
Solutions to old Exam 2 problems

Hi students!
I am putting this old version of my review for the second
midterm review, place and time to be announced. Check for
updates on the web site as to which sections of the book will
actually be covered. Enjoy!!
Best, Bill Meeks

PS. There are probably errors in some of the solutions
presented here and for a few problems you need to complete
them or simplify the answers; some questions are left to you
the student. Also you might need to add more detailed
explanations or justifications on the actual similar problems on
your exam. I will keep updating these solutions with better
corrected/improved versions. The first 5 slides are from Exam
1 practice problems but the material might fall on our Exam 2.



Problem 26(a) - Exam 1 - Fall 2006

Let g(x , y) = yex . Estimate g(0.1, 1.9) using the linear
approximation L(x , y) of g(x , y) at (x , y) = (0, 2).

Solution:

Calculating partial derivatives at (0, 2), we obtain:

gx(x , y) = yex gy (x , y) = ex

gx(0, 2) = 2 gy (0, 2) = 1.

Let L(x , y) be the linear approximation at (0, 2).

L(x , y) = g(0, 2) + gx(0, 2)(x − 0) + gy (0, 2)(y − 2)

L(x , y) = 2 + 2x + (y − 2).

Calculating at (0.1, 1.9):

L(0.1, 1.9) = 2 + 2(0.1) + (1.9− 2) = 2 + .2− .1 = 2.1



Problem 36 - Exam 1

Find an equation for the tangent plane to the graph of
f (x , y) = y ln x at (1, 4, 0).

Solution:

Recall that the tangent plane to a surface z = f (x , y) at the
point P = (x0, y0, z0) is:

z − z0 = fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).

Calculating partial derivatives, we obtain:

fx(x , y) =
y

x
fy (x , y) = ln x

fx(1, 4) = 4 fy (1, 4) = ln 1 = 0.

The equation of the tangent plane is:

z = 4(x − 1) + 0 · (y − 4) = 4x − 4.



Problem 40 - Exam 1

Explain why the limit of f (x , y) = (3x2y 2)/(2x4 + y 4) does
not exist as (x , y) approaches (0, 0).

Solution:

Along the line 〈t, t〉, t 6= 0, f (x , y) has the constant value
3
3

= 1.

Along the line 〈0, t〉, t 6= 0, f (x , y) has the constant value
0
1

= 0.

Since f (x , y) has 2 different limiting values at (0, 0), it
does not have a limit at (0, 0).



Problem 42(a) - Exam 1

Find all of the first order and second order partial derivatives
of the function f (x , y) = x3 − xy 2 + y .

Solution:

First calculate the first order partial derivatives:

fx(x , y) = 3x2 − y 2 fy (x , y) = −2xy + 1.

The second order partial derivatives fxx , fxy , fyx and fyy
are:

fxx(x , y) = 6x fxy (x , y) = −2y

fyx(x , y) = −2y fyy (x , y) = −2x .



Problem 43 - Exam 1

Find the linear approximation L(x , y) of the function
f (x , y) = xyex at (x , y) = (1, 1), and use it to estimate f (1.1, 0.9).

Solution:

Calculating partial derivatives at (1, 1), we obtain:

fx(x , y) = yex + xyex fy (x , y) = xex

fx(1, 1) = 2e fy (1, 1) = e.

Let L(x , y) be the linear approximation at (1, 1).

L(x , y) = f (1, 1) + fx(1, 1)(x − 1) + fy (1, 1)(y − 1)

L(x , y) = e + 2e(x − 1) + e(y − 1).

Calculating at (1.1, 0.9), we obtain:

L(1.1, 0.9) = e + 2e(0.1) + e(−0.1) = 1.1e.



Problem 1 - Exam 2 - Fall 2008
1 For the function f (x , y) = 2x2 + xy2, calculate fx , fy , fxy , fxx :

fx(x , y) = 4x + y2

fy (x , y) = 2xy
fxy (x , y) = 2y
fxx(x , y) = 4

2 What is the gradient ∇f (x , y) of f at the point (1, 2)?
∇f = 〈fx , fy 〉 = 〈4x + y2, 2xy〉 ∇f (1, 2) = 〈8, 4〉.

3 Calculate the directional derivative of f at the point (1, 2)
in the direction of the vector v = 〈3, 4〉?

u = v
|v| = 1

5 〈3, 4〉 is the unit vector in the direction of 〈3, 4〉 .

Next evaluate
Duf (1, 2) = ∇f (1, 2) · u = 〈8, 4〉 · 15 〈3, 4〉 = 1

5 (24 + 16) = 8.

4 What is the linearization L(x , y) of f at (1, 2) ?
L(x , y) = f (1, 2) + fx(1, 2)(x − 1) + fy (1, 2)(y − 2)

= 6 + 8(x − 1) + 4(x − 2).
5 Use the linearization L(x , y) in the previous part to estimate

f (0.9, 2.1).
L(0.9, 2.1) = 6 + 8(0.9− 1) + 4(2.1− 2) = 6− .8 + .4 = 5.6



Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is
modeled by z = 100− 4x2 − 5y2. The positive x-axis points to East
direction and the positive y -axis points North. Suppose the hiker is now
at the point P(2,−1, 79) heading North, is she ascending or
descending? Justify your answers.

Solution:

Let f (x , y) = z = 100− 4x2 − 5y2.

This is a problem where we need to calculate the sign of the
directional derivative D〈0,1〉f (2,−1) = ∇f (2,−1) · 〈0, 1〉, where
〈0, 1〉 represents North.

Calculating, we obtain:

∇f (x , y) = 〈−8x ,−10y〉 ∇f (2,−1) = 〈−16, 10〉.

Hence,
D〈0,1〉f (2,−1) = 〈−16, 10〉 · 〈0, 1〉 = 10 > 0,

which means that she is ascending.



Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the
mountain is modeled by z = 100− 4x2 − 5y2. The positive x-axis
points to East direction and the positive y -axis points North.
Justify your answers.
When the hiker is at the point Q(1, 0, 96), in which direction on
the map should she initially head to descend most rapidly?

Solution:

Recall that ∇f (x , y) = 〈−8x ,−10y〉.
The direction of greatest descent is in the direction v of
−∇f at the point (1, 0) in the xy -plane.

