
Review guide for the final exam in
Math 233

1 Basic material.

This review includes the remainder of the material for math 233. The final
exam will be a cumulative exam with many of the problems coming from the
material covered beginning approximately with chapter 15.4 of the book.

We first recall polar coordinates formulas given in chapter 10.3. The coor-
dinates of a point (x, y) ∈ R3 can be described by the equations:

x = r cos(θ) y = r sin(θ), (1)

where r =
√
x2 + y2 is the distance from the origin and (x

r
, y
r
) is (cos(θ), sin(θ))

on the unit circle. Note that r ≥ 0 and θ can be taken to lie in the interval
[0, 2π).

To find r and θ when x and y are known, we use the equations:

r2 = x2 + y2 tan(θ) =
y

x
. (2)

Example 1 Convert the point (2, π
3
) from polar to Cartesian coordinates.

Solution : Since r = 2 and θ = π
3
, Equations 1 give

x = r cos(θ) = 2 cos
π

3
= 2 · 1

2
= 1

y = r sin(θ) = 2 sin
π

3
= 2 ·

√
3

2
=
√

3.

Therefore, the point is (1,
√

3) in Cartesian coordinates.

Example 2 Represent the point with Cartesian coordinates (1,−1) in terms
of polar coordinates.

Solution : If we choose r to be positive, then Equations 2 give

r =
√
x2 + y2 =

√
12 + (−1)2 =

√
2

tan(θ) =
y

x
= −1.

Since the point (1,−1) lies in the fourth quadrant, we can choose θ = −π
4

or

θ = 7π
4

. Thus, one possible answer is (
√

2,−π
4
); another is (r, θ) = (

√
2, 7π

4
).

The next theorem describes how to calculate the integral of a function
f(x, y) over a polar rectangle. Note that dA = r dr dθ.
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Theorem 3 (Change to Polar Coordinates in a Double Integral) If f
is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β,
where 0 ≤ β − α ≤ 2π, then∫

R

∫
f(x, y)dA =

∫ β

α

∫ b

a

f(r cos(θ), r sin(θ))r dr dθ.

Example 4 Evaluate
∫ ∫

R
(3x + 4y2)dA, where R is the region in the upper

half-plane bounded by the circles x2 = y2 = 1 and x2 + y2 = 4.

Solution : The region R can be described as

R = {(x, y) | y ≥ 0, 1 ≤ x2 + y2 ≤ 4}.

It is a half-ring and in polar coordinates it is given by 1 ≤ r ≤ 2, 0 ≤ θ ≤ π.
Therefore, by Theorem 3,∫

R

∫
(3x+ 4y2)dA =

∫ π

0

∫ 2

1

(3r cos(θ) + 4r2 sin2(θ))r dr dθ

=

∫ π

0

∫ 2

1

(3r2 cos(θ) + 4r3 sin2(θ)) dr dθ

=

∫ π

0

[r3 cos(θ) + r4sin2(θ)]r=2
r=1 dθ =

∫ π

0

(7 cos(θ) + 15 sin2(θ)) dθ

=

∫ π

0

[7 cos(θ) +
15

2
(1− cos(2θ))] dθ

= 7 sin(θ) +
15θ

2
− 15

4
sin(2θ)

]π
0

=
15π

2
.

Example 5 Find the volume of the solid bounded by the plane z = 0 and the
paraboloid z = 1− x2 − y2.

Solution : If we put z = 0 in the equation of the paraboloid, we get x2+y2 =
1. This means that the plane intersects the paraboloid in the circle x2+y2 = 1,
so the solid lies under the paraboloid and above the circular disk D given by
x2 + y2 ≤ 1. In polar coordinates D is given by 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Since
1− x2 − y2 = 1− r2, the volume is

V =

∫
D

∫
(1− x2 − y2)dA =

∫ 2π

0

∫ 1

0

(1− r2)r dr dθ

=

∫ 2π

0

∫ 1

0

(r − r3) dr dθ = 2π

[
r2

2
− r4

4

]1
0

=
π

2
.

