MN2] as well as
the recent proof by Baladi, Liverani and one of the authors [BDL] for the exponential
decay of correlations for the billiard flow. Of particular importance for this paper are
the recent papers by two of the authors [DZ1,DZ2,DZ3] who introduced Banach spaces
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suitable for a direct analysis of the dynamics by transfer operators, which bypasses
the construction of symbolic dynamics (Markov partitions and Young towers). These
functional analytic tools will turn out to be crucial to prove the large deviation theorems
needed in this paper.

Suitable perturbations of this model where the particle is submitted to external non-
conservative forces in between or during collisions and to a suitable thermostatting
mechanism have been put forward as simple, yet realistic, models in non-equilibrium
statistical mechanics. With a constant external electric field and an iso-energetic ther-
mostat, this kind of model was first studied by Chernov, Eyink, Lebowitz and Sinai
[CELS1,CELS2] who proved the existence of a unique SRBmeasureμ+ for the system:
for μ0-almost-every initial condition the system converges to an invariant measure μ+
which is ergodic and mixing, and singular with respect to μ0. In addition, they estab-
lished linear response formulas for this system. In subsequent papers, Chernov and one
of the authors [Ch2,Ch4,CZZ,Z] generalized and strengthened these results to cover
a large class of perturbations and our work will rely on these results extensively. In a
more general context the use of thermostats and SRB measures as good models of non-
equilibrium steady states has been advocated, see e.g. the book by Evans and Morriss
[EM] and the papers by Gallavotti and Cohen [GC1,GC2] and Ruelle [R3] (more on
this in Sect. 1.1.)

One of the main results in this paper is to establish a version of the so-called
Gallavotti–Cohen fluctuation theorem [GC1,GC2] for the entropy production for the
Lorentz gas driven out of equilibrium by external forces. The concept of entropy pro-
duction in non-equilibrium statistical mechanics, in this context, was best formalized
by Ruelle [R1,R2,R3] (see also the earlier work by Andrey [A]) and we will discuss it
in Sect. 1.1. The fluctuation theorem asserts that for time-reversible systems the time
fluctuations (of large deviation type) of the entropy production have a universal symme-
try: the ratio of the probabilities of observing an average entropy production rate over a
time interval of length T equal to a and equal to −a is equal to eaT . The study of the
fluctuations of the entropy production for systems driven out of equilibrium originated
in the numerical observation by Evans, Cohen, and Morris [ECM] for a thermostatted
system driven by external shear. The symmetry of the transient fluctuations of entropy
production, that is when the system starts in the equilibrium (but not stationary) state
(μ0 in our notation) was first noted by Evans and Searles [ES1] (see Proposition 1.4
in Sect. 1.1). On the other hand, using Markov partitions, in [GC1,GC2] Cohen and
Gallavotti established the fluctuation symmetry for time-reversible smooth uniformly
hyperbolic systems starting in a stationary non-equilibrium state. The relation between
the transient and stationary fluctuation theorem is discussed further in [CG,ES2,JPR].
From a slightly different point of view, Kurchan [Ku], Lebowitz and Spohn [LS] proved
the fluctuation theorem for general stochastic (Markovian and/or Gibbsian) dynamics
and Maes [M1] recast the fluctuation theorem as following from the Gibbs property of
an equilibrium state by considering the distribution of the time series of the process.
Also in a related work, Jarzynski [Ja] established a very influential transient relation for
the fluctuations of work of a system driven by time-dependent forces. These (and other)
seminal works have given rise to a substantial amount of research in the past 20 years,
and the fluctuation theorems and relations now stand as one of the pillars in the modern
theory of non-equilibrium statistical mechanics. There have been a number of recent
reviews, among them [M2,MN,ChGa,JPR], to which we direct the reader for some of
the recent developments in this subject. Among these reviews, Jaksic, Pillet, and one of
the authors [JPR] present a general formalism to understand the transient and station-
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ary fluctuation theorems, and the relation between them, in the general framework of
dynamical systems; to some extent, we will follow the approach taken in that paper.

In this paper, we prove the steady state fluctuation relations for the periodic Lorentz
gas with an external electric field and an iso-energetic thermostat [CELS1,CELS2] as
well as several classes of related models with different forcing mechanisms [Ch2,Ch4,
CZZ,Z]. While the models at hand are uniformly hyperbolic, the singularities of the
billiard dynamics (due to grazing collisions) preclude the use of Markov partitions to
study the fluctuation properties of ergodic averages. Instead, we follow a direct approach
using suitable transfer operators to express the cumulant generating function of ergodic
averages. This approach to large deviations was used for hyperbolic dynamical systems
in [RY] using Young towers [Y], especially for the Lorentz gas with finite horizon. Our
approach consists of proving that the fluctuation properties of ergodic averages are the
same for a large class of initial distributions, which contains both the stationary distribu-
tion μ0 of the Lorentz gas without external forces used to verify the transient fluctuation
theorem, and the invariant SRB measure for the perturbed Lorentz gas. Since the sym-
metry of fluctuations when starting from μ0 is easy to establish (see Proposition 1.4) a
proof of the fluctuation theorem follows then immediately. The key new tool needed is
the family of Banach spaces introduced by two of the authors [DZ1,DZ2,DZ3] to study
the ergodic properties of billiards without using the symbolic dynamics tools used in ear-
lier approaches (Markov partitions [BS], Markov sieves [BSC], Young towers [Y,Ch1]).
These Banach spaces are devised for the exact purpose to be large enough to contain
the SRB invariant measure, singular with respect to μ0 but smooth along unstable direc-
tions, yet small enough for the transfer operator to have a spectral gap. They also have the
advantage of being stable under perturbations: since all the relevant transfer operators
act on a single Banach space, we are able to show that important spectral quantities vary
smoothly as functions of certain system parameters, and from these properties we derive
the necessary control to prove the desired limit theorems.

This paper is organized as follows. In Sect. 1.1 we give a brief overview of the ideas
and concepts of non-equilibrium statistical mechanics needed for the paper. In Sect. 2 we
introduce our model and state our main results. In Sect. 2.2, following [DZ2], we discuss
a general family of maps with singularities, to which our dynamical results apply. In
Sect. 3 we introduce the Banach spaces and transfer operators needed in our analysis. In
Sect. 4 we prove the key analytical estimates needed to establish a spectral gap for the
family of transfer operators associated with the entropy production. Finally, in Sect. 5
we establish the analyticity and (strict) convexity of the logarithmic moment generating
function, allowing us to conclude the proof of the fluctuation theorem. In Appendix A
we provide the Lasota–Yorke estimates needed to establish a spectral gap for the relevant
operators.

1.1. Entropy production and fluctuation theorems. In this section, for the convenience
of the reader, we provide a general (and somewhat informal) discussion, following [JPR],
of the concepts of non-equilibrium steady states, entropy production, and the fluctuation
relations.

The starting point is an invertible dynamical system (M, T ), i.e. a measurable space
M and an invertible measurable map T : M → M . We also postulate the existence of a
reference measure μ0 which, in general, is not an invariant measure for T .

In a physical context one may write T = TE depending on some external non-
equilibrium forces E with T0 (for E = 0) being the equilibrium dynamics without
external forces. One may think of μ0 as the invariant measure for the dynamics T0
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without external forces; in this context, μ0 is the equilibrium steady state. If we think
of μ0 as describing the initial state of the system, we then define μn as the state of the
system at time n ∈ Z, i.e. we have

μn( f ) = μ0( f ◦ T n) , (1.1)

for any bounded measurable f .
We introduce next the concept of a non-equilibrium steady state following Ruelle

[R3].

Definition 1.1. A probability measure μ+ is called a non-equilibrium steady state for
the dynamical system (M, T ) with reference measure μ0 if:
(1) the measure μ+ is an ergodic invariant measure for T ;
(2) for μ0-almost every initial condition x ∈ M the empirical measure 1

n

∑n−1
k=0 δT k (x)

converges weakly to μ+ as n → ∞;
(3) the measure μ+ is singular with respect to μ0.

Item (2) in the definition selects one invariant measure μ+ among the usually many
invariant measures of the dynamical system (M, T ) and it is essentially equivalent to the
SRB property in the theory of hyperbolic dynamical systems if M is a smooth manifold
and μ0 is Lebesgue measure. Measures satisfying (2) are also often called “physical
measures” as they describe the statistics of “most” initial conditions. Item (3) in the
definition ensures that the invariant measure is truly a “non-equilibrium” steady state in
the sense of statistical mechanics, while if μ+ were equivalent to μ0 it should rather be
called an equilibrium steady state. Finally in a physical context where T = TE depends
on external forces, the non-equilibrium steady state μ+ depends on E and we will use
the notation μE in that case.

Next we turn to the concept of the entropy production observable s : M → R which
plays a central role in non-equilibrium statistical mechanics. We make the (rather weak)
regularity assumption that μn and μ0 are mutually absolutely continuous and denote by
ln the logarithm of the Radon-Nykodym derivative,

ln = log
dμn

dμ0
.

Since μn+m( f ) = μm( f ◦ T n) = μ0(elm f ◦ T n) = μn(elm◦T−n
f ) = μ0(eln elm◦T−n

f ),
we have the chain rule, ln+m = ln + lm ◦T−n , and in particular, l−1 = −l1 ◦T . Therefore,
we have

ln =
n−1∑

k=0

l1 ◦ T−k .

For two probability measuresμ and ν on M , let us denote by R(μ|ν) the relative entropy
ofμwith respect to ν (also known as the Kullback–Leibler divergence) which is defined
by

R(μ|ν) =
{∫

log dμ
dν

dμ if μ � ν

+∞ otherwise
.

We have then

R(μn|μ0) = μn(ln) = μn

(
n−1∑

k=0

l1 ◦ T−k

)

= μ0

(
n∑

k=1

l1 ◦ T k

)

,

using (1.1). This leads to the following definition.



Fluctuation of the Entropy Production for the Lorentz Gas Under Small External Forces 703

Definition 1.2. The entropy production observable for the dynamical (M, T ) with ref-
erence measure μ0 is is given by

s = l1 ◦ T .

Ifwe assume the existence of a non-equilibrium steady state and if the entropy production
observable s is regular enough we have

lim
n→∞

1

n
R(μn|μ0) = lim

n→∞ μ0

(
1

n

n−1∑

k=0

s ◦ T k

)

= μ+(s) ≥ 0 ,

since the relative entropy is non-negative. This general fact is knownas the non-negativity
of the entropy production rate in non-equilibrium steady states. It is shown in [JPR,
Section 5] that, under quite general conditions, we have

μ+(s) > 0 if and only if μ+ is singular with respect to μ0.

Weexpect in any case that, for a bonafidenon-equilibriumsteady state,wehavepositivity
of entropy production, i.e., μ+(s) > 0, a fact which usually requires some non-trivial
analysis. We prove this result in the context of the Lorentz gas under external forces as
part of Theorem 2.4.

An important example in the context of this paper is when the state space M is
a smooth manifold, μ0 is a measure with a smooth density with respect to Lebesgue
measure on M , and T is a (piecewise) smooth transformation. In this case the change of
variable formula gives

eln = 1

Jμ0T
n ◦ T−n

,

where Jμ0T is the Jacobian of the map T with respect to μ0 and therefore

s = − log Jμ0T ,

which can be interpreted as describing a phase space contraction rate. We refer to [JPR]
for various other examples.

The fluctuation theorem asserts that the fluctuations of the ergodic averages of the
entropy production have a universal symmetry under the condition that the system is
invariant under-time reversal.

Definition 1.3. Thedynamical system (M, T )with referencemeasureμ0 is time-reversal
invariant if there exists an involution i : M → M (that is, i ◦ i is the identity) such that,
(1) μ0 is invariant under i , i.e., μ0( f ◦ i) = μ0( f );
(2) i ◦ T ◦ i = T−1.

Using the time reversal property, we have for any bounded measurable f ,

μ0(e
l−n f ) = μ0( f ◦ T−n) = μ0( f ◦ T−n ◦ i) = μ0( f ◦ i ◦ T n) = μ0(e

ln f ◦ i)

= μ0(e
ln◦i f ),

and hence
l−n = ln ◦ i. (1.2)

Using this it is straightforward to derive the so-called transient fluctuation theorem
[ES1,JPR] (also called the Evans-Searles fluctuation theorem). We give a proof here for
the convenience of the reader.
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Proposition 1.4 (Transient fluctuation theorem). Suppose the dynamical system (M, T )

with reference measure μ0 is time-reversal invariant and s is the entropy production
observable. Then we have the symmetry

μ0

(
e−a

∑n−1
k=0 s◦T k

)
= μ0

(
e−(1−a)

∑n−1
k=0 s◦T k

)
,

for any a ∈ R for which both integrals are finite.

Proof. First we use that by the chain rule,

l−n = −ln ◦ T n = −
n∑

k=1

l1 ◦ T k = −
n−1∑

k=0

s ◦ T k .

Thus without the assumption of time reversal, we have by (1.1)

μ0(e
−a

∑n−1
k=0 s◦T k

) = μ0(e
−aln◦T n

) = μn(e
−aln ) = μ0(e

(1−a)ln ). (1.3)

On the other hand time reversal implies by (1.2) that,

μ0(e
(1−a)ln ) = μ0(e

(1−a)l−n◦i ) = μ0(e
(1−a)l−n ) = μ0(e

−(1−a)
∑n−1

k=0 s◦T k
). (1.4)

Combining (1.3) and (1.4) gives the desired symmetry. �	
The transient fluctuation theorem has the following interpretation (Proposition 3.3

of [JPR]): if Pn(z) denotes the probability distribution of
∑n−1

k=0 s ◦ T k with initial
distribution μ0 and τ(z) = −z then we have

dPn
dPn ◦ τ

= enz,

which gives a universal ratio for the probabilities to observe an average entropy produc-
tion rate equal to +z or −z.

By contrast the Gallavotti–Cohen (steady state) fluctuation relation deals with the
fluctuation starting in the non-equilibrium steady state μ+. To state it we define, for any
probability measure ν, the logarithmic moment generating function

eν(a) = lim
n→∞

1

n
log ν

(
e−a

∑n−1
k=0 s◦T k

)
,

provided the limit exists.

Steady state fluctuation relation.The dynamical system (M, T )with referencemeasure
μ0 and non-equilibrium steady state μ+ satisfies the steady state fluctuation relation if
for some a0 > 0 and all a ∈ [−a0, 1 + a0]:
(1) the limit defining the logarithmic moment generating function exists,

eμ+(a) = lim
n→∞

1

n
logμ+

(
e−a

∑n−1
k=0 s◦T k

)
;

(2) the moment generating function has the following symmetry,

eμ+(a) = eμ+(1 − a).
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The transient and steady state fluctuation relations look similar, yet are distinct state-
ments. In particular, the transient fluctuation theorem is a finite time statement, valid
even in the absence of a steady state. Even if we assume that the limit eμ0(a) exists
(a nontrivial statement), one cannot expect, in general, that eμ0(a) = eμ+(a) even if
μ+ is a steady state (with reference measure μ0) (see e.g. [CG] for a counterexample).
There certainly are examples where these two functions coincide, e.g. for Anosov diffe-
ormorphisms (see e.g. [JPR]) and indeed one of the main contributions of this paper is
to prove that for billiards under small external forces the limits eμ0(a) and eμ+(a) exist
and coincide for a non-perturbative range of values of the parameter a.

To conclude we briefly discuss the large deviation interpretation of the symmetries.
From the theory of large deviations, it is well known that if eν(a) is C1 on an interval
a ∈ [−a0, 1+a0], then by theGartner-Ellis theorem (see [DZe])we have a large deviation
principle for the ergodic averages 1

n

∑n−1
k=0 s ◦ T k , with initial condition distributed

according to ν, i.e.,

lim
δ→0

lim
n→∞

1

n
log ν

(

x : 1
n

n−1∑

k=0

s ◦ T k ∈ [z − δ, z + δ]
)

= −I (z),

for any z ∈ [e′
ν(−a0), e′

ν(1 + a0)], where I : R → [0,∞] is the rate function given by
the Legendre transform

I (z) = sup
−a0≤a≤1+a0

{az − eν(a)}.