Thus,
v = −∇f (1, 0) = 〈8, 0〉,

which means that she should go East.



Problem 2(c) - Fall 2008

A hiker is walking on a mountain path. The surface of the
mountain is modeled by z = 100− 4x2 − 5y2. The positive x-axis
points to East direction and the positive y -axis points North.
What is her rate of descent when she travels at a speed of 10
meters per minute in the direction of maximal decent from
Q(1, 0, 96) ? Justify your answers.

Solution:

By velocity, we mean the velocity of the projection on the
xy -plane or map (the wording is somewhat ambiguous).

By part (b), if she travels at unit speed (in measurements on
the map which we don’t know) in the direction of ∇f (1, 0)
(which is East = 〈1, 0〉), then her maximal rate of decent is
|∇f (1, 0)| = 8 (in measurements of the map).

So, her rate of decent in the direction of greatest decent is

10 · 8 meters/minute = 80 meters/minute.



Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the
mountain is modeled by z = 100− 4x2 − 5y2. The positive x-axis
points to East direction and the positive y -axis points North.
When the hiker is at the point Q(1, 0, 96), in which two directions
on her map can she initially head to neither ascend nor descend
(to keep traveling at the same height)? Justify your answers.

Solution:

First find all the possible vectors v = 〈x , y〉 which are
orthogonal to ∇f (1, 0) = 〈−8, 0〉 :

〈−8, 0〉 · 〈x , y〉 = −8x + 0 = 0 =⇒ x = 0.
Therefore, at the point Q(1, 0, 96) and in the map directions
of the vectors ±〈0, 1〉, she is neither ascending or descending.
These directions are North and South.



Problem 3(a) - Fall 2008

Let f (x , y) be a differentiable function with the following values of the partial
derivatives fx(x , y) and fy (x , y) at certain points (x , y)

x y fx(x , y) fy (x , y)

1 1 −2 4

−1 2 3 −1

1 2 −1 3

(You are given more values than you will need for this problem.) Suppose that
x and y are functions of variable t: x = t3; y = t2 + 1, so that we may regard
f as a function of t. Compute the derivative of f with respect to t when t = 1.

Solution:

By the Chain Rule we have:

f ′(t) =
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
=

∂f

∂x
· 3t2 +

∂f

∂y
· 2t.

Note that when t = 1, then x = 1 and y = 2 and that dx
dt = 3t2 and

dy
dt = 2t =⇒ dx

dt (1) = 3 and dy
dt (1) = 2.

Plug in the values in the table into the Chain Rule at t = 1:

f ′(1) =
∂f

∂x
(1, 2) · 3 +

∂f

∂y
(1, 2) · 2 = (−1) · 3 + 3 · 2 = 3.



Problem 3(b) - Fall 2008

Use the Chain Rule to find ∂z
∂v when u = 1 and v = 1, where

z = x3y2 + y3x ; x = u2 + v2, y = u − v2.

Solution:

By the Chain Rule we have:

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

= (3x2y2 + y3)(2v) + (2x3y + 3y2x)(−2v).

When u = 1 and v = 1, then x = 12 + 12 = 2 and
y = 1− 12 = 0.

So for u = 1 and v = 1, we get:

∂z

∂v
= 0.



Problem 4 - Fall 2008

Consider the surface x2 + y2 − 2z2 = 0 and the point P(1, 1, 1)
which lies on the surface.

(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

Recall that the gradient of F(x , y , z) = x2 + y2 − 2z2 is
normal n to the surface.
Calculating, we obtain:

∇F(x , y , z) = 〈2x , 2y ,−4z〉
n = ∇F(1, 1, 1) = 〈2, 2,−4〉.

The equation of the tangent plane is:

〈2, 2,−4〉·〈x−1, y−1, z−1〉 = 2(x−1)+2(y−1)−4(z−1) = 0.

The vector equation of the normal line is:

L(t) = 〈1, 1, 1〉+ t〈2, 2,−4〉 = 〈1 + 2t, 1 + 2t, 1− 4t〉.



Problem 5 - Fall 2008

Let f (x , y) = 2x3 + xy2 + 6x2 + y2.
Find and classify (as local maxima, local minima or saddle
points) all critical points of f .

Solution:

First calculate ∇f (x , y) and set to 〈0, 0〉:

∇f (x , y) = 〈6x2 + y2 + 12x , 2xy + 2y〉 = 〈0, 0〉.
This gives the following two equations:

6x2 + y2 + 12x = 0

2xy + 2y = y(2x + 2) = 0 =⇒ y = 0 or x = −1.

If x = −1, then the first equation gives:
6 + y2 − 12 = y2 − 6 = 0 =⇒ y =

√
6 or y = −

√
6.

If y = 0, then the first equation gives x = 0 or x = −2.

The set of critical points is:

{(0, 0), (−2, 0), (−1,
√

6), (−1,−
√

6)}.



Problem 5 - Fall 2008

Let f (x , y) = 2x3 + xy2 + 6x2 + y2.

Find and classify (as local maxima, local minima or saddle
points) all critical points of f .

Solution: Continuation of problem 5.

Recall that {(0, 0), (−2, 0), (−1,
√

6), (−1,−
√

6)} is the set
of critical points.
Since we will apply the Second Derivative Test, we first
write down the second derivative matrix:

D =
fxx fxy
fyx fyy

=
12x + 12 2y

2y 2x + 2

Since D(0, 0) = 12 · 2 = 24 > 0 and fxx(0) = 12 > 0, then
(0, 0) is a local minimum.
Since D(−2, 0) = 24 > 0 and fxx(−2, 0) = −12 < 0, then
(−2, 0) is a local maximum.
Since D(−1,

√
6) < 0, then (−1,

√
6) is a saddle point.

Since D(−1,−
√

6) < 0, then (−1,−
√

6) is a saddle point.



Problem 6 - Fall 2008

A flat circular plate has the shape of the region x2 + y2 ≤ 4. The plate
(including the boundary x2 + y2 = 4) is heated so that the temperature
at any point (x , y) on the plate is given by T(x , y) = x2 + y2 − 2x . Find
the temperatures at the hottest and the coldest points on the plate,
including the boundary x2 + y2 = 4.

Solution:

We first find the critical points.