The next theorem extends our previous application of Fubini’s theorem for
type II regions.
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Theorem 6 If f continuous on a polar region of the form

D = {(r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}

then ∫
D

∫
f(x, y)dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos(θ), r sin(θ))r dr dθ

The next definition describes the notion of a vector field. We have al-
ready seen an example of a vector field associated to a function f(x, y) de-
fined on a domain D ⊂ R2, namely the gradient vector field ∇f(x, y) =
〈fx(x, y), fy(x, y)〉. In nature and in physics, we have the familiar examples of
the velocity vector field in weather and force vector fields that arise in gravi-
tational fields, electric and magnetic fields.

Definition 7 Let D be a set in R2 (a plane region). A vector field on R2 is
a function F that assigns to each point (x, y) in D a two-dimensional vector
F(x, y).

Definition 8 Let E be a subset of R3. A vector field on R3 is a function F
that assigns to each point (x, y, z) in E a three-dimensional vector F(x, y, z).

Note that a vector field F on R3 can be expressed by its component func-
tions. So if F = (P,Q,R), then:

F(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k.

We now describe our first kind of “line integral”. These type of integrals
arise form integrating a function along a curve C in the plane or in R3. The
type of line integral described in the next definition is called a line integral
with respect to arc length.

Definition 9 Let C be a smooth curve in R2. Given n, consider n equal subdi-
visions of lengths ∆si; let (x∗i , y

∗
i ) denote the midpoints of the i-th subdivision.

If f is a real valued function defined on C, then the line integral of f along
C is ∫

C

f(x, y) ds = lim
n→∞

n∑
j=1

f(x∗i , y
∗
i )∆si,

if this limit exists.

The following formula can be used to evaluate this type of line integral.

Theorem 10 Suppose f(x, y) is a continuous function on a differentiable
curve C(t), C : [a, b]→ R2. Then∫

C

f(x, y) ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

In the above formula, √(
dx

dt

)2

+

(
dy

dt

)2

,

is the speed of C(t) at time t.
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Example 11 Evaluate
∫
C

2x ds, where C consists of the arc C1 of the parabola
y = x2 from (0, 0) to (1, 1).

Solution : We can choose x as the time parameter and the equations for C
become

x = x y = x2 0 ≤ x ≤ 1

Therefore, ∫
C1

2x ds =

∫ 1

0

2x

√(
dx

dx

)2

+

(
dy

dx

)2

dx

=

∫ 1

0

2x
√

1 + 4x2 dx =
1

4
· 2

3
(1 + 4x2)

3
2

]1
0

=
5
√

5− 1

6
.

Actually for what we will studying next, another type of line integral will
be important. These line integrals are called line integrals of f along C
with respect to x and y. They are defined respectively for x and y by the
following limits: ∫

C

f(x, y) dx = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆xi

∫
C

f(x, y) dy = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆yi.

The following formulas show how to calculate these new type line integrals.
Note that these integrals depend on the orientation of the curve C, i.e., the
initial and terminal points.

Theorem 12 ∫
C

f(x, y) dx =

∫ b

a

f(x(t), y(t))x′(t) dt∫
C

f(x, y) dy =

∫ b

a

f(x(t), y(t))y′(t) dt.

Example 13 Evaluate
∫
C
y2 dx+x dy, where C = C1 is the line segment from

(−5,−3) to (0, 2)

Solution : A parametric representation for the line segment is

x = 5t− 5, y = 5t− 3, 0 ≤ t ≤ 1

Then dx = 5 dt, dy = 5 dt, and Theorem 12 gives∫
C1

y2 dx+ x dy =

∫ 1

0

(5t− 3)2(5dt) + (5t− 5)(5 dt)

= 5

∫ 1

0

(25t2 − 25t+ 4) dt

= 5

[
25t3

3
− 25t2

2
+ 4t

]1
0

= −5

6
.
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Example 14 Evaluate
∫
C
y2 dx+x dy, where C = C2 is the arc of the parabola

x = 4− y2 from (−5,−3) to (0, 2).