The symmetry eν(a) = eν(1 − a) implies that rate function I (z) has the symmetry

I (z) = sup
−a0≤a≤1+a0

{az − eν(a)} = sup
−a0≤a≤1+a0

{az − eν(1 − a)}
= sup

−a0≤b≤1+a0
{(1 − b)z − eν(b)} = I (−z) − z.

(1.5)

The symmetry of the rate function I (z) − I (−z) = −z implies that the ratio of prob-
abilities to observe an entropy production rate equal to z and equal to −z over a time
interval of length n is asymptotically equal to enz .

One can also show that the fluctuation relation does imply the Kubo formula for the
linear response of currents, but we shall not discuss this further here (see e.g. [LS,M1,
M2,JPR]).

2. Description of Model and Main Results

Letting d ≥ 1, we define a periodic Lorentz gas by placing finitely many closed, convex
regions (scatterers)�i , i = 1, . . . d, on a TorusT2 = R

2/Z2, which are pairwise disjoint
and have C3 boundaries with strictly positive curvature. The classical billiard flow on
the table T2\∪i {interior �i } is defined by the motion of a particle traveling at unit speed
and undergoing elastic collisions at the boundaries. In this paper we will also consider
the motion of particles subject to external forces, as well as certain types of collisions
which do not obey the usual law of reflection.

The discrete-time billiard map T associated with the flow is the Poincaré map cor-
responding to collisions with the scatterers. At each collision, we record the position
according to an arclength parameter r (oriented clockwise on the boundary of each
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scatterer) and the angle ϕ made by the outgoing (post-collision) velocity with the unit
normal to the boundary at the point of collision. The phase space of the map is thus
M = ∪d

i=1 Ii × [−π/2, π/2], where each Ii is an interval with endpoints identified and
with length equal to the arclength of ∂�i .

For any x = (r, ϕ) ∈ M , define τ(x) to be the free path of the first collision of
the trajectory starting at x under the billiard flow. The billiard map is defined wherever
τ(x) < ∞. We say that the billiard has finite horizon if there is an upper bound on the
function τ . Otherwise, we say the billiard has infinite horizon. Notice that the function τ

depends on the (possibly curved) trajectories of particles in T2, while M is independent
of the trajectories; thus we may study many classes of perturbations of a billiard flow
while fixing M .

We will denote by dμ0 = c0 cosϕdrdϕ the smooth invariant probability measure
which is preserved by the unperturbed billiardmap, where c0 is the normalizing constant.

2.1. Assumptions. In this subsection we first state the assumptions on the model, fol-
lowing [CZZ] (which in turn combines the assumptions in [CZ,Z,DZ2]).

Let q = (x, y) be the position of a particle in the billiard table Q := T
2\(∪i�i )

and p be the velocity vector. We may define a perturbed billiard flow on Q as follows.
Between collisions, the position and velocity obey the following differential equation,

dq
dt

= p(t),
dp
dt

= F(q,p), (2.1)

where F : T2 ×R
2 → R

2 is a C2 stationary external force. At collisions, the trajectory
experiences possibly nonelastic reflections with slipping along the boundary,

(q+(ti ),p+(ti )) = (q−(ti ),Rp−(ti )) +G(q−(ti ),p−(ti )), (2.2)

where Rp−(ti ) = p−(ti ) + 2(n(q−) · p−)n(q−) is the usual reflection operator, n(q)

is the unit normal vector to the billiard wall ∂Q at q pointing inside the table Q, and
q−(ti ),p−(ti ), q+(ti ) and p+(ti ) refer to the incoming and outgoing position and velocity
vectors, respectively.1G is an external force acting on the incoming trajectories.Weallow
G to change both the position and the velocity of the particle at the moment of collision.
The change in velocity can be thought of as a kick or twist while a change in position
can model a slip along the boundary at collision, or even reflection by a soft billiard
potential [BT].

In [Ch2,Ch4],Chernov considered billiards under small external forcesFwithG = 0,
and F to be stationary. In [Z] a twist force was considered assuming F = 0 and G
depending on and affecting only the velocity, not the position. Here we follow [DZ2,
CZZ] and consider a combination of these two cases for systems under more general
forces F and G.

Let E = (F,G), where F and G are the two external forces during the flight and at
collisions, respectively. Let 	t

E be the induced billiard flow on Q × R
2 and denote by

TE = TF,G the corresponding billiard map.

(A1) (Invariant space)The perturbed flow	t
E preserves a smooth functionE(q,p), such

that the level surface M := {E(q,p) = c} is a compact 3-D manifold, for some c > 0.

1 Since we identify T
2 with R

2/Z2, we define addition of vectors (q, p) ∈ T
2 × R

2 as addition mod 1 in
each coordinate of q and standard vector addition for p.
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Moreover, ‖p‖ > 0 on M, and for each q ∈ Q and p ∈ S1, the ray {(q, tp), t > 0}
intersects the manifoldM in exactly one point.

Under assumption (A1), the system has an additional integral of motion and we will
consider the restricted system on a compact phase space, M ⊂ Q × R

2. For example,
if we add a Gaussian thermostat (a heat bath) to the system such that the billiard moves
at constant speed (constant temperature if there are a large number of particles), then
M := {‖p‖ = c} is an invariant compact level set. More generally, the speed p = ‖p‖
of the billiard along all trajectories on M at time t satisfies

0 < pmin ≤ p(t) ≤ pmax < ∞,

for some constants pmin ≤ pmax. In addition, M admits a global coordinate system
{(x, y, θ) : (x, y) ∈ Q, 0 ≤ θ < 2π}, where θ is the angle between p and the positive
x-axis. Thus the speed p = ‖p‖ onM can be represented as a function p = p(x, y, θ)

and the velocity p at q can be expressed as p = pv, where v = (cos θ, sin θ) is the unit
vector in the direction of p. We can then rewrite Eq. (2.1) for the dynamics between
collisions as

q̇ = p, ṗv + pv̇ = F. (2.3)

Multiplying both sides of the second equation in (2.3) by v using the dot product and
cross product respectively, we obtain

ṗ = v · F, and pv × v̇ = v × F. (2.4)

Therefore, using the notation F = (F1, F2), the equations in (2.1) have the following
coordinate representations at any (x, y, θ) ∈ M,

⎧
⎨

⎩

ẋ = p cos θ,

ẏ = p sin θ,

θ̇ = (−F1 sin θ + F2 cos θ)/p.
(2.5)

Next, consider a trajectory γ̃ ⊂ M of the flow passing through the point (x, y, θ) ∈ M,
which projects down to a smooth curve γ ⊂ Q. We denote by κ = κ(x, y, θ) the
(signed) geometric curvature of γ at (x, y) ∈ Q. It follows that

κ(x, y, θ) = ±‖q̇ × q̈‖
‖q̇‖3 = ±‖v × F‖

p2
= −F1 sin θ + F2 cos θ

p2
, (2.6)

where the sign should be chosen accordingly. Combining this with (2.5), we have

θ̇ = pκ. (2.7)

Note that the angle θ = θ(t) is discontinuous at reflection times: it jumps from θ− to θ+.
In the case of elastic collisions, the quantities x , y and p remain unchanged. By contrast,
under the twisting force G, all quantities may change at collisions.

For any point (x, y, θ) ∈ M, let τ(x, y, θ) be the time for the trajectory starting from
(x, y, θ) to make its next non-tangential collision at ∂Q.

(A2) (Finite horizon) There exist τmax > τmin > 0 such that free paths between suc-
cessive non-tangential reflections are uniformly bounded: τmin ≤ τ(x, y, θ) ≤ τmax, for
all (x, y, θ) ∈ M with (x, y) ∈ ∂Q.
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(A3) (Smallness of the external forces). There exists ε > 0 small enough such that the
forces E = (F,G) satisfy

‖F‖C1 < ε, ‖G‖C1 < ε.

Moreover, there exist constants α0 > 1/3 and CE > 0 such that ‖F‖C1+α0 , ‖G‖C1+α0 ≤
CE.

Remark 2.1. Note that (A2) also puts some implicit constraints on the smallness of forces.
In fact, the existence of τmin not only prevents touching scatterers, but also implies the
trajectory cannot be bent too much such that the particle falls back to the same scatterer
immediately.

Let I : M → M be the involution defined by I(x, y, θ) = (x, y, π + θ). For a
general flow 	t : M → M, the reversed flow of 	t is defined by 	t− = I ◦ 	−t ◦ I.
The flow	t is said to be time-reversible, if	t− = 	t . It is well known that the unforced
billiard flow is time-reversible.

(A4) (Time-reversibility)Both forcesFandGare stationary, and the forcedbilliard flow
	t

E is time-reversible. Moreover, we assume that the addition of G preserves tangential
collisions: G(r,±π

2 ) = (0, 0).
Note that due to (A4), the singularity set of T−1

F,G is the same as that of the untwisted

map T−1
F,0 . It also implies that the billiard map TE is time-reversible.

Fix ε0 > 0, τ∗ ∈ (0, 1), and C0 > 0. For the fixed billiard table Q, let F(ε0, τ∗,C0)

denote the collection of all forced billiard maps defined by the dynamics (2.1) and (2.2)
under the external forces E = (F,G) and satisfying assumptions (A1)–(A4), such that
τ∗ ≤ τmin ≤ τmax ≤ τ−1∗ , CE ≤ C0, and ε ≤ ε0 in (A3).

In Sect. 2.2.1 we define a class of maps satisfying uniform properties regarding
hyperbolicity and singularities, (H1)–(H5). The following lemma from [DZ2] is crucial
in that respect.

Lemma 2.2 ([DZ2, Theorem 2.10]). Fix τ∗ ∈ (0, 1). There exist ε0,C0 > 0 such that
the family of maps F(ε0, τ∗,C0) satisfy (H1)–(H5) with uniform constants.

2.2. Abstract framework. In this section, we identify a set of uniform properties (H1)–
(H5) enjoyed by the class of perturbed billiardmaps defined in Sect. 2.1; these properties
guarantee the Lasota–Yorke inequalities (2.17) with uniform constants. These conditions
are a simplified version of the abstract framework appearing in [DZ2] since here we
consider only finite horizon billiards, so the technical difficulties associated with the
infinite horizon case are excluded.

We also introduce general conditions (C1)–(C4) to verify that a perturbation is small
in the sense required for Theorem 2.3. These conditions are sufficient to establish the
framework of [KL].Asmentioned above, the fact that the specific classes of perturbations
we consider in Sect. 2.1 satisfy (H1)–(H5) follows from Lemma 2.2.

2.2.1. A class of maps with uniform properties. We fix the phase space M = ∪d
i=1 Ii ×

[−π
2 , π

2 ] of a billiard map associated with a periodic Lorentz gas as in Sect. 2.4. We
will denote (normalized) Lebesgue measure on M by m, i.e., dm = 1

πL drdϕ, where

L = ∑d
i=1 |Ii |.

We define the set S0 = {ϕ = ±π
2 } and for a fixed k0 ∈ N, we define for k ≥ k0, the

homogeneity strips,
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Hk = {(r, ϕ) : π/2 − k−2 < ϕ < π/2 − (k + 1)−2}. (2.8)

The strips H−k are defined similarly near ϕ = −π/2. We also define H0 = {(r, ϕ) :
−π/2 + k−2

0 < ϕ < π/2 − k−2
0 }. The set S0,H = S0 ∪ (∪|k|≥k0∂H±k) is therefore

fixed and will give rise to the singularity sets for the maps that we define below, i.e. for
any map T that we consider, we define ST±n = ∪n

i=0T
∓iS0 to be the singularity sets

for T±n , n ≥ 0. We assume that ST±n comprises finitely many smooth curves for each

n ∈ N. We also define the extended singularity sets ST,H
±n = ∪n

i=0T
∓iS0,H to include

the boundaries of the homogeneity strips. When the map T is fixed, we sometimes write
SH±n to simplify notation.

Suppose there exists a class of invertible maps F such that for each T ∈ F , T :
M\ST

1 → M\ST−1 is a C2 diffeomorphism on each connected component of M\ST
1 .

We assume that elements of F enjoy the following uniform properties.

(H1) Hyperbolicity and singularities. There exist continuous families of stable and
unstable cones Cs(x) and Cu(x), defined on all of M , which are strictly invariant for the
class F , i.e., DT (x)Cu(x) ⊂ Cu(T x) and DT−1(x)Cs(x) ⊂ Cs(T−1x) for all T ∈ F
wherever DT and DT−1 are defined.

The cones Cs(x) and Cu(x) are uniformly transverse on M and ST−n is uniformly
transverse to Cs(x) for each n ∈ N and all T ∈ F . We assume in addition that Cs(x) is
uniformly transverse to the horizontal and vertical directions on all of M .2

Moreover, there exist constants Ce > 0 and � > 1 such that for all T ∈ F ,

‖DTn(x)v‖ ≥ C−1
e �n‖v‖,∀v ∈ Cu(x), and ‖DT−n(x)v‖ ≥ C−1

e �n‖v‖,∀v ∈ Cs(x),
(2.9)

for all n ≥ 0, where ‖ · ‖ is the Euclidean norm on the tangent space Tx M .
We also assume a similar unbounded expansion in a neighborhood of S0. We assume

there exists Cc > 0 such that

Cc[cosϕ(T−1x)]−1‖v‖ ≤ ‖DT−1(x)v‖ ≤ C−1
c [cosϕ(T−1x)]−1‖v‖,

∀x ∈ M\ST−1,∀v ∈ Cs(x), (2.10)

where ϕ(y) denotes the angle at the point y = (r, ϕ) ∈ M . Let expx denote the expo-
nential map from Tx M to M . We require the following bound on the second derivative,

Cc[cosϕ(T−1x)]−3 ≤ ‖D2T−1(x)v‖ ≤ C−1
c [cosϕ(T−1x)]−3, ∀x ∈ M\ST−1,

(2.11)
for all v ∈ Tx M such that T−1(expx (v)) and T−1x lie in the same homogeneity strip.

(H2) Families of stable and unstable curves.We callW a stable curve for amap T ∈ F
if the tangent line to W , TxW lies in Cs(x) for all x ∈ W . We call W homogeneous if
W is contained in one homogeneity strip Hk . Unstable curves are defined similarly.
Let Ŵs denote the set of C2 homogeneous stable curves inM whose curvature is bounded
above by a uniform constant B > 0. We assume there exists a choice of B such that Ŵs

is invariant underF in the following sense: For anyW ∈ Ŵs and T ∈ F , the connected
components of T−1W are again elements of Ŵs . A family of unstable curves Ŵu is

2 This is not a restrictive assumption for perturbations of the Lorentz gas since the standard cones Ĉs and
Ĉu for the billiard map satisfy this property (see for example [CM, Section 4.5]); the common cones Cs (x)
and Cu(x) shared by all maps in the class F must therefore lie inside Ĉs (x) and Ĉu(x) and therefore satisfy
this property.
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defined analogously, with obvious modifications: For example, we require the connected
components of TW to be elements of Ŵu for all W ∈ Ŵu and T ∈ F .

(H3) Complexity bounds (One-step expansion).3 We assume that there exists an
adapted norm ‖ · ‖∗, uniformly equivalent to ‖ · ‖, in which the constant Ce in (2.9)
can be taken to be 1, i.e. we have expansion and contraction in one step in the adapted
norm for all maps in the class F (for example, the norm from [CM, Sect. 5.10]).

Let W ∈ Ŵ s . For any T ∈ F , we partition the connected components of T−1W into
maximal pieces Vi = Vi (T ) such that each Vi is a homogeneous stable curve in some
Hk , k ≥ k0, or H0. Let |JVi T |∗ denote the minimum contraction on Vi under T in the
metric induced by the adapted norm ‖ · ‖∗. We assume that for some choice of k0,

lim sup
δ→0

sup
T∈F

sup
|W |<δ

∑

i

|JVi T |∗ < 1, (2.12)

where |W | denotes the arclength of W .