∇T = 〈2x − 2, 2y〉 = 0 =⇒ x = 1 and y = 0.
Next use Lagrange Multipliers to study max and min of f on the
boundary circle g(x , y) = x2 + y2 = 4:
∇T = 〈2x − 2, 2y〉 = λ∇g = λ〈2x , 2y〉.
2y = λ2y =⇒ y = 0 or λ = 1.

y = 0 =⇒ x = ±2.

λ = 1 =⇒ 2x − 2 = 2x , which is impossible.

Now check the value of T at 3 points:

T(1, 0) = −1, T(2, 0) = 0, T(−2, 0) = 8.

Maximum temperature is 8 and the minimum temperature is −1.



Problem 7(a) - Spring 2008

Consider the equation x2 + y2/9 + z2/4 = 1.
Identify this quadric (i.e. quadratic surface), and graph the portion
of the surface in the region x ≥ 0, y ≥ 0, and z ≥ 0. Your graph
should include tick marks along the three positive coordinate axes,
and must clearly show where the surface intersects any of the three
positive coordinate axes.

Solution:

This is an ellipsoid. A problem of this type will not be on this
midterm.



Problem 7(b) - Spring 2008

Consider the equation x2 + y2/9 + z2/4 = 1. Calculate zx and zy
at an arbitrary point (x , y , z) on the surface (wherever possible).

Solution:

Recall the following formulas of implicit differentiation of

F(x , y , z) = x2 + y2

9 + z2

4 − 1 = 0:

∂z

∂x
=
−∂F
∂x
∂F
∂z

∂z

∂y
=
−∂F
∂y

∂F
∂z

.

Plugging in the following values,

∂F

∂x
= 2x

∂F

∂y
=

2

9
y

∂F

∂z
=

1

2
z ,

yields

zx =
−2x
1
2z

= −4 · x
z

zy =
−2

9y
1
2z

= −4

9
· y
z
,

which make sense when z 6= 0.



Problem 7(c) - Spring 2008

Consider the equation x2 + y2/9 + z2/4 = 1.
Determine the equation of the tangent plane to the surface at the point
( 1√

2
, 32 , 1).

Solution:

For F(x , y , z) = x2 + y2

9 + z2

4 = 1, the simplest way of finding the
normal vector n is to use n = ∇F( 1√

2
, 32 , 1) :

∇F(x , y , z) = 〈2x , 2

9
y ,

1

2
z〉

n = ∇F(
1√
2
,

3

2
, 1) = 〈 2√

2
,

6

18
,

1

2
〉 = 〈

√
2,

1

3
,

1

2
〉.

The equation of the tangent plane is:

0 = ∇F(
1√
2
,

3

2
, 1) · 〈x − 1√

2
, y − 3

2
, z − 1〉

= 〈
√

2,
1

3
,

1

2
〉 · 〈x − 1√

2
, y − 3

2
, z − 1〉

=
√

2(x − 1√
2

) +
1

3
(y − 3

2
) +

1

2
(z − 1) = 0.



Problem 8(a) - Spring 2008

Given the function f (x , y) = x2y + yexy .
Find the linearization L(x , y) of f at the point (0, 5) and use it to
approximate the value of f at the point (.1, 4.9). (An unsupported
numerical approximation to f (.1, 4.9) will not receive credit.)

Solution:
Calculating partial derivatives at (0, 5), we obtain:

fx(x , y) = 2xy + y2exy fy (x , y) = x2 + exy + xyexy

fx(0, 5) = 25 fy (0, 5) = 1.

Let L(x , y) be the linear approximation at (0, 5).

L(x , y) = f (0, 5) + fx(0, 5)(x − 0) + fy (0, 5)(y − 5)

L(x , y) = 5 + 25x + (y − 5).

Calculating at (.1, 4.9):

L(.1, 4.9) = 5 + 25(0.1) + (4.9− 5) = 7.4.



Problem 8(b) - Spring 2008

Given the function f (x , y) = x2y + yexy .
Suppose that x(r , θ) = r cos θ and y(r , θ) = r sin θ. Calculate fθ at
r = 5 and θ = π

2 .

Solution:

The Chain Rule gives

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ

= (2xy + y2exy )(−r sin θ) + (x2 + exy + xyexy )(r cos θ).

When r = 5 and θ = π
2 , then x = 0 and y = 5.

Thus, ∂f

∂θ
= (0 + 25e0)(−5) + 0 = −125.



Problem 8(c) - Spring 2008

Given the function f (x , y) = x2y + yexy .
Suppose a particle travels along a path (x(t), y(t)), and that
F(t) = f (x(t), y(t)) where f (x , y) is the function defined above.
Calculate F′(3), assuming that at time t = 3 the particle’s position
is (x(3), y(3)) = (0, 5) and its velocity is (x ′(3), y ′(3)) = (3,−2).

Solution:

The Chain Rule gives

dF

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= (2xy+y2exy )

dx

dt
+(x2+exy+xyexy )

dy

dt
.

Plugging in values, we obtain:

F′(3) = (0 + 52e0)(3) + (0 + e0 + 0)(−2) = 75 + (−2) = 73.



Problem 9(a) - Spring 2008

Consider the function f (x , y) = 2
√
x2 + 4y .

Find the directional derivative of f (x , y) at P = (−2, 3) in the
direction starting from P pointing towards Q = (0, 4).

Solution:

First calculate partial derivatives of f (x , y) = 2(x2 + 4y)
1
2 :

fx =
2x√

x2 + 4y
fy =

4√
x2 + 4y

.

So,

∇f (−2, 3) = 〈 −4√
16
,

4√
16
〉 = 〈−1, 1〉.

The unit vector u in the direction
−→
PQ = 〈2, 1〉 is u = 1√

5
〈2, 1〉.

Duf (−2, 3) = ∇f (−2, 3) · u = 〈−1, 1〉 · 1√
5
〈2, 1〉 = − 1√

5
.

.



Problem 9(b) - Spring 2008

Consider the function f (x , y) = 2
√
x2 + 4y .

Find all unit vectors u for which the directional derivative
Duf (−2, 3) = 0.

Solution:

First find all the possible non-unit vectors v = 〈x , y〉 which
are orthogonal to ∇f (−2, 3) = 〈−1, 1〉 :

〈−1, 1〉 · 〈x , y〉 = −x + y = 0 =⇒ x = y .

