Instructions

• Turn off all cell phones and watch alarms! Put away iPods, etc.

• There are seven (7) questions.

• Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.

• Do not use a calculator, reference materials, or paper other than a booklet.

• Organize your work in an unambiguous order. Show all necessary steps.

• Answers given without supporting work may receive 0 credit!

• Be ready to show your UMass ID card when you hand in your exam booklet.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>PER CENT</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Free</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
#1. Find all vertical and horizontal asymptotes of the following functions, if any. Justify your answers using limits.

(a) (7 points) \(f(x) = \frac{x^2 - 3x + 2}{x^2 - 5x + 6} \)

(b) (7 points) Suppose \(h(x) \) is a function such that \(-x \leq h(x) \leq x^2 - 3x + 1\). Evaluate \(\lim_{x \to 1} h(x) \) or state that more information is needed to evaluate it.
#2. (a) (7 points) Define the function $f(x)$ by

$$f(x) = \begin{cases}
ax^2 + 3x & x < 1 \\
b & x = 1 \\
x^3 - ax & x > 1
\end{cases}$$

For what values of a and b is $f(x)$ continuous at $x = 1$? Justify your answer.

(b) (7 points) Define the function $g(x)$ by

$$g(x) = \begin{cases}
x & x < 1 \\
2x - 1 & x \geq 1
\end{cases}$$

Is $g(x)$ differentiable at $x = 1$? Justify your answer using the limit definition of derivative.
#3. The definition of a function $f(x)$ and a portion of its graph are shown below.

$$f(x) = \begin{cases}
 x^2 & x < 0 \\
 0 & 0 \leq x < 2 \\
 x & 2 \leq x < 4 \\
 (x - 6)^2 & x \geq 4
\end{cases}$$

(For (a), (b), and (c) you may state your answers without justification.)

(a) (5 points) Find all the values x at which $f(x)$ is discontinuous.

(b) (5 points) Find all the values x at which $f(x)$ is not differentiable.

(c) (4 points) Evaluate $\lim_{x \to 2^+} f(f(x))$.

#4. The cost (in dollars) of producing x cars is $C(x) = x^2 + 3x + 1$.

(a) (5 points) Find the average rate of change of C with respect to x when production is raised from $x = 4$ to $x = 5$.

(b) (5 points) Find the instantaneous rate of change of C with respect to x when $x = 5$. Justify your answer using limits.

(c) (4 points) Find the equation of the tangent line to the graph of C at $x = 5$.
#5. Let \(f(x) = 7x - 7 \).

(a) (8 points) Find the largest value of \(\delta \) such that if \(|x - 2| < \delta \), then \(|f(x) - 7| < \epsilon \). Express your answer in terms of \(\epsilon \).

(b) (6 points) If we require \(x \) to be in the interval \((2.5, 3.5)\), what is the smallest value of \(\epsilon \) such that \(|f(x) - 14| < \epsilon \)?
#6. (14 points) Let $g(x) = 3^{-x}$ and $h(x) = x$. Prove that there is some number c such that $g(c) = h(c)$. Precisely state any theorems you use.
#7. (14 points) Use the limit definition of the derivative to find $f'(a)$ for

$$f(x) = \sqrt{x^2 + 1}.$$