Solution : Since the parabola is given as a function of y, let’s take y as the
parameter and write C2 as

x = 4− y2 y = y, −3 ≤ y ≤ 2.

Then dx = −2y dy and by Theorem 12 we have∫
C2

y2dx+ x dy =

∫ 2

−3
y2(−2y) dy + (4− y2) dy

=

∫ 2

−3
(−2y3 − y2 + 4) dy

=

[
−y

4

2
− y3

3
+ 4y

]2
−3

= 40
5

6
.

One can also define in a similar manner the line integral with respect to
arc length of a function f along a curve C in R3.

Theorem 15∫
C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫
C

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz,

where f(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉.

The next example demonstrates how to calculate a line integral
of a function with respect to x, y and z.

Example 16 Evaluate
∫
c
y dx + z dy + x dz,, where C consists of the line

segment C1 from (2, 0, 0) to (3, 4, 5) followed by the vertical line segment C2

from (3, 4, 5) to (3, 4, 0).

Solution : We write C1 as

r(t) = (1− t)〈2, 0, 0〉+ t〈3, 4, 5〉 = 〈2 + t, 4t, 5t〉

or, in parametric form, as

x = 2 + t y = 4t z = 5t 0 ≤ t ≤ 1.

Thus ∫
C1

y dx+ z dy + x dz =

∫ 1

0

(4t) dt+ (5t)4 dt+ (2 + t)5 dt
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=

∫ 1

0

(10 + 29t) dt = 10t+ 29
t2

2

]1
0

= 24.5.

Likewise, C2 can be written in the form

r(t) = (1− t)〈3, 4, 5〉+ t〈3, 4, 0〉 = 〈3, 4, 5− 5t〉

or
x = 3 y = 4 z = 5− 5t dz = −5 dt, 0 ≤ t ≤ 1.

Then dx = 0 = dy, so∫
C2

y dx+ z dy + x dz =

∫ 1

0

2(−5) dt = −15.

Adding the values of these integrals, we obtain∫
C=C1∪C2

y dx+ z dy + x dz = 24.5− 15 = 9.5.

We now get to our final type of line integral which can be considered to be
a line integral of a vector field. This type of integral is used to calculate
the work W done by a force field F in moving a particle along a smooth curve
C.

Theorem 17 If C is given by the vector equation r(t) = x(t)i + y(t)j + z(t)k
on the interval [a, b], then the work W can be calculated by

W =

∫ b

a

F(r(t)) · r′(t) dt,

where · is the dot product.

In general, we make the following definition which is related to the formula
in the above theorem.

Definition 18 Let F be a continuous vector field defined on a smooth curve
C given by a vector function r(t), a ≤ t ≤ b. Then the line integral of F
along C is ∫

C

F · dr =

∫ b

a

F(r(t)) · r′(t) dt =

∫
C

F ·T ds;

here, T is the unit tangent vector field to the parameterized curve C.

Example 19 Find the work done by the force field F(x, y) = x2i − xyj in
moving a particle along the quarter-circle r(t) = cos t i + sin t j, 0 ≤ t ≤ π

2
.
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Solution : Since x = cos t and y = sin t, we have

F(r(t)) = cos2 ti− cos t sin tj

and
r′(t) = − sin ti + cos tj.

Therefore, the work done is∫
C

F · dr =

∫ π
2

0

F(r(t)) · r′(t)dt =

∫ π
2

0

(−2 cos2 t sin t)dt

= 2
cos3 t

3

]π
2

0

= −2

3
.

Example 20 Evaluate
∫
C

F · dr, where F(x, y, z) = xyi + yzj + zxk and C is
the twisted cubic given by

x = t y = t2 z = t3 0 ≤ t ≤ 1.

Solution : We have
r(t) = ti + t2j + t3k

r′(t) = i + 2tj + 3t2k

F(r(t)) = t3i + t5j + t4k.