Therefore, v = 〈x , x〉 works for any x 6= 0.

The set of unit vectors u = v
|v| such that

Duf (−2, 3) = ∇f (−2, 3) · u = 0 consists of 2 vectors:

{〈 1√
2
,

1√
2
〉, 〈− 1√

2
,− 1√

2
〉}.



Problem 9(c) - Spring 2008

Consider the function f (x , y) = 2
√
x2 + 4y .

Is there a unit vector u for which the directional derivative
Duf (−2, 3) = 4? Either find the appropriate u or explain why not.

Solution:

First recall that:

∇f = 〈 2x√
x2 + 4y

,
4√

x2 + 4y
〉 ∇f (−2, 3) = 〈−1, 1〉.

This question is equivalent to asking whether there is a unit
vector u = 〈x , y〉 such that

Duf (−2, 3) = ∇f (−2, 3) · u = 〈−1, 1〉 · u = 4.

If such u exists, then

4 = |〈−1, 1〉 · u| = |〈−1, 1〉| · |u|| cos θ| =
√

2 | cos θ| ≤
√

2.
Therefore, no such unit vector u exists.



Problem 10(a) - Spring 2008

Let f (x , y) = 2
3x

3 + 1
3y

3 − xy .
Find all critical points of f (x , y).

Solution:

First calculate ∇f (x , y) and set equal to 〈0, 0〉:

∇f (x , y) = 〈2x2 − y , y2 − x〉 = 〈0, 0〉

The first coordinate equation 2x2 − y = 0 implies y = 2x2.

Plugging y = 2x2 into the second coordinate equation gives

4x4 − x = x(4x3 − 1) = 0 =⇒ x = 0 or x = 4−
1
3 .

Hence, (x = 0 and y = 0) or (x = 4−
1
3 and y = 2 · 4−

2
3 ).

This gives a set of two critical points:

{(0, 0), (4−
1
3 , 2 · 4−

2
3 )}.



Problem 10(b) - Spring 2008

Let f (x , y) = 2
3x

3 + 1
3y

3 − xy .
Classify each critical point as a relative maximum, relative
(local) minimum or saddle; you do not need to calculate the
function at these points, but your answer must be justified.

Solution:

By part (a) ∇f = 〈2x2 − y , y2 − x〉 and the set of critical

points is {(0, 0), (4−
1
3 , 2 · 4−

2
3 )}.

Now write down the Hessian:

D =
fxx fxy
fyx fyy

=
4x −1
−1 2y

= 8xy − 1.

Next apply the Second Derivative Test.

Since D(0, 0) = −1 < 0, then (0, 0) is a saddle point.

Since D(4−
1
3 , 2 · 4−

2
3 ) = 4− 1 > 0 and

fxx(4−
1
3 , 2 · 4−

2
3 ) = 4 · 4−

1
3 = 4

2
3 > 0, then (4−

1
3 , 2 · 4−

2
3 ) is a

local minimum.



Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x , y)
where the function f (x , y) = 2x2 + 4y2 + 16 has an extreme value
(either a maximum or a minimum) subject to the constraint
1
4x

2 + y2 = 4.

Solution:

Set g(x , y) = 1
4x

2 + y2.
Set ∇f = 〈4x , 8y〉 = λ∇g = λ〈 12x , 2y〉 and solve:

8y = 2λy =⇒ λ = 4 or y = 0.

4x =
1

2
λx =⇒ λ = 8 or x = 0.

Since λ cannot simultaneously be 4 and 8, then x or y is zero.
From the constraint 1

4x
2 + y2 = 4, x = 0 =⇒ y = ±2 and

y = 0 =⇒ x = ±4.
We need to check the values of f at the points (0,±2), (±4, 0) :

f (0,±2) = 32 f (±4, 0) = 48.

Hence, f (x , y) has its minimum value of 32 at the points (0,±2)
and its maximum value of 48 at the points (±4, 0).



Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

f (x , y) = 2x3 − 6x2 + xy2 + y2

and use the Second Derivative Test to classify them as local minima,
local maxima or saddle points.

Solution:

First calculate ∇f (x , y) and set equal to (0, 0):

∇f (x , y) = 〈6x2 − 12x + y2, 2xy + 2y〉 = 〈0, 0〉.
=⇒ 2y(x + 1) = 0 and so y = 0 or x = −1.
Suppose y = 0. Then 6x2 − 12x = 6x(x − 2) = 0 and x = 0 or
x = 2.
Suppose x = −1. Then 6 + 12 + y2 = 0, which is impossible.
The set of critical points is {(0, 0), (2, 0)}.
Next calculate:

D =
fxx fxy
fyx fyy

=
12x − 12 2y

2y 2x + 2
= 24x2 − 24− 4y2.

D(0, 0) = −24 < 0 and so (0, 0) is a saddle point.
D(2, 0) = 96− 24 = 72 > 0 and fxx(2, 0) = 12 > 0, so (2, 0) is a
local minimum.



Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the
mountain is modeled by z = 1− 4x2 − 3y2. The positive x-axis
points to East direction and the positive y -axis points North.
Suppose the hiker is now at the point P(14 ,−

1
2 , 0) heading North,

is she ascending or descending? Justify your answers.

Solution:

Let f (x , y) = z = 1− 4x2 − 3y2.

This is a problem where we need to calculate the sign of the
directional derivative D〈0,1〉f (14 ,−

1
2) = ∇f (14 ,−

1
2) · 〈0, 1〉,

where 〈0, 1〉 represents North.
Calculating, we obtain:

∇f (x , y) = 〈−8x ,−6y〉 ∇f (
1

4
,−1

2
) = 〈−2, 3〉.

Hence,

D〈0,1〉f (
1

4
,−1

2
) = 〈−2, 3〉 · 〈0, 1〉 = 3 > 0,

which means that she is ascending.



Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the
mountain is modeled by z = 1− 4x2 − 3y2. The positive x-axis
points to East direction and the positive y -axis points North.
Justify your answers.
When the hiker is at the point Q(14 , 0,

3
4), in which direction should

she initially head to ascend most rapidly?

Solution:

Recall that ∇f (x , y) = 〈−8x ,−6y〉.
The direction of greatest ascent is in the direction v = ∇f
at the point (14 , 0) in the xy -plane.