(H4) Bounded distortion.There exists a constantCd > 0 with the following properties.
Let W ′ ∈ Ŵs and for any T ∈ F , n ∈ N, let x, y ∈ W for some connected component
W ⊂ T−nW ′ such that T iW is a homogeneous stable curve for each 0 ≤ i ≤ n. Then,

∣
∣
∣
∣
Jμ0T

n(x)

Jμ0T
n(y)

− 1

∣
∣
∣
∣ ≤ CddW (x, y)1/3 and

∣
∣
∣
∣
JW T n(x)

JW T n(y)
− 1

∣
∣
∣
∣ ≤ CddW (x, y)1/3,

(2.13)
where as before Jμ0T

n is the Jacobian of T n with respect to the smooth measure dμ0 =
c cosϕdrdϕ.
We assume the analogous bound along unstable leaves: IfW ∈ Ŵu is an unstable curve
such that T iW is a homogeneous unstable curve for 0 ≤ i ≤ n, then for any x, y ∈ W ,

∣
∣
∣
∣
Jμ0T

n(x)

Jμ0T
n(y)

− 1

∣
∣
∣
∣ ≤ Cdd(T nx, T n y)1/3. (2.14)

(H5) Control of Jacobian. Let β, γ, p < 1 be from the definition of the norms in
Sect. 3 and let θ∗ < 1 be from (2.15). Assume there exists a constant 1 ≤ η <

min{�β,�γ , θ
p−1∗ } such that for any T ∈ F ,

(Jμ0T (x))−1 ≤ η wherever Jμ0T is defined.

Recall the family of stable curves Ŵs defined by (H2). We define a subsetWs ⊂ Ŵs

as follows. By (H3) we may choose δ0 > 0 for which there exists θ∗ < 1 such that

sup
T∈F

sup
|W |≤δ0

∑

i

|JVi T |∗ ≤ θ∗. (2.15)

We shrink δ0 further if necessary so that the graph transform argument needed in the
proof of Lemma A.2(a) holds. The set Ws comprises all those stable curves W ∈ Ŵs

such that |W | ≤ δ0.

3 In [DZ2], a ‘weakenedone-step expansion’was also assumed: lim supδ→0 supT∈F sup|W |<δ

∑
i |JVi T |ς

< ∞ for some ς < 1, where the norm of the Jacobian is measured in the Euclidean norm. Since here we
restrict to finite horizon, however, this property follows from (H1).
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2.2.2. Distance in F . We define a distance in F as follows. For T1, T2 ∈ F and ε > 0,
let Nε(S i−1) denote the ε-neighborhood in M of the singularity set S i−1 of T

−1
i , i = 1, 2.

We say dF (T1, T2) = ε′ if the maps are close away from their singularity sets in the
following sense: ε′ is the infimum over ε > 0 such that for all x /∈ Nε(S1−1 ∪ S2−1),

(C1) d(T−1
1 (x), T−1

2 (x)) ≤ ε;

(C2)

∣
∣
∣
∣
Jμ0Ti (x)

Jμ0Tj (x)
− 1

∣
∣
∣
∣ ≤ ε, i, j = 1, 2;

(C3)

∣
∣
∣
∣
JW Ti (x)

JW Tj (x)
− 1

∣
∣
∣
∣ ≤ ε, for any W ∈ Ws , i, j = 1, 2, and x ∈ W ;

(C4) ‖DT−1
1 (x)v − DT−1

2 (x)v‖ ≤ √
ε, for any unit vector v ∈ TxW , W ∈ Ws .

We remark that while this notion of distance requires T1 and T2 to be C1-close outside
an ε-neighborhood of S1−1 ∪S2−1, it does not require S1−1 and S2−1 to be close as subsets
of M .

Due to the exclusion of x ∈ Nε(S1−1 ∪ S2−1), our notion of distance between maps
does not satisfy the triangle inequality: to compare the relevant quantities for 3 maps
T1, T2 and T3, we would have to exclude the ε-neighborhoods of all three singularity
sets. Nevertheless, as in [DZ2], this does not create problems in our use of this distance:
we fix a map T0 for which the associated transfer operator has a spectral gap, then
compare transfer operators for maps T near to T0 with respect to the quantity dF (T, T0).
Lemma 4.6 summarizes the key use of this distance.

2.3. Transfer operators. In this section,we fix a class ofmapsF with uniformproperties
(H1)–(H5) as defined Sect. 2.2.1. Later, we will specialize to a particular family F =
F(ε, τ∗,C0) satisfying (A1)–(A4) above.

Let Ŵs be the set of stable curves invariant under maps in F according to (H2), and
let Ws ⊂ Ŵs denote those stable curves having length less than δ0, where δ0 is from
(2.15). For any T ∈ F , we define scales of spaces using the set of stable curves Ws

on which the transfer operator LT associated with T will act. Define T−nWs to be the
set of homogeneous stable curves W such that T n is smooth on W and T iW ∈ Ws for
0 ≤ i ≤ n. It follows from (H2) that T−nWs ⊂ Ws .

For W ∈ T−nWs , a complex-valued test function ψ : M → C, and 0 < α ≤ 1
define Hα

W (ψ) to be the Hölder constant of ψ on W with exponent α measured in
the Euclidean metric. Define Hα

n (ψ) = supW∈T−nWs Hα
W (ψ) and let C̃α(T−nWs) =

{ψ : M → C | Hα
n (ψ) < ∞}, denote the set of complex-valued functions which are

Hölder continuous on elements of T−nWs . The set C̃α(T−nWs) equippedwith the norm
|ψ |Cα(T−nWs ) = |ψ |∞ + Hα

n (ψ) is a Banach space. Similarly, we define C̃α(Ŵu) to be
the set of functions which are Hölder continuous with exponent α on unstable curves
Ŵu .

It follows from theuniformhyperbolicity ofT (see (H1)) that ifψ ∈ C̃α(T−(n−1)Ws),
then ψ ◦ T ∈ C̃α(T−nWs). Thus if h ∈ (C̃α(T−nWs))′, is an element of the dual of
C̃α(T−nWs), then LT : (C̃α(T−nWs))′ → (C̃α(T−(n−1)Ws))′ acts on h by

LT h(ψ) := h(ψ ◦ T ) ∀ψ ∈ C̃α(T−(n−1)Ws).

Recall that dμ0 = c cosϕdrdϕ denotes the smooth invariant measure for the billiard
map corresponding to the unperturbed periodic Lorentz gas. If h ∈ L1(M, μ0), then h is
canonically identified with a signed measure absolutely continuous with respect to μ0,
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which we shall also call h, i.e., h(ψ) = ∫
M ψh dμ0. With the above identification, we

write L1(M, μ0) ⊂ (C̃α(T−nWs))′ for each n ∈ N. Then restricted to L1(M, μ0), LT
acts according to the familiar expression

Ln
T h = h ◦ T−n

Jμ0T
n ◦ T−n

for any n ≥ 0 and h ∈ L1(M, μ0),

where Jμ0T is the Jacobian of T with respect to μ0.
In Sect. 3, we define Banach spaces of distributions (B, ‖ · ‖B) and (Bw, | · |w),

preserved under the action of LT , such that the unit ball of B is compactly embedded in
Bw. It follows from [DZ2, Corollary 2.4] that for ε sufficiently small, LT has a spectral
gap on B.

To study large deviationswewill need a suitableweighted transfer operator. In order to
have a well defined operator on B we will assume that g : M → R is (piecewise) Hölder
continous on the connected components of M\ST

1 where ST
1 is the set of discontinuities

of T (seeSects. 2.2 and3.1 for details).Under these assumptions it is shown inLemma3.3
that we can define the weighted transfer operator LT,g associated with T and g on B
and Bw by

LT,gh(ψ) := LT (heg)(ψ) = h(eg ·ψ ◦T ), for h ∈ Bw and suitable test functions ψ.

(2.16)
The family of transfer operators LT,ag parametrized by a ∈ R occurs naturally in
studying the large deviations of Birkhoff sums Sng = g + · · · + g ◦ T n−1: since we have

Ln
T,agh(ψ) = h(eaSngψ ◦ T n) ,

the logarithmic moment generating function of Sng with initial distribution ν ∈ B is
then given by

log ν(eaSng) = logLn
T,agν(1).

Suitable spectral gap conditions on LT,ag imply that the limit

eν(a) = lim
n→∞

1

n
log ν(eaSng) = lim

n→∞
1

n
logLn

T,agν(1)

exists and is smooth and then large deviation estimates follow from the Gärtner-Ellis
theorem [DZe]. In this paper we shall be interested in particular in the choices ν = μ0,
the SRB measure for the unperturbed Lorentz gas, and ν = μE, the SRB measure for
the perturbed Lorentz gas TE, both measures belonging to B.

2.4. Statement of results. In [DZ2], local large deviation estimates for (piecewise)
smooth observables g were obtained for small ε (small forces) and small a (deviations
very close to the mean of g); these were essentially perturbative results in a and ε. By
contrast here we concentrate on the observable s = − log Jμ0TE, which is the entropy
production observable defined in Sect. 1.1. For the fluctuation symmetry to make sense
we will need the moment generating function to be well-defined for a in a neighborhood
of [0, 1]. To this end, we will fix a0 > 0 and consider the interval a ∈ [−a0, 1 + a0].
We study the dependence of the spectral gap of LT,−as as a function of the two param-
eters, ε and a. Since s is fixed, in what follows we will use the more concise notation,
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LT,a = LT,−as . Note also that in the absence of external forces, μ0 is an invariant
measure and Jμ0T0 = 1. More generally, for TE = T(F,G), we show in Lemma 4.2 that

Jμ0TE = 1 + εH,

where H is bounded uniformly in ε, a key fact in our analysis.
The following spectral result is key to proving the existence and smoothness of the

limiting logarithmic moment generating function.

Theorem 2.3 (Spectral gap).Choose a0 > 0 and fix the parametersC0, τ∗ fromSect. 2.1.
There exists ε0 > 0 such that for any T ∈ F := F(ε0, τ∗,C0), the operator LT,a is well
defined as a bounded linear operator on B for all a ∈ [−a0, 1 + a0]. In addition, there
exists C > 0, such that for any T ∈ F and n ≥ 0,

|Ln
T,ah|w ≤ C(1 + sign(a − 1)CHε)n(a−1)|h|w for all h ∈ Bw,

‖Ln
T,ah‖B ≤ Cσ n(1 + sign(a − 1)CHε)n(a−1)‖h‖B + Cηn|h|w for all h ∈ B,

(2.17)
where CH > 0 is from Lemma 4.2 and σ ∈ (0, 1) is from (4.4). Moreover, for each
T ∈ F ,

(i) LT,a is quasi-compact as an operator on B: The spectral radius ρ(LT,a) lies in
[(1−sign(a−1)CHε0)

a−1, (1+sign(a−1)CHε0)
a−1], while the essential spectral

radiusρess(LT,a) is atmostσ(1+sign(a−1)CHε0)
a−1 < (1−sign(a−1)CHε0)

a−1.
(ii) There exists ε1 ≤ ε0 such that for all T ∈ F(ε1, τ∗,C0) and all a ∈ [−a0, 1 + a0],

LT,a has a spectral gap: there exists exactly one simple real eigenvalue λa =
ρ(LT,a); the corresponding eigenfunction ha is a positive Borel measure.

For TE ∈ F(ε1, τ∗,C0), we discuss next the existence and properties of the logarith-
micmoment generating function for the entropy production observable s = − log Jμ0TE
with respect to the non-equilibrium steady state μE,

eE(a) = lim
n→∞

1

n
logμE

(
(Jμ0T

n
E )a

)
. (2.18)

We denote by σ 2
E the diffusion constant for the sequence {log Jμ0TE ◦T n

E }n≥0 distributed
according to μE, and by σ 2

H the diffusion constant for the sequence {H ◦ T n
0 }n≥0 dis-

tributed according to μ0. Our main results are summarized in the following theorem.

Theorem 2.4 (Logarithmicmoment generating function andfluctuation relation).Under
the assumptions of Theorem 2.3, we have the following.

(1) The map TE has a unique SRB measure (non-equilibrium steady state) μE.
(2) The logarithmic moment generating function eE(a) for the entropy production

exists and is analytic in the disk |a| ≤ 1 + a0. Moreover we have

eE(a) = lim
n→∞

1

n
logμE

(
(Jμ0T

n
E )a

) = lim
n→∞

1

n
logμ0

(
(Jμ0T

n
E )a

)

and, as a consequence, for a ∈ [−a0, 1 + a0] we have the non-equilibrium steady
state fluctuation relation

eE(a) = eE(1 − a). (2.19)
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(3) The logarithmic moment generating function eE(a) is strictly convex if and only if
log Jμ0TE is not a coboundary for some ψ ∈ L2(μE), in which case we have

0 > e′
E(0) = μE(log Jμ0TE) = εμ0(H) + o(ε) (Positivity of entropy production),

and

0 < e′′
E(0) = σ 2

E = σ 2
Hε2 + o(ε2) (Positivity of diffusion coefficients).

Remark 2.5. The expansion of μE(log Jμ0TE) in item (3) of Theorem 2.4 is related to
the linear response of the periodic Lorentz gas to the external forces E = (F,G). For
more explicit relations valid for this class of perturbations, see [CELS2,CZZ].

We prove Theorem 2.4 in Sect. 5. The main technical elements in the proof are first
to establish the spectral gap, and then to derive the existence of the relevant limit(s)
and the analyticity of the moment generating function. The proof of strict convexity
also requires substantial work related to the Central Limit Theorem. Once these two
properties are established, the fluctuation relation (2.19) follows immediately from the
transient fluctuation relation, Proposition 1.4.

By using standard large deviation techniques [DZe] we obtain immediately a version
of the Gallavotti–Cohen fluctuation theorem.

Theorem 2.6. Under the assumptions of Theorem 2.3, for all z ∈ [e′
E(−a0), e′

E(1+a0)],
we have

lim
δ→0

lim
n→∞

1

n
log

μE

(
x : 1

n Sns(x) ∈ [z − δ, z + δ]
)

μE

(
x : 1

n Sns(x) ∈ [−z − δ,−z + δ]
) = z.

The proof is immediate as soon as we recall that the symmetry of the logarithmic
moment generating function implies the symmetry I (z) = I (−z)− z from (1.5) for the
rate function.

3. Definition of the Norms

The norms we will use are defined via integration on the set of stable curvesWs . Before
defining the norms, we define the notion of a distance dWs (·, ·) between such curves as
well as a distance dβ(·, ·) defined among functions supported on these curves.

Due to the transversality condition on the stable cones Cs(x) given by (H1), each
stable curveW can be viewed as the graph of a functionϕW (r) of the arc length parameter
r . For eachW ∈ Ws , let IW denote the interval on which ϕW is defined and setGW (r) =
(r, ϕW (r)) to be its graph so that W = {GW (r) : r ∈ IW }. We let mW denote the
unnormalized arclength measure on W , defined using the Euclidean metric.

Let W1,W2 ∈ Ws and identify them with the graphs GWi of their functions ϕWi

defined on IWi , i = 1, 2. Suppose W1,W2 lie in the same component of M and denote
by �(IW1�IW2) the length of the symmetric difference between IW1 and IW2 . Let Hki
be the homogeneity strip containingWi . We define the distance4 betweenW1 andW2 to
be,

4 Notice that dWs is not a metric since it does not satisfy the triangle inequality. However, we have

|ϕW1 − ϕW2 |C1(IW1∩IW2 ) ≤|ϕW1 − ϕW3 |C1(IW1∩IW3 )+|ϕW3 − ϕW2 |C1(IW3∩IW2 )+K�(IW1 ∩ IW2\IW3 ),
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dWs (W1,W2) = η(k1, k2) + �(IW1�IW2) + |ϕW1 − ϕW2 |C1(IW1∩IW2 )

where η(k1, k2) = 0 if k1 = k2 and η(k1, k2) = ∞ otherwise, i.e., we only compare
curves which lie in the same homogeneity strip.