Thus, ∫
C

F · dr =

∫ 1

0

F(r(t)) · r′(t)dt

=

∫ 1

0

(t3 + 5t6)dt =
t4

4
+

5t7

7

]1
0

=
27

28
.

Theorem 21 If C in R3 is parameterized by r(t) and F = P i+Qj+Rk, then∫
C

F · dr =

∫
C

Pdx+Qdy +Rdz.

We now apply the material covered so far on line integrals to obtain several
versions of the fundamental theorem of calculus in the multivariable setting.
Recall that the fundamental theorem calculus can be written as∫ b

a

F′(x)dx = F (b)− F (a),

when F′(x) is continuous on [a, b].

Theorem 22 Let C be a smooth curve given by the vector function r(t), a ≤
t ≤ b. Let f be a differentiable function of two or three variables whose gradient
vector ∇f is continuous on C. Then∫

C

∇f · dr = f(r(b))− f(r(a)).
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For further discussion, we make the following definitions.

Definition 23 A curve r : [a, b]→ R3 (or R3) closed if r(a) = r(b).

Definition 24 A domain D ⊂ R3 (or R2) is open if for any point p in D, a
small ball (or disk) centered at p in R3 (in R2) is contained in D.

Definition 25 A domain D ⊂ R3 (or R2) is connected if any two points in
D can be joined by a path contained inside D.

Definition 26 A curve r : [a, b]→ R3 (or R2) is a simple curve if it doesn’t
intersect itself anywhere between its end points (r(t1) 6= r(t2) when a < t1 <
t2 < b).

Definition 27 An open, connected region D ⊂ R2 is a simply-connected
region if any simple closed curve in D encloses only points that are in D.

Definition 28 A vector field F is called a conservative vector field if it
is the gradient of some scalar function f(x, y); the function f(x, y) is called a
potential function for F. For example, for f(x, y) = xy+y2, ∇f = 〈y, x+2y〉
and so, F(x, y) = yi + (x+ 2y)j is a conservative vector field.

Definition 29 If F is a continuous vector field with domain D, we say that
the line integral

∫
C

F · dr is independent of path if
∫
C1

F · dr =
∫
C2

F · dr
for any two paths C1 and C2 in D with the same initial and the same terminal
points.

We now states several theorems that you should know for the final exam.

Theorem 30
∫
C

F ·dr is independent of path in D if and only if
∫
C

F ·dr = 0
for every closed path C in D.

Theorem 31 Suppose F is a vector field that is continuous on an open con-
nected region D. If

∫
C

F · dr is independent of path in D, then F is a conser-
vative vector field on D; that is, there exists a function f such that ∇f = F.

Theorem 32 If F(x, y) = P (x, y)i + Q(x, y)j is a conservative vector field,
where P and Q have continuous first-order partial derivatives on a domain D,
then throughout D we have

∂P

∂y
=
∂Q

∂x
.

Theorem 33 Let F = P i +Qj be a vector field on an open simply-connected
region D. Suppose that P and Q have continuous first-order derivatives and

∂P

∂y
=
∂Q

∂x
throughout D.

Then F is conservative.
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Example 34 Determine whether or not the vector field F(x, y) = (x− y)i +
(x− 2)j is conservative.

Solution : Let P (x, y) = x− y and Q(x, y) = x− 2. Then

∂P

∂y
= −1

∂Q

∂x
= 1.

Since ∂P
∂y
6= ∂Q

∂x
, F is not conservative by Theorem 32.

Example 35 Determine whether or not the vector field F(x, y) = (3+2xy)i+
(x2 − 3y2)j is conservative.

Solution : Let P (x, y) = 3 + 2xy and Q(x, y) = x2 − 3y2. Then

∂P

∂y
= 2x =

∂Q

∂x
.

Also, the domain of F is the entire plane (D = R2), which is open and simply-
connected. Therefore, we can apply Theorem 33 and conclude that F is con-
servative.

Attention! You will likely have a problem on the final exam which is similar
to the one described in the next example.