Thus,

v = ∇f (
1

4
, 0) = 〈−2, 0〉

which means that she should go West.



Problem 14 - Fall 2007

Find the volume V of the solid bounded by the surface z = 6− xy
and the planes x = 2, x = −2, y = 0, y = 3 and z = 0.

Solution:

Note that the graph of f (x , y) = z = 6− xy is nonnegative
over the rectangle R = [−2, 2]× [0, 3] and the volume V
described is the volume under the graph.

Applying Fubini’s Theorem gives:

V =

∫ 2

−2

∫ 3

0
6− xy dy dx =

∫ 2

−2

[
6y − 1

2
xy2
]3
0

dx

=

∫ 2

−2
(18− 9

2
x)dx = 18x − 9

4
x2
∣∣∣∣2
−2

= (36− 9)− (−36− 9) = 72.



Problem 15 - Fall 2007

Let z(x , y) = x2 + y2 − xy where x = s − r and y = y(r , s) is an
unknown function of r and s. (Note that z can be considered a
function of r and s.) Suppose we know that

y(2, 3) = 3,
∂y

∂r
(2, 3) = 7, and

∂y

∂s
(2, 3) = −5.

Calculate ∂z
∂r when r = 2 and s = 3.

Solution:

By the Chain Rule:

∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
= (2x − y)

∂x

∂r
+ (2y − x)

∂y

∂r
.

Note that r = 2 and s = 3 =⇒ x = 1 and y = 3.

Hence,
∂z

∂r
= (2− 3)(−1) + (6− 1)7 = 1 + 35 = 36.



Problem 16(a) - Fall 2007

Let F(x , y , z) = x2 − 2xy − y2 + 8x + 4y − z .
Write the equation of the tangent plane to the surface given by
F(x , y , z) = 0 at the point (−2, 1,−5).

Solution:

Note that the normal n of the plane is ∇F(−2, 1,−5).

Calculating, we obtain:

∇F(x , y , z) = 〈2x − 2y + 8,−2x − 2y + 4,−1〉.

So,

n = ∇F(−2, 1,−5) = 〈−4− 2 + 8, 4− 2 + 4,−1〉 = 〈2, 6,−1〉.

The equation of the tangent plane is:

n · 〈x + 2, y − 1, z + 5〉 = 2(x + 2) + 6(y − 1)− (z + 5) = 0.



Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface F(x , y , z) = 0 at which the
tangent plane is horizontal, that is, parallel to the z = 0 plane.

Solution:

Since ∇F is normal to the surface F(x , y , z) = 0, a horizontal
tangent plane to the surface occurs where ∇F is vertical.
∇F is vertical on F(x , y , z) = 0, when its first 2 coordinates
vanish:
∇F = 〈2x − 2y + 8,−2x − 2y + 4,−1〉 = 〈0, 0,−1〉 =⇒

2x − 2y + 8 = 0
−2x − 2y + 4 = 0

Adding these equations =⇒ 4y = 12 =⇒ y = 3.
Plugging in y = 3 in first equation gives

2x − 2 · 3 + 8 = 0 =⇒ x = −1.
F(x , y , z) = x2 − 2xy − y2 + 8x + 4y − z and F(−1, 3, z) = 0,
=⇒ z = (−1)2 − 2(−1)(3)− 32 + 8(−1) + 4(3) = 2.
The unique point with horizontal tangent plane is (−1, 3, 2).



Problem 17 - Fall 2007

Find the points on the ellipse x2 + 4y2 = 4 that are closest to the point
(1, 0).

Solution:

We approach this problem using the method of Lagrange
multipliers. Let f (x , y) be square of the distance function from
(1, 0) to an arbitrary point (x , y) in R2.

We must find the minimum of f (x , y) = (x − 1)2 + y2, subject to
the constraint g(x , y) = x2 + 4y2 = 4 (distance squared to (1, 0)).

Calculating for some λ ∈ R,
∇f (x , y) = 〈2(x − 1), 2y〉 = λ∇g(x , y) = λ〈2x , 8y〉.
Hence, 2y = λ8y =⇒ λ = 1

4 or y = 0.

If y = 0, then the constraint implies x = ±2.

If λ = 1
4 , then 2(x − 1) = λ2x = 1

2x =⇒ x = 4
3 .

If x = 4
3 , then the constraint implies y = ±

√
5
3 .

The function f (x , y) has its minimum value at one of the 4 points

(±2, 0) and ( 4
3 ,±

√
5
3 ), and one easily checks its minimum value of

2
3 occurs at the 2 points ( 4

3 ,±
√
5
3 ).



Problem 18(a) - Fall 2006

Let f (x , y) be a differentiable function with the following values of the partial
derivatives fx(x , y) and fy (x , y) at certain points (x , y)

x y fx(x , y) fy (x , y)

1 1 −2 4

−1 2 3 −1

1 2 −1 1

(You are given more values than you will need for this problem.) Suppose that
x and y are functions of variable t: x = t3; y = t2 + 1, so that we may regard
f as a function of t. Compute the derivative of f with respect to t when t = 1.

Solution:

By the Chain Rule we have:

f ′(t) =
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
=

∂f

∂x
· 3t2 +

∂f

∂y
· 2t.

Note that when t = 1, then x = 1 and y = 2 and that dx
dt = 3t2 and

dy
dt = 2t =⇒ dx

dt (1) = 3 and dy
dt (1) = 2.

Plug in the values in the table into the Chain Rule at t = 1:

f ′(1) =
∂f

∂x
(1, 2) · 3 +

∂f

∂y
(1, 2) · 2 = (−1) · 3 + 1 · 2 = −1.



Problem 18(b) - Fall 2006

Use the Chain Rule to find ∂z
∂v when u = 1 and v = 1, where

z = x3y2 + y3x ; x = u2 + v , y = 2u − v .

Solution:

When u = 1 and v = 1, then x = 12 + 1 = 2,
y = 2 · 1− 1 = 1, ∂x

∂v = 1 and ∂y
∂v = −1.

By the Chain Rule we have:

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

= (3x2y2 +y3)(1)+(2x3y +3y2x)(−1) = 3x2y2 +y3−2x3y−3y2x .

So for u = 1 and v = 1, we get:

∂z

∂v
(1, 1) = 3 · 4 + 1− 2 · 8− 3 · 2 = −9.