For 0 ≤ α ≤ 1, denote by C̃α(W ) the set of continuous complex-valued functions
on W with Hölder exponent α, measured in the Euclidean metric, which we denote by
dW (·, ·). We then denote by Cα(W ) the closure of C∞(W ) in the C̃α-norm5: |ψ |Cα(W ) =
|ψ |C0(W ) + Hα

W (ψ), where Hα
W (ψ) is the Hölder constant of ψ along W . Notice that

with this definition, |ψ1ψ2|Cα(W ) ≤ |ψ1|Cα(W )|ψ2|Cα(W ). We define C̃α(M) and Cα(M)

similarly.
Given two functions ψi ∈ Cβ(Wi ,C), β > 0, we define the distance between ψ1, ψ2

as

dβ(ψ1, ψ2) = |ψ1 ◦ GW1 − ψ2 ◦ GW2 |Cβ(IW1∩IW2 ).

Wewill define the requiredBanach spaces by closingC1(M)with respect to the following
set of norms.

Fix 0 < α ≤ min{ 13 , α1
2 }, where α1 is from Lemma 4.2. Given a function h ∈ C1(M),

define the weak norm of h by

|h|w := sup
W∈Ws

sup
ψ∈Cα(W )

|ψ |Cα(W )≤1

∫

W
hψ dmW . (3.1)

Choose β, γ , p > 0 such that β < α, p ≤ 1/3 and γ < min{p, α − β, 1/7}. We define
the strong stable norm of h as

‖h‖s := sup
W∈Ws

sup
ψ∈Cβ(W )

|W |p |ψ |Cβ (W )
≤1

∫

W
hψ dmW (3.2)

and the strong unstable norm as

‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cα(Wi )|ψi |Cα(Wi )

≤1
dβ(ψ1,ψ2)≤ε

1

εγ

∣
∣
∣
∣

∫

W1

hψ1 dmW −
∫

W2

hψ2 dmW

∣
∣
∣
∣ (3.3)

where ε0 > 0 is chosen less than δ0, the maximum length of W ∈ Ws which is
determined by (2.15). We then define the strong norm of h by

‖h‖B = ‖h‖s + b‖h‖u
where b is a small constant chosen in (4.4).

Footnote 4 continued
where K = 2 supW∈Ws |ϕW |C1 . If we define d̃Ws (W1,W2) = η(k1, k2) + �(IW1�IW2 ) +

1
K |ϕW1 −

ϕW2 |C1(IW1∩IW2 ), then d̃Ws does satisfy the triangle inequality. We do not introduce such a modification

since we do not need this property: the unstable norm defined in (3.3) satisfies the triangle inequality with the
current definition.

5 While Cα(W ) may not contain all of C̃α(W ), it does contain Cα′
(W ) for all α′ > α. Defining Cα(W ) in

this manner ensures the injectivity of the inclusion B ↪→ Bw .
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We define B to be the completion of C1(M) in the strong norm and Bw to be the
completion of C1(M) in the weak norm. We remark that as a measure, h ∈ C1(M) is
identified with hdμ0 according to our earlier convention. As a consequence, Lebesgue
measure dm = (cosϕ)−1dμ0 is not automatically included in B since (cosϕ)−1 /∈
C1(M). It follows from [DZ2, Lemma 5.5] that in fact, m ∈ B (and Bw).

3.1. Properties of the Banach spaces. We recall some properties of our Banach spaces
which demonstrate that although they are spaces of distributions defined as closures of
C1 functions in the stated norms, they enjoy some natural relations with more familiar
spaces of functions and distributions. Recall Hα

n (ψ) := supW∈T−nWs Hα
W (ψ) from

Sect. 2.3.

Lemma 3.1. The following properties hold.

(i) ([DZ2, Lemma 5.4]) There exists C > 0 such that for any h ∈ Bw, T ∈ F , n ≥ 0
and ψ ∈ Cα(T−nWs),

|h(ψ)| ≤ C |h|w(|ψ |∞ + Hα
n (ψ)).

(ii) ([DZ3, Lemma 2.1]) There is a sequence of continuous inclusions Cq(M) ↪→ B ↪→
Bw ↪→ (Cα(M))′, for all q > γ/(1 − γ ). The inclusions are injective, except
possibly the last.6

(iii) ([DZ1, Lemma 3.10]) The unit ball of (B, ‖ · ‖B) is compactly embedded in (Bw, | ·
|w).

We shall need the following result, which is [DZ3, Lemma 3.5]. Let Nε(·) denote the
ε-neighborhood of a set in M .

Lemma 3.2. Let P be a (mod 0) countable partition of M into open, simply connected
sets such that:
(1) There are constants K ,C1 > 0 such that for each P ∈ P and W ∈ Ws , P ∩ W
consists of at most K connected components and for any ε > 0, mW (Nε(∂P) ∩ W ) ≤
C1ε; (2) Each homogeneity strip Hk intersects at most finitely many P ∈ P .

Let q > γ/(1 − γ ). Suppose f is a function on M such that supP∈P | f |Cq (P) < ∞
and let h ∈ B. Then h f ∈ B and

‖h f ‖B ≤ C‖h‖B sup
P∈P

| f |Cq (P)

for some uniform constant C.

We call a potential g admissible for a map T ∈ F if g is at least 1/3 Hölder contin-
uous7 on connected components of M\ST

1 : supP∈P1
|g|C1/3(P) < ∞, where P1 is the

partition of M into connected components of M\ST
1 .

Our final lemma of this section shows that LT,g is well-defined as an operator from
B to B. Its proof is similar to [DZ1, Lemma 2.1], generalized to include potentials.

Lemma 3.3. If g is an admissible potential for T , then LT,g is well-defined as a contin-
uous linear operator on both B and Bw.

6 This last inclusion can be made injective by introducting a weight p′ in the weak norm similar to the role
of p in the strong stable norm, and requiring that p′ > α. This is carried out in [DZ3, Lemma 3.8].

7 One can decrease the Hölder exponent 1/3 by placing another restriction on α and γ in the definition of
the norms.
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Proof. Let h ∈ C1(M). The Lasota–Yorke inequalities of Proposition 4.1 show that
LT,gh has finite norm in both B and Bw. In order to show that LT,gh belongs to B,
we must approximate LT,gh by C1 functions in the norm ‖ · ‖B. Note that LT,gh has a
countable number of smooth discontinuity curves given by SH−1 (we include the images
of boundaries of the homogeneity strips). These curves define a countable partitionP of
M into open simply connected sets, and each Hk can intersect countably many P ∈ P .
In addition, the C1 norm of LT,gh blows up near the curves TS0.

For j ≥ k0 let P j denote an element ofP such that T−1P j ⊆ H j . Again, the labeling
is not unique, but for each j , the number of elements inP which are assigned the label j is
finite (even in the infinite horizon case). Let P J = ∪ j>J P j .We claim that ‖LT,gh|P J ‖B
is arbitrarily small for J sufficiently large. On the finite set of P j with j ≤ J , the C1
norm of LT,gh is finite and the modified partition P∗ = {P j } j≤J ∪ {P J } satisfies the
requirements of Lemma 3.2. So wemay approximateLT,gh using Lemma 3.2 onM\P J

and approximateLT,gh by 0 on P J . Thus the lemma follows oncewe establish our claim.
Indeed, the claim is trivial using the estimates contained in Appendix A. For example,

we must estimate ‖(LT,gh)|P J ‖s = ‖1P JLT,gh‖s . Taking W ∈ Ws and ψ ∈ Cβ(W )

with |W |p|ψ |Cβ(W ) ≤ 1, we write

∫

W
1P JLT,gh ψ dmW =

∫

T−1(W∩P J )

h(Jμ0T )−1eSng JT−1WT ψ ◦ T dmW ,

and the homogeneous stable components of T−1(W ∩ P J ) correspond precisely to the
tail of the series considered in (A.2) and following and so can be made arbitrarily small
by choosing J large (notice that we do not need contraction here so that we may use the
simpler estimate similar to Sect. A.2 applied to the strong stable norm rather than the
estimate of Sect. A.3.)

Similarly, in estimating ‖LT,ah‖u , one can see that the contribution from P J corre-
sponds to the tail of the series from the estimates of Sect. A.4, and so this too can be
made arbitrarily small by choosing J large. �	

4. Proof of Theorem 2.3

The proof of Theorem2.3 relies on the followingmore general proposition. Recall that an
admissible potential g for T ∈ F is one that satisfies |g|C1/3(P1)

:= supP∈P1
|g|C1/3(P) <

∞, where P1 is the partition of M into connected components of M\ST
1 . For an admis-

sible potential g, define Cg := 1 + Ce|g|Cα(P1)

∑∞
i=0 �−iβ .

Proposition 4.1. There exists C > 0, depending only on (H1)–(H5), such that for any
T ∈ F , admissible potential g, h ∈ B and n ≥ 0,

|Ln
T,gh|w ≤ CCg|(Jμ0T

n)−1eSng|∞|h|w, (4.1)

‖Ln
T,gh‖s ≤ CCg|(Jμ0T

n)−1eSng|∞
(
(θ

(1−p)n∗ + �−βn)‖h‖s + Cδ
−p
0 |h|w

)
, (4.2)

‖Ln
T,gh‖u ≤ CCg|(Jμ0T

n)−1eSng|∞
(
�−γ n‖h‖u + CCn

3‖h‖s
)
, (4.3)

where C3 is from Lemma A.1(d).
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The proof of this proposition is fairly technical, but has a lot of similarity with the
corresponding inequalities proved in [DZ1] and [DZ2] in the case g = 0. We put the
proof in Appendix A for completeness and to draw out the explicit dependence on the
added potential.

Choose max{θ1−p∗ ,�−β,�−γ } < σ < 1. Then there exists N ≥ 1 such that

‖LN
T,gh‖B = ‖LN

T,gh‖s + b‖LN
T,gh‖u

≤ CCg|(Jμ0T
N )−1eSN g|∞

(
σ N

2
‖h‖s + Cδ

−p
0 |h|w + bσ N‖h‖u + bCCN

3 ‖h‖s
)

≤ CCg|(Jμ0T
N )−1eSN g|∞

(
σ N‖h‖B + Cδ0 |h|w

)
, (4.4)

providing b is chosen sufficiently small so that bCCN
3 ≤ σ N/2. This is the standard

Lasota–Yorke inequality for LT,g for a general potential g. In order to specialize to the
case g = a log Jμ0T , we recall the following lemma about the form of the Jacobian
Jμ0T derived in [CZZ].

In what follows, we define G = (G1,G2) to be the map on M induced by the twist
G, where G1 and G2 are C2 functions on M . Due to (2.2) and (A4), if we denote
(r1, ϕ1) = TF,0(r, ϕ), then

TF,G(r, ϕ) = (r1, ϕ1) + G(r1, ϕ1) = (I + G)(TF,0(r, ϕ)). (4.5)

Lemma 4.2 ([CZZ, Lemmas 3.2 and 4.2]). Fix ε, τ∗ and C0 and consider TF,G ∈
F(ε, τ∗,C0).

First, assume there is no twist forceG = 0 and denote TF,0 = TF. Then the Jacobian
of TF with respect to μ0 is given by

Jμ0TF = exp

(∫ τF(x)

0
p ∂κ

∂θ
dt

)

, (4.6)

where τF is the free path for the system TF and κ is from (2.6).
Next, assume G �= 0. Then by Assumption (A4) the Jacobian of TE = TF,G satisfies,

Jμ0TE = Jμ0(I + G)(TF)Jμ0TF. (4.7)

Moreover, we may write,

Jμ0TE = 1 + εH, where H = 1
ε

(
Jμ0TE − 1

)
, (4.8)

|H |∞ ≤ CH for some CH > 0 independent of ε and H is Cα1 for some8 α1 ∈ (1/3, 1/2]
on each component of STE

1 .

Proof. The representation of Jμ0TF given by (4.6) is proved in [CZZ, Lemma 3.2] under
precisely the same assumptions as here. Since the coordinates and assumptions used in
[CZZ, Lemma 4.2] differ slightly from ours, we proceed to verify the case G �= 0
directly.

8 The restriction on α1 comes from the fact that H is at least Cα0 for some α0 > 1/3 by Assumption (A3),
but in general not smoother than τF, which is only 1/2-Hölder continuous.
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Due to (A4), Eq. (4.7) follows immediately from the chain rule and (4.5) at any point
x = (r, ϕ) /∈ STF

1 (see also [DZ2, Sect. 7.2]). Then using the fact that dμ0 = c cosϕdm,
we have

Jμ0(I + G)(r1, ϕ1) = cos(ϕ1 + G2(r1, ϕ1))

cosϕ1
det(I + DG)(r1, ϕ1). (4.9)

By (A4), G2(r1,±π
2 ) = 0, so using (A3)

| cos(ϕ1 + G2(r1, ϕ1)) − cosϕ1| ≤ |G2(r1, ϕ1)| ≤ ε|ϕ1 − π
2 |,

where without loss of generality we consider ϕ1 near π/2, rather than −π/2. Thus,

cos(ϕ1 + G2(r1, ϕ1))

cosϕ1
= 1 ± ε

|ϕ1 − π/2|
cosϕ1

,

and the last fraction is bounded by π/2 for ϕ1 ∈ [0, π/2]. This, together with (A3) and
the fact that det(I + DG) = 1 + Trace(DG) + det(DG), yields (4.8) with H bounded
by a uniform constant CH independent of ε. �	

4.1. A Spectral Gap for LT,a. Now we fix a0 > 0 and the interval [−a0, 1 + a0] as in
the statement of Theorem 2.3. Choose ε0 > 0 so small that for all a ∈ [−a0, 1 + a0],

(1 − sign(a − 1)CHε0)
a−1

(1 + sign(a − 1)CHε0)a−1 > σ, (4.10)

where σ is from (4.4).
The next lemma establishes the quasi-compactness of LT,a .

Lemma 4.3. Let a ∈ [−a0, 1 + a0] and ε0 be as chosen in (4.10). Then for all T ∈
F(ε0, τ∗,C0), LT,a is quasi-compact as an operator on B.

Proof. When g = a log Jμ0T , we have (Jμ0T
N )−1eSN g = (Jμ0T

N )a−1 and so (4.4)
together with Lemma 4.2 yield the required inequalities (2.17) for Theorem 2.3. Due
to the compactness of the unit ball of B in Bw [DZ1, Lemma 3.10], this implies the
essential spectral radius of LT,a , ρess(LT,a) is at most σ(1 + sign(a − 1)CHε0)

a−1. To
prove that LT,a is quasi-compact, it remains to show that the spectral radius of LT,a ,
ρ(LT,a), is strictly larger than ρess(LT,a).

To obtain a lower bound on ρ(LT,a), note that

ρ(LT,a) = lim
n→∞ ‖Ln

T,a‖1/nB ≥ lim
n→∞ ‖Ln

T,a1‖1/ns .

Then we have

‖Ln
T,a1‖s = sup

W∈Ws
sup

ψ∈Cβ(W )
|W |p |ψ |Cβ (W )

≤1

∫

W
Ln
T,a1 · ψ dmW

≥ sup
W∈Ws

sup
ψ∈Cβ(W )

|W |p |ψ |Cβ (W )
≤1

inf Ln
T,a1

∫

W
ψ dmW ≥ inf(1 + ε0H)(a−1)n ‖1‖s,
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using Lemma 4.2 and the identity Ln
T,a1 = (Jμ0T

n)a−1 ◦ T−n . This implies that

ρ(LT,a) = lim
n→∞ ‖Ln

T,a‖
1
n ≥ (1 − sign(a − 1)CHε0)

a−1.

Combining this with the upper bound on the essential spectrum of LT,a and the choice
of ε0 from (4.10), we conclude

ρess(LT,a) ≤ σ(1 + sign(a − 1)CHε0)
a−1 < (1 − sign(a − 1)CHε0)

a−1 ≤ ρ(LT,a).