Example 36 (a) If F(x, y) = (3 + 2xy)i + (x2− 3y2)j, find a function f such
that F = ∇f .

(b) Evaluate the line integral
∫
C

F · dr, where C is the curve given by
r(t) = et sin t i + et cos t j, 0 ≤ t ≤ π.

Solution :

(a) From Example 35 we know that F is conservative and so there exists a
function f with ∇f = F, that is,

fx(x, y) = 3 + 2xy (3)

fy(x, y) = x2 − 3y2 (4)

Integrating (3) with respect to x, we obtain

f(x, y) = 3x+ x2y + g(y). (5)

Notice that the constant of integration is a constant with respect to x,
that is, it is a function of y, which we have called g(y).

Next we differentiate both sides of (5) with respect to y:

fy(x, y) = x2 + g′(y). (6)
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Comparing (4) and (6), we see that

g′(y) = −3y2.

Integrating with respect to y, we have

g(y) = −y3 +K

where K is a constant. Putting this in (5), we have

f(x, y) = 3x+ x2y − y3 +K

as the desired potential function.

(b) To apply Theorem 22 all we have to know are the initial and terminal
points of C, namely, r(0) = (0, 1) and r(π) = (0,−eπ). In the expression
for f(x, y) in part (a), any value of the constant K will do, so let’s choose
K = 0. Then we have∫

C

F · dr =

∫
C

∇f · dr = f(0,−eπ)− f(0, 1)

= e3π − (−1) = e3π + 1.

This method is much shorter than the straightforward method for eval-
uating line integrals described in Theorem 12.

Definition 37 A simple closed parameterized curve C in R2 always bounds a
bounded simply-connected domain D. We say that C is positively oriented
if for the parametrization r(t) of C, the region D is always on the left as r(t)
traverses C. Note that this parametrization is the counterclockwise one on the
boundary of unit disk D = {(x, y) | x2 + y2 ≤ 1}.

The next theorem is a version of the fundamental theorem of calculus,
since it allows one to carry out a two-dimensional integral on a domain D by
calculating a related integral one-dimensional on the boundary of D. There
will be at least one final exam problem related to the following theorem.

Theorem 38 (Green’s Theorem) Let C be a positively oriented, piecewise-
smooth, simple closed curve in the plane and let D be the region bounded by
C. If P and Q have continuous partial derivatives on an open region that
contains D, then ∫

C

Pdx+Qdy =

∫
D

∫ (
∂Q

∂x
− ∂P

∂y

)
dA.

An immediate consequence of Green’s Theorem are the area formulas de-
scribed in the next theorem.
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Theorem 39 Let D be a simply-connected domain in the plane with simple
closed oriented boundary curve C. Let A be the area of D. Then:

A =

∮
C

x dy = −
∮
C

y dx =
1

2

∮
C

x dy − y dx. (7)

Example 40 Find the area enclosed by the ellipse x2

a2
+ y2

b2
= 1.

Solution : The ellipse has parametric equations x = a cos t and y = b sin t,
where 0 ≤ t ≤ 2π. Using the third formula in Equation 7, we have

A =
1

2

∫
C

x dy − y dx

=
1

2

∫ 2π

0

(a cos t)(b cos t) dt− (b sin t)(−a sin t) dt

=
ab

2

∫ 2π

0

dt = πab.

Example 41 Use Green’s Theorem to evaluate
∮
C

(3y − esinx) dx + (7x +√
y4 + 1) dy, where C is the circle

x2 + y2 = 9.

Solution : The region D bounded by C is the disk x2+y2 ≤ 9, so let’s change
to polar coordinates after applying Green’s Theorem:∮

C

(3y − esinx) dx+ (7x+
√
y4 + 1) dy

=

∫
D

∫ [
∂

∂x
(7x+

√
y4 + 1)− ∂

∂y
(3y − esinx)

]
dA

=

∫ 2π

0

∫ 3

0

(7− 3) r dr dθ

= 4

∫ 2π

0

dθ

∫ 3

0

r dr = 36π.