Problem 19(a) - Fall 2006

Let f (x , y) = x2y3 + y4. Find the directional derivative of f at
the point (1, 1) in the direction which forms an angle
(counterclockwise) of π/6 with the positive x-axis.

Solution:
The unit vector in the direction of π

6 is

u = 〈cos
π

6
, sin

π

6
〉 = 〈

√
3

2
,

1

2
〉.

Calculating the gradient, we get:

∇f (x , y) = 〈2xy3, 3x2y2 + 4y3〉;

∇f (1, 1) = 〈2, 3 + 4〉 = 〈2, 7〉.

So the directional derivative is:

Duf (1, 1) = ∇f (1, 1) · u = 〈2, 7〉 · 〈
√

3

2
,

1

2
〉 =
√

3 +
7

2
.



Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve
x2y + y3 − 5 = 0 at the point (x , y) = (2, 1).

Solution:

The normal vector n to the curve F(x , y) = x2y + y3 − 5 = 0
at the point (2, 1) is ∇F(2, 1).

Calculating, we obtain:

∇F(x , y) = 〈2xy , x2 + 3y2〉;

n = ∇F(2, 1) = 〈4, 7〉.

The equation of the tangent line is:

n·〈x−2, y−1〉 = 〈4, 7〉·〈x−2, y−1〉 = 4(x−2)+7(y−1) = 0.



Problem 20 - Fall 2006

Let f (x , y) = 2x3 + xy2 + 5x2 + y2.
Find and classify (as local maxima, local minima or saddle
points) all critical points of f .

Solution:

First calculate ∇f (x , y) and set to 〈0, 0〉:

∇f (x , y) = 〈6x2 + y2 + 10x , 2xy + 2y〉 = 〈0, 0〉.
This gives the following two equations:

6x2 + y2 + 10x = 0

2xy + 2y = y(2x + 2) = 0 =⇒ y = 0 or x = −1.

If x = −1, then the first equation gives:
6 + y2 − 10 = y2 − 4 = 0 =⇒ y = 2 or y = −2.

If y = 0, then the first equation gives x = 0 or x = −5
3 .

The set of critical points is:

{(0, 0), (−5

3
, 0), (−1, 2), (−1,−2)}.



Problem 20 - Fall 2006

Let f (x , y) = 2x3 + xy2 + 5x2 + y2.

Find and classify (as local maxima, local minima or saddle
points) all critical points of f .

Solution: Continuation of problem 20.

Recall that {(0, 0), (−5
3 , 0), (−1, 2), (−1,−2)} is the set of

critical points.
Since we will apply the Second Derivative Test, we first
write down the second derivative matrix:

D =
fxx fxy
fyx fyy

=
12x + 10 2y

2y 2x + 2

Since D(0, 0) = 10 · 2 = 20 > 0 and fxx(0, 0) = 10 > 0, then
(0, 0) is a local minimum.
Since D(−53 , 0) = −10 · (−4

3) > 0 and fxx(−53 , 0) = −10 < 0,
then (−5

3 , 0) is a local maximum.
Since D(−1, 2) < 0, then (−1, 2) is a saddle point.
Since D(−1,−2) < 0, then (−1,−2) is a saddle point.



Problem 21 - Fall 2006

Find the maximum value of f (x , y) = 2x2 + y2 on the circle
x2 + y2 = 1 (Hint: Use Lagrange Multipliers).

Solution:

The constraint function is g(x , y) = x2 + y2. Note that x
and y cannot both be 0.
Set ∇f = 〈4x , 2y〉 = λ∇g = λ〈2x , 2y〉 and solve:

4x = λ2x =⇒ x = 0 or λ = 2.

2y = λ2y =⇒ y = 0 or λ = 1.

Since λ cannot simultaneously be 2 and 1, then x or y is zero.

From the constraint x2 + y2 = 1, x = 0 =⇒ y = ±1 and
y = 0 =⇒ x = ±1.
We only need to check the values of f at the points (0,±1),
(±1, 0) :

f (0,±1) = 1 f (±1, 0) = 2.

f (x , y) has its maximum value 2 at the points (±1, 0).



Problem 22 - Fall 2006

Find the volume V above the rectangle −1 ≤ x ≤ 1,
2 ≤ y ≤ 5 and below the surface z = 5 + x2 + y .

Solution:

We apply Fubini’s Theorem:

V =

∫ 5

2

∫ 1

−1
(5 + x2 + y) dx dy =

∫ 5

2

[
5x +

x3

3
+ yx

]1
−1

dy

=

∫ 5

2

10 +
2

3
+ 2y dy = (10 +

2

3
)y + y 2

∣∣∣∣5
2

= 53.



Problem 23 - Fall 2006

Evaluate the integral ∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy

by reversing the order of integration.

Solution:

There is no integration problem on this exam with varying limits of
integration (function limits).



Problem 24(1)

Use Chain Rule to find dz/dt.
z = x2y + 2y3, x = 1 + t2, y = (1− t)2.

Solution:

Calculating:
dx

dt
= 2t

dy

dt
= −2(1− t),

∂z

∂x
= 2xy

∂z

∂y
= x2 + 6y2.

By the Chain Rule,

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= 2xy · 2t + (x2 + 6y2) · (−2(1− t))

= 2(1 + t2)(1− t)22t + ((1 + t2)2 + 6(1− t)4)(−2(1− t)).

You can simplify further if you want.



Problem 24(2)

Use Chain Rule to find ∂z/∂u and ∂z/∂v .
z = x3 + xy2 + y3, x = uv , y = u + v .

Solution:

Calculating: ∂x

∂u
= v

∂x

∂v
= u

∂y

∂u
= 1

∂y

∂v
= 1

∂z

∂x
= 3x2 + y2 ∂z

∂y
= 2xy + 3y2.

By the Chain Rule:
∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u

= (3x2+y 2)v+(2xy+3y 2) = (3u2v 2+(u+v)2)v+2uv(u+v)+3(u+v)2,

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
= (3x2+y 2)u+(2xy+3y 2) = (3u2v 2+(u+v)2)u+(2uv(u+v)+3(u+v)2).



Problem 25

If z = f (x , y), where f is differentiable, and x = 1 + t2, y = 3t,
compute dz/dt at t = 2 provided that fx(5, 6) = fy (5, 6) = −1.