�	
Recall from Sect. 3.1 that a function g : M → R is an admissible potential for T ∈ F

if |g|C1/3(P1)
:= supP∈P1

|g|C1/3(P) < ∞, where P1 is the partition of M into connected
components of M\ST

1 .

Lemma 4.4. Suppose g is an admissible potential for T ∈ F(ε0, τ∗,C0). Then the map
z �→ LT,zg is analytic for all z ∈ C.

Proof. Define the operator Anh = LT (gnh) = gn ◦ T−1LT h, for h ∈ B. Notice
that since g is Hölder continuous on elements of P1, it follows that g ◦ T−1 is Hölder
continuous on elements ofP−1, the partition ofM into connected components ofM\ST−1.
Since ST−1 consists of finitely many curves that are uniformly transverse to the stable
cone, we claim that g ◦ T−1 satisfies the assumptions of Lemma 3.2. Indeed, we have
the following estimate for the Hölder regularity of g ◦ T−1. For any x, y in the same
component of ST−1,

|g ◦ T−1(x) − g ◦ T−1(y)|
d(x, y)1/6

= |g ◦ T−1(x) − g ◦ T−1(y)|
d(T−1(x), T−1(y))1/3

d(T−1(x), T−1(y))1/3

d(x, y)1/6
.

(4.11)
The first factor is bounded by |g|C1/3(P1)

, while the second factor is uniformly bounded
due to the fact that |T−1W | ≤ C |W |1/2 for anyW ∈ Ws by (H3) (see, for example, [CM,
Exercise 4.50]). Thus g ◦ T−1 is 1/6-Hölder continuous on P1 and 1/6 ≥ γ /(1 − γ )

since γ < 1/7 so that g ◦ T−1 satisfies the conditions of Lemma 3.2.
Now Lemma 3.2 implies that gn ◦ T−1LT h ∈ B and moreover,

‖Anh‖B = ‖gn ◦ T−1LT h‖B ≤ C‖LT h‖B|gn ◦ T−1|C1/6(P−1)
≤ C‖h‖B|g|nC1/3(P1)

,

where we used (4.11) along with the simple fact that | f g|Cq ≤ | f |Cq |g|Cq to estimate
|gn|Cq ≤ |g|nCq .

Therefore, the operator
∑∞

n=0
zn
n!An is well defined on B and equalsLT,zg since once

we know the sum converges,

∞∑

n=0

zn

n!Anh(ψ) = h

( ∞∑

n=0

zn

n! g
n · ψ ◦ T

)

= h(ezgψ ◦ T ) = LT,zgh(ψ),

for ψ ∈ Cα(Ws).

�	
With the analyticity of z �→ Lzg established, it follows from analytic perturbation

theory [Ka] that both the discrete spectrum and the corresponding spectral projectors of
LT,zg vary smoothly with z. We will use the smooth dependence of the spectrum on z
to prove that LT,a has a spectral gap.
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Lemma 4.5. Fix a0, τ∗,C0 > 0 and let ε0 be as in (4.10). Then there exists 0 < ε1 ≤ ε0
such that for all T = TE ∈ F(ε1, τ∗,C0), LT,a has a simple eigenvalue λ = ρ(LT,a)

and all other eigenvalues have modulus strictly smaller than λ, i.e. LT,a has a spectral
gap as an operator on B.
Proof. Fix a uniform family F(ε0, τ∗,C0) satisfying (H1)–(H5) and (4.10) such that
LT has a spectral gap for all T ∈ F(ε0, τ∗,C0) by [DZ2].

Fixing T = TE ∈ F(ε0, τ∗,C0) and using Lemma 4.2, we know −s is an admissible
potential for T . According to Lemma 4.4, the derivative, ddzLT,−zs = ∑

n≥1
zn−1

(n−1)!An is
well-defined as a bounded linear operator on B, and

‖ d

dz
LT,−zs‖B ≤ C‖LT ‖B|s|C1/3(P1)

e
|z||s|C1/3(P1) ,

for a uniform constant C (depending only on F). Thus for any a ∈ [−a0, 1 + a0],
‖LT − LT,a‖B ≤ C‖LT ‖B|s|C1/3(P1)

e
|a||s|C1/3(P1) |a|

≤ C |a|‖LT ‖B| log(1 + εH)|C1/3(P1)
e
| log(1+εH)||a|

C1/3(P1) , (4.12)

where we have used Lemma 4.2 and ε is the optimal ε for E.
It follows from [DZ2] that the spectrumofLTE varies continuously inE and converges

to the spectrum LT0 as E shrinks to 0 (in C1 norm). Thus there exists 0 < ε2, ε2 ≤ ε0
such that all TE ∈ F(ε2, τ∗,C0) enjoy a uniform spectral gap, i.e., the distance between
1 and the second largest eigenvalue of LTE is bounded below by a uniform constant; call
this constant δ > 0. Then by (4.12), there exists ε1 > 0 such that LT,a has a spectral
gap for any TE ∈ F(ε1, τ∗,C0) and all a ∈ [−a0, 1 + a0]. �	

We will also find it convenient to have the following continuity in ε.

Lemma 4.6. Fix a ∈ [−a0, 1 + a0] and T0 = T0,0 ∈ F(ε1, τ∗,C0). There exists C > 0
such that for all ε ≤ ε1 and all TE ∈ F(ε1, τ∗,C0) with dF (T0, TE) ≤ ε, we have

sup{|LTE,ah − LT0,ah|w : ‖h‖B ≤ 1} ≤ Cεγ/2.

This implies in particular that the leading eigenvalue and associated spectral projectors
of LTE,a vary continuously with E in the ε1 neighborhood of T0.

Proof. The proof is essentially the same as the proof of [DZ1, Theorem 2.3], except
with the added potential (Jμ0T )a−1. We just sketch the proof here, noting the necessary
additions.

Fixing T0 and TE as in the statement of the lemma, we choose h ∈ C1(M) with
‖h‖B ≤ 1 and W ∈ Ws . Let ψ ∈ Cα(W ) satisfy |ψ |Cα(W ) ≤ 1. For the weak norm of
the difference, we must estimate

∫

W
(LT0,ah − LTE,ah)ψ dmW =

∫

T−1
0 W

hJT−1
0 WT ψ ◦ T0

−
∫

T−1
E W

h(Jμ0TE)a−1 JT−1
E WT ψ ◦ TE,

where we have used the fact that Jμ0T0 = 1. The required estimate is similar to the
estimate for the strong unstable norm in contained in Sect. A.4, except that we have one
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stable curve iterated under two different maps instead of two close stable curves iterated
under the same map. However, the decomposition is the same: we subdivide T−1

0 W
and T−1

E W into matched and unmatched pieces. The matched pieces can be connected
by a transverse foliation of unstable curves, while the unmatched pieces are short. The
estimates proceed precisely as in [DZ2, Section 5], with [DZ2, Lemma 5.1] providing
the bounds on all the relevant quantities. The only additional piece in the present estimate
is the presence of the potential (Jμ0TE)a−1.

For the sum over unmatched unmatched pieces, it is bounded by
Cεγ/2|(Jμ0TE)a−1|Cβ(P1)

‖h‖s using the strong stable norm precisely as in (A.13), with
n = 1, since each unmatched piece has length at most ε1/2.

Suppose U1 and U2 are two matched pieces of T−1
0 W and T−1

E W , respectively. By
construction, they are defined over a common r -interval I , i.e. they can be written as
graphs of functions

Uj = GUj (I ) = {(r, ϕUj (r)) : r ∈ I }
and dWs (U1,U2) ≤ Cε1/2 ( [DZ2, Lemma 5.1(a)]). The estimate over matched pieces
proceeds precisely as in (A.14) and the only difference in test functions unaccounted for
in (A.19) is |(Jμ0TE)a−1 − 1|Cβ(U2)

. We will show that

|(Jμ0TE)a−1 − 1|Cβ(U2)
≤ Cε1−3β, (4.13)

for some uniform constant C depending on a0. Indeed |(Jμ0TE)a−1 − 1|C0(U2)
≤ C |a−

1|ε follows from Lemma 4.2. For the Hölder constant, we take x, y ∈ U2 and estimate
on the one hand using (H4),

|(Jμ0TE)a−1(x) − (Jμ0TE)a−1(y)| ≤ C |(Jμ0TE)a−1|C0(U2)
d(x, y)1/3 ≤ C ′d(x, y)1/3.

While on the other hand,

|(Jμ0TE)a−1(x) − (Jμ0TE)a−1(y)| ≤ C ′′ε,

using Lemma 4.2 once again. So the Hölder constant is bounded by the minimum of
these two expressions,

min{C ′d(x, y)1/3−β,C ′′εd(x, y)−β}.
This bound can be no worse than when the two quantities are equal, i.e. ε = (C ′/C ′′)
d(x, y)1/3. Thus Hβ

W ((Jμ0TE)a−1 − 1) ≤ Cε1−3β . This proves (4.13).
Now gathering terms over matched and unmatched pieces as in (A.21) or [DZ2, Eq.

(5.9)], we see that the least power of ε is εγ/2, from the unmatched pieces (notice that

ε1−3β < ε
1
3−β and γ ≤ α − β ≤ 1

3 − β). This completes the proof of the lemma. �	
Fix T ∈ F(ε1, τ∗,C0). Let ha ∈ B be the eigenvector of LT,a corresponding to the

eigenvalue λa of maximum modulus, and νa ∈ B∗ be the corresponding eigenvector of
the dual L∗

T,a . That is, LT,aha = λaha , and L∗
aνa = λaνa . Due to the spectral gap for

LT,a , we have the following spectral decomposition,

Ln
T,ah = λna�ah + Rn

ah, (4.14)

where �a Ra = Ra�a = 0 and the spectral radius of Ra is strictly smaller than λa .
Also, for any h ∈ B,�ah = ca(h)ha , where ca : B → R is a bounded linear functional.
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Notice that λa must be real since LT,a is a real operator and the spectral gap for LT,a is
obtained as a perturbation of LT,0, which has λ0 = 1.

The following lemma completes the proof of Theorem 2.3.

Lemma 4.7. Both eigenvectors ha and νa are positive measures. Moreover, the pairing
μa := ha ⊗ νa defines an invariant measure for T .

Proof. Due to (4.14), for any ψ ∈ Cα(M),

|ca(1)ha(ψ)| = lim
n→∞ |λ−n

a Ln
T,a1(ψ)| ≤ lim

n→∞ |ψ |∞|λ−n
a Ln

T,a1(1)|
= |ψ |∞|ca(1)||ha(1)|.

Now c0(1) = 1 and ca(1) is continuous in a by Lemma 4.4, so by (4.12), ca(1) > 0 for
ε ∈ [0, ε1]. This, together with the above estimate, implies that ha is a measure. Then it
is evident that ha is a positive measure due to the positivity of LT,a .

Similarly, one can show that νa is also a positive measure since

lim
n→∞ λ−n

a (L∗
T,a)

n1(ψ) = c∗
a(1)νa(ψ),

for some linear functional c∗
a .

By Lemma 3.2, ifψ is a piecewise Hölder continuous function on M , thenψha ∈ B.
So we may define a measure on M via the pairing μT,a := ha ⊗ νa , i.e. μT,a(ψ) =
〈ψha, νa〉, where 〈·, ·〉 denotes the pairing betweenB and its dual.Moreover, themeasure
μT,a is invariant under T :

μT,a(ψ ◦ T ) = 〈ψ ◦ T · ha, λ−1
a L∗

T,aνa〉 = λ−1
a 〈LT,a(ψ ◦ T · ha), νa〉

= λ−1
a 〈ψLT,a(ha), νa〉 = 〈ψha, νa〉 = μT,a(ψ), for any ψ ∈ C1/3(M),

where we have used Lemma 3.2 to conclude that ψ ◦ T · ha ∈ B. �	
Remark 4.8. Notice that when a = 0, the smooth measure μ0 is the conformal measure
with respect to LT,0, i.e. L∗

T,0μ0 = μ0, so that ν0 = μ0 and 〈h0, μ0〉 = 1. It then
follows from Lemma 4.4 and (4.12) that that we may choose ε1 > 0 sufficently small
so that 〈ha, μ0〉 > 0 and ca(h0) > 0 for all a ∈ [−a0, 1 + a0].

5. Proof of Theorem 2.4

In this section, we shall be more explicit about the dependence of the various objects on
the forces E = (F,G). We shall use the following notation for the map T = TE and the
potential eag0 . We have the following decomposition according to (4.14):

LTE,a = λE,a�E,a + RE,a .

Denote by μE,a = hE,a ⊗ νE,a the TE-invariant measure constructed using the left and
right eigenvectors of LTE,a . When a = 0, in what follows, we will drop the subscript
corresponding to a, and simply write μE = hE ⊗ νE for the SRB measure of the
perturbed system TE ∈ F(ε1, τ∗,C0). Note this notation is consistent with our use of
μ0 = μ0,0 as both the conformal measure for LT,0 as well as the smooth invariant
measure corresponding to the classical billiard map T0,0, with F = G = 0. Indeed,
when E = (0, 0), then h0,0 = 1.

The moment generating function eE(a) is defined as in (2.18),

eE(a) = lim
n→∞

1

n
logμE((Jμ0T

n
E )a).
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Proof of Theorem 2.4. The existence and uniqueness of μE for Item (1) follow from the
spectral gap of LTE established by Theorem 2.3.

To prove item (2), first recall that 〈hE,a, μ0〉 > 0 and cE,a(hE,0) > 0 by choice of ε1
and Remark 4.8. Then

eE(a) = lim
n→∞

1

n
logμE((Jμ0T

n
E )a) = lim

n→∞
1

n
log〈hE · (Jμ0T

n
E )a, μ0〉

= lim
n→∞

1

n
log〈Ln

TE,ahE, μ0〉

= lim
n→∞

1

n
log〈λnE,acE,a(hE)hE,a + Rn

E,ahE, μ0〉 = log λE,a .

Thus by Lemma 4.4, since λE,a is simple, eE(a) is analytic as a function of a for
a ∈ [−a0, 1 + a0].

Now let ν ∈ B be a probability measure with cE,a(ν) > 0. Then the limit

lim
n→∞

1

n
log ν((Jμ0T

n
E )a)

exists and has the value log λE,a by precisely the same calculation as above. Thus the
moment generating function can be defined using ν in place of the invariant measureμE.
Note that since cE,0(ν) = 1 for any probability measure ν ∈ B, and due to the inequality

‖(�E,0 − �E,a)ν‖B ≤ ‖�E,0 − �E,a‖B‖ν‖B,

Lemma 4.4 implies that if we fix a ball of radius r > 0 in B, then we may choose
ε1 so that cE,a(ν) > 0 for all ν in this ball of radius r , all a ∈ [−a0, 1 + a0] and all
TE ∈ F(ε1, τ∗,C0). For this range of parameters, it follows that Lebesgue measure
m, the smooth measure μ0 and the (possibly singular) SRB measure μE all yield the
same logarithmic moment generating function eE(a). From this and Proposition 1.4 we
conclude the symmetry eE(a) = eE(1 − a) for a ∈ [−a0, 1 + a0].

To prove item (3), we compute the derivatives of eE(a) at a = 0, following [RY]
(see also [D]). The sequence { 1n logμE((Jμ0T

n
E )a)}n∈N is uniformly bounded for a in

a complex neighborhood of the origin. Thus by the Vitali convergence theorem we can
freely exchange derivative and limits. Thus

e′
E(0) = lim

n→∞
1

n
μE(log Jμ0T

n
E ) = μE(log Jμ0TE),

due to the invariance of μE with respect to TE. Now using Lemma 4.2, we have
Jμ0TE(x) = 1 + εH(x). Thus for small |ε| < 1,

e′
E(0) = μE(log(1 + εH)) = εμE(H) +O(ε2).

Next, using Lemma 4.6 and [KL, Corollary 1], we have

|μE − μ0|w ≤ Cεη, (5.1)

for some η > 0. Putting these estimates together, we conclude,

e′
E(0) = εμ0(H) + o(ε).
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For the second derivative, setting s = − log Jμ0TE as before, and s̄ = s −μE(s), we
have

e′′
E(0) = lim

n→∞
1

n
(μE((Sns)

2) − μE(Sns)
2) = lim

n→∞
1

n
μE((Sns̄)

2)

= μE(s̄2) + 2 lim
n→∞

n−1∑

j=1

(1 − j/n)μE(s̄ · s̄ ◦ T j
E )

= μE(s̄2) + 2
∞∑

j=1

μE(s̄ · s̄ ◦ T j
E ).

The last equality follows from the exponential decay of correlations and dominated
convergence.

Let σ 2
E denote the limit of the variance of n−1/2Sns as n → ∞ where {s ◦ T j

E } j∈N
is distributed according to the invariant measure μE. (Such a σE exists and is finite
whenever the auto-correlations μE(s̄ · s̄ ◦ T j

E ) are summable.) The above Green Kubo
formula then gives the diffusion coefficient:

e′′
E(0) = μE(s̄2) + 2

∞∑

j=1

μE(s̄ · s̄ ◦ T j
E ) = σ 2

E. (5.2)

We denote H̄ = H −μE(H), where H is from Lemma 4.2 and Jμ0TE = 1+ εH . Then,

−s̄ = log Jμ0TE − μE(log Jμ0TE) = ε(H − μE(H)) +O(ε2),

and also,

μE(s̄2) = μE((log(1 + εH))2) − μE(log(1 + εH))2

= ε2Var(H) +O(ε3) = ε2μE(H̄2) +O(ε3).

It follows that

∞∑

j=1

μE(s̄ · s̄ ◦ T j
E ) =

∞∑

j=1

μE(s̄ · s̄ ◦ T j
0 ) +

∞∑

j=1

(
μE(s̄ · s̄ ◦ T j

E ) − μE(s̄ · s̄ ◦ T j
0 )

)

= ε2
∞∑

j=1

μE(H̄ · H̄ ◦ T j
0 ) + o(ε2).

By exponential decay of correlations, the series in the last expression converges. Finally,
we use (5.1) to change the measure from μE to μ0 since all the functions involved are
admissible with respect to the norms we have defined. Thus

e′′
E(0) = ε2σ 2

H + o(ε2),

where σ 2
H = μ0(H̄2) + 2

∑∞
j=1 μ0(H̄ · H̄ ◦ T j

0 ).
Next, we show that in fact eE(a) is strictly convex for a ∈ [−a0, 1 + a0] whenever

σ 2
E > 0.



726 M. F. Demers, L. Rey-Bellet, H.-K. Zhang

In order to compute e′
E(a) and e′′

E(a) at a �= 0, let

ea(t) := lim
n→∞

1

n
logμE,a(e

−t Sns),

i.e. ea is the moment generating function for μE,a . Note that

μE,a(e
−t Sns) = 〈e−t Sns · hE,a, νE,a〉 = λ−n

E,a〈e−t SnsLn
ahE,a, νE,a〉

= λ−n
E,a〈Ln

t+ahE,a, νE,a〉.

Therefore,

ea(t) = lim
n→∞

1

n
log λ−n

E,a〈Ln
t+ahE,a, νE,a〉 = lim

n→∞
1

n
log〈Ln

t+ahE,a, νE,a〉 − log λE,a

= lim
n→∞

1

n
log〈λnE,a+t cE,a+t (hE,a)hE,a+t + Rn

E,a+t (hE,a), νE,a〉 − log λE,a

= eE(a + t) − eE(a),

where we have used the fact that eE(a) = log λE,a . Differentiating with respect to t
gives e′

E(a) = e′
a(0) and e′′

E(a) = e′′
a(0). The computation of e′

a(0) and e′′
a(0) are the

same as the case e′
E(0) and e′′

E(0), with μE,a in place of μE.
Notice that LT0,a = LT0,0 for each a ∈ R since when E = (0, 0), s = 0. It follows

that μ0,a = μ0 for all a ∈ R. Thus by the continuity of μE,a in E for each fixed a
(Lemma 4.6), we have e′′

a(0) > 0 for all a ∈ [−a0, 1 + a0] and ε < ε1 if ε1 is chosen
sufficiently small.

The positivity of the entropy production rate follows then from the symmetry and
strict convexity. Indeed, suppose the entropy production rate −e′

E(0) = 0. Then since
eE(0) = eE(1) = 0 by the symmetry proved in item (2), convexity and analyticity imply
that eE(a) = 0 for all a ∈ [0, 1]. This contradicts strict convexity, i.e. it contradicts that
e′′
E(a) > 0 for all a ∈ [0, 1].
It remains to prove thatσ 2

E > 0 if andonly if s is not a coboundary. If s = ψ◦TE−ψ+C
for someψ then eE(a) = aC and so trivially e′′

E(a) = 0 for all a. The converse requires a
more substantial proof. In order to prove it, we will invoke the following abstract version
of the Central Limit Theorem for invertible systems, following the classical martingale
approach of Gordin [G].

Theorem 5.1 ([V]). Let (X,A, μ) be a probability space, φ ∈ L2(μ) be such that∫
φ dμ = 0, and θ : X → X be an invertible map such that both θ and θ−1 are

measurable, andμ is θ -invariant and ergodic. LetA0 ⊂ A be such thatAn = θ−n(A0),
n ∈ Z, is a non-increasing sequence of σ -algebras. Assume that

∞∑

n=0

‖E(φ|An)‖L2(μ) < ∞ and
∞∑

n=0

‖φ − E(φ|A−n)‖L2(μ) < ∞, (5.3)

and let σ 2 = ∫
φ2 dμ + 2

∑∞
j=1

∫
φ · φ ◦ θ j dμ.

Then σ is finite, and σ = 0 if and only if φ = u◦θ −u for some u ∈ L2(μ). Moreover,
if σ 2 > 0, then n−1/2Snφ converges weakly to N (0, σ 2).
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We will apply this theorem with θ = TE, μ = μE, φ = s̄ and σ = σE. LetA0 be the
sigma-algebra generated by the (μE-mod 0) partition of M into maximal homogeneous
local stable manifolds for TE.9 ThenAn = T−n

E (A0) is a decreasing sequence of sigma-
algebras, as required.

With these definitions, the second condition in (5.3) is a simple consequence of the
uniform contraction of stable manifolds. Denoting by V s(x) the maximal local stable
manifold of x , we note that E(s̄|A−n) is constant on curves of the form T n

E (V s(x)); these
are the elements ofA−n and their length is bounded by C�−n for some uniform C > 0
since stable manifolds have length uniformly bounded above due to the discontinuities
of TE. In fact, since s̄ is continuous on such curves,10 E(s̄|A−n)(x) = s̄(y) for some
y ∈ A−n(x), the element of A−n containing x . Thus

|s̄(x) − E(s̄|A−n)(x)| = |s̄(x) − s̄(y)| = | log(1 + εH(x)) − log(1 + εH(y))|
≤ ε

1 − CHε
Cα1
s (H)d(x, y)α1 ≤ C ′�−nα1 ,

where we have used Lemma 4.2 and Cα1
s (·) denotes the Hölder constant along stable

manifolds with exponent α1. This estimate implies that the L∞-norm, and therefore the
L2-norm, of s̄(x) − E(s̄|A−n) decays at an exponential rate and so the second sum in
(5.3) converges.

The first sum in (5.3) entails a more subtle calculation. In principle, it follows from
exponential decay of correlations for μE; however, it requires exponential decay of
correlations against observables in L2(A0, μE), which is a larger class than is at first
available in the framework of our Banach spaces; here, L2(A0, μE) is the set of L2

functions that are measurable with respect to A0. To see this, we will use the dual
version of the L2-norm,

‖E(s̄|An)‖L2(μE) = sup

{∫

s̄ φ dμE : φ ∈ L2(An, μE) with ‖φ‖L2(μE) = 1

}

= sup

{∫

s̄ ψ ◦ T n
E dμE : ψ ∈ L2(A0, μE) with ‖ψ‖L2(μE) = 1

}

.

(5.4)

In order for this last integral to decay exponentially in n as a result of the spectral gap for
LTE = LTE,0, we would like s̄ ∈ B and ψ ∈ B′, the dual to B. Unfortunately, the first
statement is false and the second statement needs some work to justify. Also, note that
we can expect the correlations to decay to 0 in the above expression since μE(s̄) = 0. It
is not necessary that μE(ψ) = 0 as well.

As noted in the proof of Lemma 4.4, as an admissible potential s̄ is Hölder contin-
uous on connected components of M\STE

1 and so does not satisfy the assumptions of
Lemma 3.2; however, s̄ ◦ T−1

E is α1/2-Hölder continuous on connected components of

M\STE−1 by (4.11). Thus by Lemma 3.2, since γ < 1/7 ≤ α1/(α1 + 2) in the definition

9 This partition is measurable since it is has a countable generator: ∪n≥1{connected components of

M\STE,H
n }. See for example, [CM, Section 5.1].

10 Indeed, s̄ isHölder continuous on each connected component ofM\STE
1 , and local stablemanifolds cannot

cross STE
1 , otherwise they would be cut in forward time under TE, which would contradict the definition of

stable manifold.
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of the norms, both s̄ ◦T−1
E and s̄ ◦T−1

E hE ∈ B, where hE is the right eigenvector ofLTE .
Since

∫
s̄ ψ ◦ T n

E dμE = ∫
s̄ ◦ T−1

E ψ ◦ T n−1
E dμE, it suffices to work with s̄ ◦ T−1

E .
Notice also that since we are in the case a = 0, the conformal measure is μ0, i.e.

L∗
TE

μ0 = μ0. Thus for n ≥ 0 and ψ ∈ Cα(T−n
E Ws), we have μE = hE ⊗ μ0 and

μE(ψ) = 〈hE, ψμ0〉.
In order to estimate the expression in (5.4), we shall need two lemmas. Let B0(A0)

denote the set of bounded functions on M , which are measurable with respect to A0.

Lemma 5.2. Suppose there exist C > 0 (depending on ḡ) and ρ < 1 such that

μE(s̄ · ψ ◦ T n
E ) ≤ Cρn|ψ |∞, for all ψ ∈ B0(A0), (5.5)

where |ψ |∞ = supx∈M |ψ(x)|. Then there exists C ′ > 0 such that

μE(s̄ · ψ ◦ T n
E ) ≤ C ′ρn/2|ψ |2L2(μE)

, for all ψ ∈ L2(A0, μE).

The following lemma is a strengthening of Lemma 3.1(i). It shows that the estimate
of that lemma holds true in the limit as n → ∞.

Lemma 5.3. There exists C > 0 such that for any h ∈ Bw and any bounded function ψ ,

|h(ψ)| ≤ C |h|w(|ψ |∞ + Cα
A0

(ψ)),

where Cα
A0

(·) denotes the Hölder constant of ψ with exponent α measured along curves
in A0.

We postpone the proofs of the lemmas and first show how they allow us to complete
the proof of Theorem 2.4. For ψ ∈ B0(A0) , Cα

A0
(ψ) = 0 since ψ is constant on curves

in A0. We estimate the correlations using Lemma 5.3,
∣
∣
∣
∣

∫

s̄ ψ ◦ T n
E dμ0

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

s̄ ◦ T−1
E ψ ◦ T n−1

E dμE

∣
∣
∣
∣ =

∣
∣
∣〈s̄ ◦ T−1

E hE, ψ ◦ T n−1
E μ0〉

∣
∣
∣

=
∣
∣
∣〈s̄ ◦ T−1

E hE, (L∗
TE)n−1(ψμ0)〉

∣
∣
∣ =

∣
∣
∣〈Ln−1

TE
(s̄ ◦ T−1

E hE), ψμ0〉
∣
∣
∣

≤ C |Ln−1
TE

(s̄ ◦ T−1
E hE)|w(|ψ |∞ + Hα

A0
(ψ))

≤ C‖Rn−1
E (s̄ ◦ T−1

E hE)‖B|ψ |∞
≤ Cρn‖hE‖B|s̄ ◦ T−1

E |Cα1/2(P−1)
|ψ |∞, (5.6)

for some ρ < 1where |s̄◦T−1
E |Cα1/2(P−1)

denotes theHölder constant of s̄ on elements of

the partition formed by the connected components of M\STE−1, and we have used (4.14)

and the fact that�E(s̄◦T−1
E hE) = 0 since 〈s̄◦T−1

E hE, μ0〉 = μE(s̄◦T−1
E ) = μE(s̄) = 0.

From (5.6), we see that s̄ has uniform exponential decay of correlations against
ψ ∈ B0(A0) and so satisfies the hypotheses of Lemma 5.2. It follows that s̄ enjoys a
uniform exponential rate of decay of correlations against ψ ∈ L2(A0, μE), so by (5.4),
this yields an exponential decay in the L2-norm of E(s̄|An). We conclude that the first
series in (5.3) converges. Since the hypotheses of Theorem 5.1 are verified, it follows
that σ 2

E = 0 if and only if s̄ = u ◦ TE − u for some u ∈ L2(μE), and the proof of
Theorem 2.4 is complete. �	
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Proof of Lemma 5.2. Let ψ ∈ L2(A0, μE) be arbitrary. For L ∈ R
+, define ψL(x) =

ψ(x) when |ψ(x)| ≤ L and ψL(x) = 0 otherwise. Clearly, ψL ∈ B0(A0) and |ψL |∞ ≤
L . Now for n ∈ N,

∣
∣
∣
∣

∫

s̄ · ψ ◦ T n
E dμE

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

s̄ · ψL ◦ T n
E dμE

∣
∣
∣
∣ + |s̄|∞

∫

|ψ − ψL | dμE. (5.7)

To bound the second term on the right side of (5.7), note that
∫

|ψ − ψL | dμE ≤
∫

1|ψ |>L · |ψ | dμE ≤ μE(|ψ | > L)1/2|ψ |L2(μE),

while μ(|ψ | > L) = μ(ψ2 > L2) ≤ L−2|ψ |2
L2 , by Markov’s inequality. Using (5.5)

for the first term on the right side of (5.7), we obtain,
∣
∣
∣
∣

∫

s̄ · ψ ◦ T n
E dμE

∣
∣
∣
∣ ≤ CρnL + L−1|s̄|∞|ψ |2L2(μE)

≤ ρn/2(C + |s̄|∞|ψ |2L2(μE)
), (5.8)

if we set L = ρ−n/2, and the lemma is proved. �	
Proof of Lemma 5.3. Due to the density of C1(M) in Bw, it suffices to prove the lemma
for h ∈ C1(M).

On each component Mi of M , i = 1, . . . , d, we disintegrate the smooth measure
μ0 on elements of A0. Since elements of A0 are homogeneous stable manifolds, the
decomposition respects the boundaries of the homogeneity strips. LetA0,i = {Wξ }ξ∈�i

denote the set of homogeneous local stable manifolds in Mi with index set �i . The
disintegration of μ0 on elements ofA0,i yields conditional densities ηξ on Wξ , normal-
ized so that

∫
Wξ

ηξ dmWξ = 1, and a factor measure μ̂0 on the index set �i . By [CM,
Corollary 5.30], ηξ is (uniformly in ξ ) log-Hölder continuous with exponent 1/3. Now,

h(ψ) =
∫

M
hψ dμ0 =

∑

i

∫

�i

∫

Wξ

h ψ ηξ dmWξ dμ̂0(ξ). (5.9)

On each Wξ , we estimate using the weak norm.
∣
∣
∣
∣
∣

∫

Wξ

h ψ ηξ dmξ

∣
∣
∣
∣
∣
≤ |h|w|ψ |Cα(Wξ )|ηξ |Cα(Wξ ).