Solution:

We apply the Chain Rule dz
dt = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt .

Since t = 2, then x(2) = 1 + 22 = 5 and y(2) = 3 · 2 = 6.

Calculating, we obtain:

dx

dt
= 2t

dy

dt
= 3.

Evaluate using the Chain Rule:

dz

dt
(2) =

∂f

∂x
(5, 6)

dx

dt
(2) +

∂f

∂y
(5, 6)

dy

dt
(2)

= −1(2 · 2) + (−1)3 = −7.



Problem 26(a)

For the functions

1 f (x , y) = x2y + y3 − y2,

2 g(x , y) = x/y + xy ,

3 h(x , y) = sin(x2y) + xy2

find the gradient at (0, 1).

Solution:

1 ∇f (x , y) = 〈2xy , x2 + 3y2 − 2y〉
∇f (0, 1) = 〈0, 1〉;

2 ∇g(x , y) = 〈 1y + y ,− x
y2 + x〉

∇g(0, 1) = 〈2, 0〉;
3 ∇h(x , y) = 〈cos(x2y)(2xy) + y2, cos(x2y)x2 + 2xy〉
∇h(0, 1) = 〈1, 0〉.



Problem 26(b)

For the functions

1 f (x , y) = x2y + y3 − y2,

2 g(x , y) = x/y + xy ,

3 h(x , y) = sin(x2y) + xy2

find the directional derivative at the point (0, 1) in the direction
of v = 〈3, 4〉.

Solution:

1 The unit vector u in the direction of v = 〈3, 4〉 is:

u =
v

|v|
=

1

5
〈3, 4〉 = 〈3

5
,

4

5
〉.

2 Duf (0, 1) = ∇f (0, 1) · u = 〈0, 1〉 · 〈35 ,
4
5〉 = 4

5 .

3 Dug(0, 1) = ∇g(0, 1) · u = 〈2, 0〉 · 〈35 ,
4
5〉 = 6

5 .

4 Duh(0, 1) = ∇h(0, 1) · u = 〈1, 0〉 · 〈35 ,
4
5〉 = 3

5 .



Problem 26(c)

For the functions

1 f (x , y) = x2y + y3 − y2,

2 g(x , y) = x/y + xy ,

3 h(x , y) = sin(x2y) + xy2

find the maximum rate of change (MRC) at the point (0, 1).

Solution:

We know that the maximum rate of change is the length of the
gradient of the respective function:

MRC(f ) = |∇f (0, 1)| = |〈0, 1〉| = 1;

MRC(g) = |∇g(0, 1)| = |〈2, 0〉| = 2;

MRC(h) = |∇h(0, 1)| = |〈1, 0〉| = 1.



Problem 27

Find an equation of the tangent plane to the surface
x2 + 2y2 − z2 = 5 at the point (2, 1, 1).

Solution:

For F(x , y , z) = x2 + 2y2 − z2, the gradient is:

∇F(x , y , z) = 〈2x , 4y ,−2z〉.

At the point (2, 1, 1), we have ∇F(2, 1, 1) = 〈4, 4,−2〉, which
is the normal vector n to the tangent plane to the surface
F(x , y , z) = x2 + 2y2 − z2 = 5 at (2, 1, 1).

Since (2, 1, 1) is a point on the tangent plane, the equation
is:

〈4, 4,−2〉·〈x−2, y−1, z−1〉 = 4(x−2)+4(y−1)−2(z−1) = 0.



Problem 28
Find parametric equations for the tangent line to the curve of
intersection of the surfaces z2 = x2 + y2 and x2 + 2y2 + z2 = 66
at the point (3, 4, 5).

Solution:
If n1, n2 are the normal vectors of the respective surfaces, the
equation of the tangent line is L(t) = 〈3, 4, 5〉+ t(n1 × n2).
The normal n1 to the surface F(x , y , z) = z2 − x2 − y2 = 0 at
the point (3, 4, 5) is: n1 = ∇F(3, 4, 5) = 〈−6,−8, 10〉.
The normal n2 to the surface G(x , y , z) = x2 + 2y2 + z2 = 66
at the point (3, 4, 5) is: n2 = ∇G(3, 4, 5) = 〈6, 16, 10〉.
The vector part of the line is:

n1 × n2 =
i j k
−6 −8 10
6 16 10

= 〈−240, 120,−48〉.

The parametric equations are:
x = 3− 240t
y = 4 + 120t
z = 5− 48t.



Problem 29(1)

Find and classify all critical points (as local maxima, local
minima, or saddle points) of the function
f (x , y) = x2y2 + x2 − 2y3 + 3y2

Solution:

Set ∇f = 〈0, 0〉 and solve:
∇f = 〈2xy2 + 2x , 2x2y − 6y2 + 6y〉 = 〈0, 0〉 =⇒
2xy + 2x = 2x(y2 + 1) = 0 =⇒ x = 0; =⇒
−6y2 + 6y = 6y(−y + 1) = 0 =⇒ y = 0 or y = 1.

The critical points are (0, 0), (0, 1).
The Hessian is:

D =
fxx fxy
fyx fyy

=
2y2 + 2 4xy

4xy 2x2 − 12y + 6
.

Since D(0, 0) = 2 · 6 > 0 and fxx(0, 0) = 2 > 0, the point
(0, 0) is a local minimum.

Since D(0, 1) = 4 · (−12) < 0, the point (0, 1) is saddle point.



Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or
saddle points) of the function g(x , y) = x3 + y2 + 2xy − 4x − 3y + 5.

Solution:

Set ∇g = 〈0, 0〉 and solve:

∇g = 〈3x2 + 2y − 4, 2y + 2x − 3〉 = 0

2y + 2x − 3 = 0 =⇒ y =
3

2
− x .

So,

3x2 + 2(
3

2
− x)− 4 = 3x2 − 2x − 1 = (3x + 1)(x − 1) = 0

=⇒ x = 1 or x = −1

3
.

The set of critical points is {(1, 12 ), (− 1
3 ,

11
6 )}.

The Hessian is:

D =
gxx gxy
gyx gyy

=
6x 2
2 2

.

Since D(1, 12 ) = (6 · 2− 4) > 0 and gxx(1, 12 ) = 6 > 0, the point
(1, 12 ) is a local minimum.