Due to the log-Hölder regularity of ηξ , there exists a constant Cη > 0 such that

|ηξ (x) − ηξ (y)| ≤ Cη|ηξ (x)|d(x, y)1/3 ≤ C ′|Wξ |−1d(x, y)1/3,

where the bound on the sup-norm of ηξ comes from the normalization of the conditional
measures. Putting these estimates into (5.9) we obtain,

|h(ψ)| ≤ C ′|h|w(|ψ |∞ + Hα
A0

(ψ))
∑

i

∫

�i

|Wξ |−1 dμ̂0(ξ).

This last integral is precisely the integral that characterizes the Z -function for a standard
family [CM, Section 7.4] which measures the prevalence of short curves in that fam-
ily. Since the disintegration of μ0 on maximal homogeneous stable manifolds creates a
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proper family,11 this integral is finite (see [CM, Exercise 7.22] for the decomposition us-
ing stable manifolds for the unperturbed billiard T0 and [CZ,CZZ] for the decomposition
using stable manifolds for the perturbed billiard TE). �	

Appendix A. Lasota–Yorke Estimates

A.1. Preliminary estimates. Before proving the Lasota–Yorke inequalities, we show
how (H1)–(H5) imply several other uniform properties for our class of maps F . In
particular, we will be interested in iterating the one-step expansion given by (H3). We
recall the estimates we need from [DZ1, Section 3.2].

Let T ∈ F and W ∈ Ws . Let Vi denote the maximal connected components of
T−1W after cutting due to singularities and the boundaries of the homogeneity strips.
To ensure that each component of T−1W is inWs , we subdivide any of the long pieces
Vi whose length is > δ0, where δ0 is chosen in (2.15). This process is then iterated
so that given W ∈ Ws , we construct the components of T−nW , which we call the nth

generation Gn(W ), inductively as follows. Let G0(W ) = {W } and suppose we have
defined Gn−1(W ) ⊂ Ws . First, for any W ′ ∈ Gn−1(W ), we partition T−1W ′ into at
most countably many pieces W ′

i so that T is smooth on each W ′
i and each W ′

i is a
homogeneous stable curve. If any W ′

i have length greater than δ0, we subdivide those
pieces into pieces of length between δ0/2 and δ0. We define Gn(W ) to be the collection
of all pieces Wn

i ⊂ T−nW obtained in this way. Note that each Wn
i is inWs by (H2).

At each iterate of T−1, typical curves in Gn(W ) grow in size, but there exist a portion
of curves which are trapped in tiny homogeneity strips and in the infinite horizon case,
stay too close to the infinite horizon points. In Lemma A.1, we make precise the sense
in which the proportion of curves that never grow to a fixed length decays exponentially
fast.

For W ∈ Ws , n ≥ 0, and 0 ≤ k ≤ n, let Gk(W ) = {Wk
i } denote the k th generation

pieces in T−kW . Let Bk(W ) = {i : |Wk
i | < δ0/3} and Lk(W ) = {i : |Wk

i | ≥ δ0/3}
denote the index of the short and long elements of Gk(W ), respectively. We consider
{Gk}nk=0 as a tree with W as its root and Gk as the k th level.

At level n, we group the pieces as follows. Let Wn
i0

∈ Gn(W ) and let Wk
j ∈ Lk(W )

denote the most recent long “ancestor” of Wn
i0
, i.e. k = max{0 ≤ � ≤ n : T n−�(Wn

i0
) ⊂

W �
j and j ∈ L�}. If no such ancestor exists, set k = 0 and Wk

j = W . Note that if Wn
i0
is

long, then Wk
j = Wn

i0
. Let

In(Wk
j ) = {i : Wk

j ∈ Lk(W ) is the most recent long ancestor of Wn
i ∈ Gn(W )}.

The set In(W ) represents those curves Wn
i that belong to short pieces in Gk(W ) at each

time step 1 ≤ k ≤ n, i.e. such Wn
i are never part of a piece that has grown to length

≥ δ0/3.
We collect the necessary complexity estimates in the following lemma.

Lemma A.1. Let W ∈ Ws , T ∈ F and for n ≥ 0, let In(W ) and Gn(W ) be defined
as above. There exist constants C1,C2,C3 > 0, independent of W and T , such that for
any n ≥ 0,

11 In fact, Example 7.21 and Exercise 7.22 of [CM] are stated in terms of the disintegration ofμ0 onmaximal
homogeneous unstable manifolds. Using the reversibility of TE, the analogous properties hold for maximal
homogeneous stable manifolds.
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(a)
∑

i∈In(W )

|JWn
i
T n|C0(Wn

i ) ≤ C1θ
n∗ ;

(b)
∑

Wn
i ∈Gn(W )

|JWn
i
T n|C0(Wn

i ) ≤ C2;

(c) for any 0 ≤ ς ≤ 1,
∑

Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς |JWn
i
T n|C0(Wn

i ) ≤ C1−ς
2 .

(d) for ς > 1/2,
∑

Wn
i ∈Gn(W )

|JWn
i
T n|ςC0(Wn

i )
≤ Cn

3 , where C3 depends on ς .

Proof. Item (a) follows from the one-step expansion (H3) by induction as in [DZ1,
Lemma 3.1]. Items (b) and (c) are precisley [DZ1, Lemmas 3.2 and 3.3].

For item (d), we first prove that the claimed estimate holds for n = 1. Indeed, due to
(H1), the expansion for each stable curve landing in a homogeneity stripHk under T−1

is of the order of k−2. If T−1W crosses a countable number of singularity curves, the
sum of the expansion factors is uniformly bounded as long as ς > 1/2. Since there are
only finitely many genuine singularity curves in ST−1 (not counting homogeneity strips),
the required sum is uniformly bounded for all W ∈ Ws with |W | ≤ δ0. The estimate
for general n follows by induction as in [DZ1, Lemma 3.4]. �	

Next we state a distortion bound for the stable Jacobian of T along different stable
curves in the following context. Let W 1,W 2 ∈ Ws and suppose there exist Uk ⊂
T−nWk , k = 1, 2, such that for 0 ≤ i ≤ n,

(i) T iUk ∈ Ws and the curves T iU 1 and T iU 2 lie in the same homogeneity strip;
(ii) U 1 and U 2 can be put into a 1-1 correspondence by a smooth foliation {γx }x∈U1

of curves γx ∈ Ŵu such that {T nγx } ⊂ Ŵu creates a 1-1 correspondence between
T nU 1 and T nU 2;

(iii) |T iγx | ≤ 2max{|T iU 1|, |T iU 2|}, for all x ∈ U 1.

Let JUk T n denote the stable Jacobian of T n along the curveUk with respect to arclength.
The following lemma was proved in [DZ2].

Lemma A.2. In the setting above, for x ∈ U 1, define x∗ ∈ γx ∩U 2. There exists C0 > 0,
independent of T ∈ F , W ∈ Ws and n ≥ 0 such that

(a) dWs (U 1,U 2) ≤ C0�
−ndWs (W 1,W 2);

(b)

∣
∣
∣
∣
JU1T n(x)

JU2T n(x∗)
− 1

∣
∣
∣
∣ ≤ C0[d(T nx, T nx∗)1/3 + θ(T nx, T nx∗)],

where θ(T nx, T nx∗) is the angle formed by the tangent lines of T nU 1 and T nU2 at T nx
and T nx∗, respectively.

To prove Proposition 4.1, we fix T ∈ F and prove the required Lasota–Yorke in-
equalities (4.1)–(4.3). It is shown in Lemma 3.3 that LT,g is a continuous operator on
both B and Bw so that it suffices to prove the inequalities for h ∈ C1(M). They extend to
the completions by continuity. Our purpose now is to show how they depend explicitly
on the uniform constants given by (H1)–(H5) and do not require additional information.

A.2. Estimating the weak norm. Let h ∈ C1(M), W ∈ Ws and ψ ∈ Cα(W ) such that
|ψ |Cα(W ) ≤ 1. For brevity, we define

ĝ = g − log Jμ0T, so that eSn ĝ = eSng(Jμ0T
n)−1.
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For n ≥ 0, we write,

∫

W
Ln
T,gh ψ dmW =

∑

Wn
i ∈Gn(W )

∫

Wn
i

heSn ĝ JWn
i
T nψ ◦ T ndmWn

i
(A.1)

where JWn
i
T n denotes the Jacobian of T n along Wn

i .
Using the definition of the weak norm on each Wn

i , we estimate (A.1) by

∫

W
Ln
T,gh ψ dmW ≤

∑

Wn
i ∈Gn

|h|w|JWn
i
T n|Cα(Wn

i )|eSn ĝ|Cα(Wn
i )|ψ ◦ T n|Cα(Wn

i ). (A.2)

Using the bounded distortion property (H4), we estimate,

|JWn
i
T n|Cα(Wn

i ) ≤ (1 + Cd)|JWn
i
T n|C0(Wn

i ), (A.3)

and similarly for |(Jμ0T
n)−1|Cα(Wn

i ). Next, for the potential g and x, y ∈ Wn
i ,

|eSng(x) − eSng(y)| ≤ |eSng|C0(Wn
i )|Sng(x) − Sng(y)|

≤ |eSng|C0(Wn
i )|g|Cα(P1)

n−1∑

i=0

Ce�
−iα|x − y|α,

so that |eSng|Cα(Wn
i ) ≤ Cg|eSng|C0(Wn

i ), where Cg := 1 + Ce|g|Cα(P1)

∑∞
i=0 �−iβ . This,

together with (A.3) applied to (Jμ0T
n)−1, yields,

|eSn ĝ|Cα(Wn
i ) ≤ Cg|eSng|C0(Wn

i )(1 +Cd)|(Jμ0T
n)−1|C0(Wn

i ) ≤ Cg(1 +Cd)
2|eSn ĝ|C0(Wn

i ),

(A.4)
wherewe have used again the bounded distortion of Jμ0T

n to combine the two C0-norms.
Finally, we esimate the norm of ψ ◦ T n , again using (H1). For x, y ∈ Wn

i ,

|ψ(T nx) − ψ(T n y)|
dW (T nx, T n y)α

·dW (T nx, T n y)α

dW (x, y)α
≤|ψ |Cα(W )|JWn

i
T n|αC0(Wn

i )
≤Ce�

−αn|ψ |Cα(W ),

(A.5)
so that |ψ ◦ T n|Cα(Wn

i ) ≤ Ce|ψ |Cα(W ) ≤ Ce. We use this estimate together with (A.3)
and (A.4) to bound (A.2) by

∫

W
Ln
T,gh ψ dmW ≤ Ce(1 + Cd)

3Cg|eSn ĝ|∞|h|w
∑

Wn
i ∈Gn

|JWn
i
T n|C0(Wn

i )

≤ C ′Cg|eSn ĝ|∞|h|w,

where C ′ = Ce(1 + Cd)
3C2 and we have used Lemma A.1(b) for the last inequality.

Taking the supremum over allW ∈ Ws and ψ ∈ Cα(W ) with |ψ |Cα(W ) ≤ 1 yields (4.1)
expressed with uniform constants given by (H1)–(H5).
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A.3. Estimating the strong stable norm. Let W ∈ Ws and let Wn
i denote the el-

ements of Gn(W ) as defined above. For ψ ∈ Cβ(W ), |ψ |Cβ(W ) ≤ |W |−p, define
ψ i = |Wn

i |−1
∫
Wn

i
ψ ◦ T n dmW . Using equation (A.1), we write

∫

W
Ln
T,gh ψ dmW =

∑

i

∫

Wn
i

eSn ĝh · JWn
i
T n · (ψ ◦ T n − ψ i ) dmW

+ψ i

∫

Wn
i

heSn ĝ · JWn
i
T n dmW . (A.6)

To estimate the first term of (A.6), we first estimate |ψ ◦ T n − ψ i |Cβ(Wn
i ). If H

β
W (ψ)

denotes the Hölder constant of ψ along W , then Eq. (A.5) implies

|ψ(T nx) − ψ(T n y)|
dW (x, y)β

≤ Ce�
−nβHβ

W (ψ) (A.7)

for any x, y ∈ Wn
i . Since ψ i is constant on Wn

i , we have Hβ

Wn
i
(ψ ◦ T n − ψ i ) ≤

Ce�
−βnHβ

W (ψ). To estimate the C0 norm, note thatψ i = ψ ◦T n(yi ) for some yi ∈ Wn
i .

Thus for each x ∈ Wn
i ,

|ψ ◦ T n(x) − ψ i | = |ψ ◦ T n(x) − ψ ◦ T n(yi )| ≤ Hβ

Wn
i
(ψ ◦ T n)|Wn

i |β

≤ CeH
β
W (ψ)�−βn .

This estimate together with (A.7) and the fact that |W |p|ψ |Cβ(W ) ≤ 1, implies

|ψ ◦ T n − ψ i |Cβ(Wn
i ) ≤ Ce�

−βn|ψ |Cβ(W ) ≤ Ce�
−βn|W |−p. (A.8)

We apply (A.3), (A.4) and (A.8) and the definition of the strong stable norm to the
first term of (A.6),

∑

i

∫

Wn
i

heSn ĝ JWn
i
T n (ψ ◦ T n − ψ i ) dmW

≤ Ce

∑

i

‖h‖s |Wn
i |p

|W |p
∣
∣
∣eSn ĝ JWn

i
T n

∣
∣
∣
Cβ(Wn

i )
�−βn

≤ |eSn ĝ|∞Cg(1 + Cd)
3CeCg�

−βn‖h‖s
∑

i

|Wn
i |p

|W |p |JWn
i
T n|C0(Wn

i )

≤ C4Cg|eSn ĝ|∞�−βn‖h‖s, (A.9)

where C4 = (1 +Cd)
3CeC

1−p
2 and in the second line we have used Lemma A.1(c) with

ς = p.
For the second termof (A.6),weuse the fact that |ψ i | ≤ |W |−p since |W |p|ψ |Cβ(W ) ≤

1.Recall the notation introducedbefore the statement ofLemmaA.1.Grouping the pieces
Wn

i ∈ Gn(W ) according to most recent long ancestors Wk
j ∈ Lk(W ), we have
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∑

i

|W |−p
∫

Wn
i

heSn ĝ · JWn
i
T n dmW

=
n∑

k=1

∑

j∈Lk (W )

∑

i∈In(Wk
j )

|W |−p
∫

Wn
i

heSn ĝ · JWn
i
T n dmW

+
∑

i∈In(W )

|W |−p
∫

Wn
i

heSn ĝ JWn
i
T n dmW

where we have split up the terms involving k = 0 and k ≥ 1. We estimate the terms
with k ≥ 1 by the weak norm and the terms with k = 0 by the strong stable norm. Using
again (A.3) and (A.4),

∑

i

|W |−p
∫

Wn
i

heSn ĝ · JWn
i
T n dmW

≤ |eSn ĝ|∞Cg(1 + Cd)
3

n∑

k=1

∑

j∈Lk (W )

∑

i∈In(Wk
j )

|W |−p|h|w|JWn
i
T n|C0(Wn

i )

+ |eSn ĝ|∞Cg(1 + Cd)
3

∑

i∈In(W )

|Wn
i |p

|W |p ‖h‖s |JWn
i
T n|C0(Wn

i ).

In the first sum above corresponding to k ≥ 1, we write

|JWn
i
T n|C0(Wn

i ) ≤ |JWn
i
T n−k |C0(Wn

i )|JWk
j
T k |C0(Wk

j )
.

Thus using Lemma A.1(a) from time k to time n,

n∑

k=1

∑

j∈Lk

∑

i∈In(Wk
j )

|W |−p|JWn
i
T n|C0(Wn

i )

≤
n∑

k=1

∑

j∈Lk (W )

|JWk
j
T k |C0(Wk

j )
|W |−p

∑

i∈In(Wk
j )

|JWn
i
T n−k |C0(Wn

i )

≤ 3pδ−p
0

n∑

k=1

∑

j∈Lk (W )

|JWk
j
T k |C0(Wk

j )

|Wk
j |p

|W |p C1θ
n−k∗ ,

since |Wk
j | ≥ δ0/3. The inner sum is bounded by C1−p

2 for each k by Lemma A.1(c)
while the outer sum is bounded by C1/(1 − θ∗) independently of n.

Finally, for the sum corresponding to k = 0, since

|JWn
i
T n|C0(Wn

i ) ≤ (1 + Cd)|T nWn
i ||Wn

i |−1 ≤ (1 + Cd)|JWn
i
T n|C0(Wn

i ),

we use Jensen’s inequality and Lemma A.1(a) to estimate,

∑

i∈In(W )

|Wn
i |p

|W |p |JWn
i
T n |C0(Wn

i ) ≤ (1 + Cd)

⎛

⎝
∑

i∈In(W )

|T nWn
i |

|Wn
i |

⎞

⎠

1−p

≤ (1 + Cd)C1θ
n(1−p)∗ .
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Gathering these estimates together, we have

∑

i

|W |−p

∣
∣
∣
∣
∣

∫

Wn
i

heSn ĝ JWn
i
T n dmW

∣
∣
∣
∣
∣

≤ Cg|eSn ĝ|∞
(
C5δ

−p
0 |h|w + C6‖h‖sθn(1−p)∗

)
,

(A.10)
where C5 = 3p(1 + Cd)

3C1C
1−p
2 /(1 − θ∗) and C6 = (1 + Cd)

4C1. Putting together
(A.9) and (A.10) proves (4.2),

‖Ln
T,gh‖s ≤ C ′Cg|eSn ĝ|∞

(
�−βn + θ

n(1−p)∗
)

‖h‖s + C ′Cg|eSn ĝ|∞δ
−p
0 |h|w,

with C ′ = max{C4,C5,C6}, a uniform constant depending only on (H1)–(H5).

A.4. Estimating the strongunstable norm. Fix ε ≤ ε0 and consider twocurvesW 1,W 2 ∈
Ws with dWs (W 1,W 2) ≤ ε. For n ≥ 1, we describe how to partition T−nW � into
“matched” pieces U �

j and “unmatched” pieces V �
k , � = 1, 2. In the what follows, we

use Ct to denote a transversality constant which depends only on the minimum angle
between various transverse directions: the minimum angle between Cs(x) and Cu(x),
between ST−n and C

s(x), and between Cs(x) and the vertical and horizontal directions.
Let ω be a connected component of W 1\ST−n such that T−nω ∈ Gn(W ). We define

a smooth local foliation {γx }x∈T−nω about T−nω such that for each x ∈ T−nω: (1) γx
is centered at x , (2) γx ∈ Ŵ u ; (3) |γx | ≤ 2BCtCe�

−nε such that its image T nγx , if not
cut by a singularity or the boundary of a homogeneity strip, will have a projection on the
vertical direction of length 2ε. By item (3) and the definition of dWs (W 1,W 2), it follows
that any curve T nγx that is not cut by a singularity or the boundary of a homogeneity
strip must necessarily intersect W 2, except possibly if T nγx lies near the endpoints of
W 1. By (H2), T iγx ∈ Ŵu for each i ≥ 0.

Doing this for each connected component of W 1\ST−n , we subdivide W 1\ST−n into
a countable collection of subintervals of points for which T nγx intersects W 2\ST−n and
subintervals for which this is not the case. This in turn induces a corresponding partition
on W 2\ST−n .

We denote by V �
k the pieces in T−nW � which are not matched up by this process and

note that the images T nV �
k occur either at the endpoints of W � or because the curve γx

has been cut by a singularity or the boundary of a homogeneity strip. In both cases, the
length of the curves T nV �

k can be at most Ctε due to the uniform transversality of ST−n
with Cs(x), of Cs(x) with Cu(x) and of Cs(x) with the horizontal.

In the remaining pieces the foliation {T nγx }x∈T−nW 1 provides a one to one corre-
spondence between points in W 1 and W 2. We partition these pieces in such a way that
the lengths of their images under T−i are less than δ0 for each 0 ≤ i ≤ n and the pieces
are pairwise matched by the foliation {γx }. We call these matched pieces Ũ �

j and note

that T iŨ �
j ∈ Gn−i (W �) for each i = 0, 1, . . . n. For convenience, we further trim the Ũ �

j

to pieces U �
j so that U

1
j and U

2
j are both defined on the same arclength interval I j . The

at most two components of T n(Ũ �
j \U �

j ) have length less than Ctε due to the uniform
transversality of Cs(x) with the vertical direction. We attach these trimmed pieces to
the adjacent U �

i or V �
k as appropriate so as not to create any additional components in

the partition.
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We further relabel any pieces U �
j as V

�
j and consider them unmatched if for some

i , 0 ≤ i ≤ n, and for some x ∈ U �
j , |T iγx | > 2|T iU �

j |. i.e. we only consider pieces
matched if at each intermediate step, the distance between them is at most of the same
order as their length. We do this in order to be able to apply Lemma A.2 to the matched
pieces. Notice that since the distance between the curves at each intermediate step is at
most CtCeε and due to the uniform contraction of stable curves going forward, we have
|T nV �

k | ≤ CtC2
e ε for all such pieces considered unmatched by this last criterion.

In this way we write W � = (∪ j T nU �
j ) ∪ (∪kT nV �

k ). Note that the images T nV �
k of

the unmatched pieces must have length ≤ Cvε for some uniform constant Cv while the
images of the matched pieces U �

j may be long or short.

Recalling the notation of Sect. 3, we have arranged a pairing of the pieces U �
j with

the following property:

If U 1
j = GU1

j
(I j ) = {(r, ϕU1

j
(r)) : r ∈ I j }, then U 2

j = GU2
j
(I j ) = {(r, ϕU2

j
(r)) : r ∈ I j },

(A.11)

so that the point x = (r, ϕU1
j
(r)) ∈ U 1

j canbe associatedwith the point x̄ = (r, ϕU2
j
(r)) ∈

U 2
j by the vertical line {(r, s)}s∈[−π/2,π/2], for each r ∈ I j . In addition, the U �

j satisfy
the assumptions of Lemma A.2.

Given ψ� on W � with |ψ�|Cα(W �) ≤ 1 and dβ(ψ1, ψ2) ≤ ε, with the above construc-
tion we must estimate
∣
∣
∣
∣

∫

W 1
Ln
T,gh ψ1 dmW −

∫

W 2
Ln
T,gh ψ2 dmW

∣
∣
∣
∣ ≤

∑

�,k

∣
∣
∣
∣
∣

∫

V �
k

heSn ĝ JV �
k
T nψ� ◦ T n dmW

∣
∣
∣
∣
∣

+
∑

j

∣
∣
∣
∣
∣

∫

U1
j

heSn ĝ JU1
j
T nψ1 ◦ T n dmW −

∫

U2
j

heSn ĝ JU2
j
T nψ2 ◦ T n dmW

∣
∣
∣
∣
∣
. (A.12)

First we estimate the unmatched pieces V �
k using the strong stable norm. Note that by

(A.5), |ψ� ◦ T n|Cβ(V �
k ) ≤ Ce|ψ�|Cα(W �) ≤ Ce. We estimate as in Sect. A.3, using the

fact that |T nV �
k | ≤ Cvε, as noted above,

∑

�,k

∣
∣
∣

∫

V �
k

heSn ĝ JV �
k
T nψ� ◦ T n dmW

∣
∣
∣

≤ Ce

∑

�,k

‖h‖s |V �
k |p|eSn ĝ|Cβ(V �,k)|JV �

k
T n|Cβ(V �,k)

≤ Ce(1 + Cd)
3Cg|eSn ĝ|∞‖h‖s

∑

�,k

|V �
k |p|JV �

k
T n|C0(V �

k )

≤ C ′ε pCg|eSn ĝ|∞‖h‖s
∑

�,k

|JV �
k
T n|1−p

C0(V �
k )

≤ 2C ′ε pCg|eSn ĝ|∞‖h‖sCn
3 , (A.13)

withC ′ = Ce(1+Cd)
4C p

v , where we have applied LemmaA.1(d) with ς = 1− p > 1/2
since there are at most two V �

k corresponding to each elementW �,n
i ∈ Gn(W �) as defined

in Sect. A.1 and |JV �
k
T n|C0(V �

k ) ≤ |JW �,n
i

T n|C0(W �,n
i )

whenever V �
k ⊆ W �,n

i .
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Next, we must estimate

∑

j

∣
∣
∣
∣
∣

∫

U1
j

heSn ĝ JU1
j
T n ψ1 ◦ T n dmW −

∫

U2
j

heSn ĝ
U2

j
T n ψ2 ◦ T n dmW

∣
∣
∣
∣
∣
.

We fix j and estimate the difference. Define

φ j = (eSn ĝ JU1
j
T n ψ1 ◦ T n) ◦ GU1

j
◦ G−1

U2
j
.

The function φ j is well-defined on U 2
j and we can write,

∣
∣
∣
∣
∣

∫

U1
j

heSn ĝ JU1
j
T n ψ1 ◦ T n −

∫

U2
j

heSn ĝ JU2
j
T n ψ2 ◦ T n

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

U1
j

heSn ĝ JU1
j
T n ψ1 ◦ T n −

∫

U2
j

h φ j

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

U2
j

h(φ j − eSn ĝ JU2
j
T n ψ2 ◦ T n)

∣
∣
∣
∣
∣
.

(A.14)
We estimate the first term on the right hand side of (A.14) using the strong unstable

norm. Using (A.3), (A.4) and (A.5),

|eSn ĝ JU1
j
T n · ψ1 ◦ T n|Cα(U1

j )
≤ Ce(1 + Cd)

3Cg|eSn ĝ|∞|JU1
j
T n|C0(U1

j )
. (A.15)

Notice that

|GU1
j
◦ G−1

U2
j
|C1(U2

j )
≤ sup

r∈U2
j

√
1 + (dϕU1

j
/dr)2

√
1 + (dϕU2

j
/dr)2

≤
√
1 + �2 =: Ca, (A.16)

where � is the maximum slope of curves inWs given by (H1). Using this, we estimate
as in (A.15),

|φ j |Cα(U2
j )

≤ CaCe(1 + Cd)
3Cg|eSn ĝ|∞|JU1

j
T n|C0(U1

j )
.

By the definition of φ j and dβ(·, ·),

dβ(eSn ĝ JU1
j
T nψ1 ◦ T n, φ j ) =

∣
∣
∣
[
eSn ĝ JU1

j
T nψ1 ◦ T n

]
◦ GU1

j
− φ j ◦ GU2

j

∣
∣
∣Cβ(I j )

= 0.

By Lemma A.2(a), we have dWs (U 1
j ,U

2
j ) ≤ C0�

−nε =: ε1. In view of (A.15)

and following, we renormalize the test functions by R j = C7Cg|eSn ĝ|∞|JU1
j
T n|C0(U1

j )

where C7 = CaCe(1 + Cd)
3. Then we apply the definition of the strong unstable norm

with ε1 in place of ε. Thus,

∑

j

∣
∣
∣
∣
∣

∫

U1
j

heSn ĝ JU1
j
T n ψ1 ◦ T n −

∫

U2
j

h φ j

∣
∣
∣
∣
∣

≤ C7C
γ
0 εγ �−γ nCg|eSn ĝ|∞‖h‖u

∑

j

|JU1
j
T n|C0(U1

j )
(A.17)



738 M. F. Demers, L. Rey-Bellet, H.-K. Zhang

where the sum is ≤ C2 by Lemma A.1(b) since there is at most one matched piece U 1
j

corresponding to each elementW 1,n
i ∈ Gn(W 1) and |JU1

j
T n|C0(U1

j )
≤ |JW 1,n

i
T n|C0(W 1,n

i )

whenever U 1
j ⊆ W 1,n

i .
It remains to estimate the second term in (A.14) using the strong stable norm.

∣
∣
∣
∣
∣

∫

U2
j

h(φ j − eSn ĝ JU2
j
T nψ2 ◦ T n)

∣
∣
∣
∣
∣
≤ ‖h‖s |U 2

j |p
∣
∣
∣φ j − eSn ĝ JU2

j
T nψ2 ◦ T n

∣
∣
∣Cβ(U2

j )
.

(A.18)
In order to estimate the Cβ -norm of the function in (A.18), we split it up into two
differences. Since |GU �

j
|C1 ≤ Ca and |G−1

U �
j
|C1 ≤ 1, � = 1, 2, we write

|φ j − (eSn ĝ JU2
j
T n) · ψ2 ◦ T n|Cβ(U2

j )

≤
∣
∣
∣
[
(eSn ĝ JU1

j
T n) · ψ1 ◦ T n

]
◦ GU1

j
−

[
(eSn ĝ JU2

j
T n) · ψ2 ◦ T n

]
◦ GU2

j

∣
∣
∣Cβ(I j )

≤
∣
∣
∣(eSn ĝ JU1

j
T n) ◦ GU1

j

[
ψ1 ◦ T n ◦ GU1

j
− ψ2 ◦ T n ◦ GU2

j

]∣
∣
∣Cβ(I j )

+
∣
∣
∣
[
(eSn ĝ JU1

j
T n) ◦ GU1

j
− (eSn ĝ JU2

j
T n) ◦ GU2

j

]
ψ2 ◦ T n ◦ GU2

j

∣
∣
∣Cβ(I j )

≤ Ca(1 + Cd)
3Cg|eSn ĝ JU1

j
T n|C0(U1

j )

∣
∣
∣ψ1 ◦ T n ◦ GU1

j
− ψ2 ◦ T n ◦ GU2

j

∣
∣
∣Cβ(I j )

+CaCe

∣
∣
∣(eSn ĝ JU1

j
T n) ◦ GU1

j
− (eSn ĝ JU2

j
T n) ◦ GU2

j

∣
∣
∣Cβ(I j )

. (A.19)

To bound the two differences above, we need the following lemma, which was proved
in [DZ2] Lemma 4.2. The only difference is the factor eSn ĝ which does not play any
significant role in the proof, so we omit the proof here.

Lemma A.3. There exist constants C8,C9 > 0, depending only on (H1)–(H5), such
that,

(a) |(eSn ĝ JU1
j
T n)◦GU1

j
−eSn ĝ JU2

j
T n)◦GU2

j
|Cβ(I j ) ≤ C8Cg|eSn ĝ JU2

j
T n|C0(U2

j )
ε1/3−β;

(b) |ψ1 ◦ T n ◦ GU1
j
− ψ2 ◦ T n ◦ GU2

j
|Cq (Ir j )

≤ C9Cgε
α−β.

It follows from Lemma A.3(a) that

|eSn ĝ JU1
j
T n|C0(U1

j )
≤ (1 + C8Cgε

1/3−β)|eSn ĝ JU2
j
T n|C0(U2

j )

which we will use to simplify (A.19). Starting from (A.18), we apply Lemma A.3 to
(A.19) to obtain,

∑

j

∣
∣
∣

∫

U2
j

h(φ j − eSn ĝ JU2
j
T nψ2 ◦ T n) dmW

∣
∣
∣

≤ C̄Cg‖h‖s
∑

j

|U 2
j |p|eSn ĝ JU2

j
T n|C0(U2

j )
εα−β

≤ C̄Cg|eSn ĝ|∞‖h‖sεα−β
∑

j

|JU2
j
T n|C0(U2

j )
,

(A.20)
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for some uniform constant C̄ where again the sum is finite as in (A.17). This completes
the estimate on the second term in (A.14). Now we use this bound, together with (A.13)
and (A.17) to estimate (A.12)

∣
∣
∣
∣

∫

W 1
Ln
T,gh ψ1 dmW −

∫

W 2
Ln
T,gh ψ2 dmW

∣
∣
∣
∣ ≤ CCn

3Cg|eSn ĝ|∞‖h‖sε p

+ C‖h‖u�−γ nCg|eSn ĝ|∞εγ

+ CCg|eSn ĝ|∞‖h‖sεα−β,

(A.21)

where againC depends only on (H1)–(H5) through the estimates above. Sinceα−β ≥ γ

and p ≥ γ , we divide through by εγ and take the appropriate suprema to complete the
proof of (4.3).
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