Since D(− 1
3 ,

11
6 ) = −8 < 0, then (−1, 52 ) is a saddle point.



Problem 30

Find the minimum value of f (x , y) = 3 + xy − x − 2y on the
closed triangular region with vertices (0, 0), (2, 0) and (0, 3).

Solution:
Set ∇f = 〈0, 0〉 and solve:
∇f = 〈y − 1, x − 2〉 = 〈0, 0〉 =⇒ y = 1 and x = 2.
There is exactly one critical point which is (2, 1), but this
point is not inside the triangle, so ignore it.
On the interval (0, 0) to (2, 0),
f (x , 0) = 3 + x · 0− x − 2 · 0 = 3− x , which has a minimum
value of 1 at the point (2, 0).
On the interval (0, 0) to (0, 3),
f (0, y) = 3 + 0 · y − 0− 2y = 3− 2y , which has a minimum
value of −3 at (0, 3).
On the line segment from (2, 0) to (0, 3), y = −3

2x + 3 and
f (x , y = −3

2x + 3) = 3 + x(−3
2x + 3)− x − 2(−3

2x + 3) =
−3

2x
2 + 5x − 3, which has a minimum of 25

6 − 3 at (53 ,
1
2).

Hence, the absolute minimum value of f (x , y) is −3.



Problem 31(1)

Use Lagrange multipliers to find the extreme values of f (x , y) = xy
with constraint g(x , y) = x2 + 2y2 = 3.

Solution:

Set ∇f = 〈y , x〉 = λ∇g = λ〈2x , 4y〉 and solve:

y = λ2x =⇒ x = 0 or λ =
y

2x
.

x = λ4y =⇒ y = 0 or λ =
x

4y
.

Since g(x , y) = x2 + 2y2 = 3, either x or y must be nonzero; the
above equations then imply both x and y are nonzero.
Since x , y are both nonzero, then

y

2x
=

x

4y
=⇒ 4y2 = 2x2 =⇒ x2 = 2y2.

From the constraint x2 + 2y2 = 3, we get y = ±
√
3
2 , and the 4

possible points (±
√
3√
2
,±
√
3
2 ) where f (x , y) is extreme.

Then f (
√
3√
2
,
√
3
2 ) = f (−

√
3√
2
,−
√
3
2 ) = 3

2
√
2
,

f (−
√
3√
2
,
√
3
2 ) = f (

√
3√
2
,−
√
3
2 ) = − 3

2
√
2
.

Hence, the extreme values are ± 3
2
√
2

.



Problem 31(2)

Use Lagrange multipliers to find the extreme values of
g(x , y , z) = x + 3y − 2z with constraint x2 + 2y2 + z2 = 5.

Solution:

There is no Lagrange multipliers problem in 3 variables on this
exam.



Problem 32(1)

Find the iterated integral,∫ 4

1

∫ 2

0
(x +

√
y)dx dy .

Solution: ∫ 4

1

∫ 2

0
(x +

√
y)dx dy =

∫ 4

1

[
x2

2
+
√
yx

]2
0

dy

=

∫ 4

1
(2 + 2y

1
2 )dy = 2y +

4

3
y

3
2

∣∣∣∣4
1

= 8 +
4

3
(8)− (2 +

4

3
).



Problem 32(2)

Find the iterated integral,∫ 2

1

∫ 1

0
(2x + 3y)2dy dx .

Solution:

∫ 2

1

∫ 1

0
(2x + 3y)2 dy dx =

∫ 2

1

∫ 1

0
4x2 + 12xy + 9y2 dy dx

=

∫ 2

1

[
4x2y + 6xy2 + 3y3

]1
0
dx =

∫ 2

1
4x2 + 6x + 3 dx

=
4

3
x3 + 3x2 + 3x

∣∣∣∣2
1

=
4

3
(2)3 + 3(2)2 + 3(2)− (

4

3
+ 3 + 3).



Problem 32(3)

Find the iterated integral,∫ 1

0

∫ 2−x

x

(x2 − y)dy dx .

Solution:

There is no integration problem on this exam with varying limits of
integration (function limits).

Problem 32(4)

Find the iterated integral,∫ 1

0

∫ 1

x2

x3 sin(y3)dy dx .

(Hint: Reverse the order of integration)

Solution:

There is no integration problem on this exam with varying limits of
integration (function limits).



Problem 33(1)

Evaluate the following double integral.∫ ∫
R

cos(x + 2y)dA, R = {(x , y) | 0 ≤ x ≤ π, 0 ≤ y ≤ π/2}.

Solution:

Applying Fubini’s Theorem and the fact sin(π + θ) = − sin(θ),
we obtain:∫ ∫

R
cos(x + 2y) dA =

∫ π
2

0

∫ π

0
cos(x + 2y) dx dy

=

∫ π
2

0

[
sin(x + 2y)

]π
0
dy =

∫ π
2

0
sin(π + 2y)− sin(2y) dy

=

∫ π
2

0
− sin(2y) 2dy = cos(2y)

∣∣∣π2
0

= −1− 1 = −2.



Problem 33(2)

Evaluate the following double integral.∫ ∫
R

ey
2

dA, R = {(x , y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

Solution:

There is no integration problem on this exam with varying limits of
integration (function limits).

Problem 33(3)

Evaluate the following double integral.∫ ∫
R

x
√
y2 − x2dA, R = {(x , y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

Solution:

There is no integration problem on this exam with varying limits of
integration (function limits).



Problem 34(1)

Find the volume V of the solid under the surface z = 4 + x2 − y2

and above the rectangle

R = {(x , y) | −1 ≤ x ≤ 1, 0 ≤ y ≤ 2}.

Solution:

V =

∫ ∫
R

(4 + x2 − y2) dA =

∫ 2

0

∫ 1

−1
(4 + x2 − y2) dx dy

=

∫ 2

0

[
4x +

x3

3
− y2x

]1
−1

dy =

∫ 2

0
(8 +

2

3
− 2y2) dy

= (8 +
2

3
)y −2

3
y3
∣∣∣∣2
0

=
52

3
− 16

3
=

36

3
.



Problem 34(2)

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

There is no integration problem on this exam with varying limits of
integration (function limits).



Problem 35(a) - Spring 2009

Let f (x , y) = x2y − y2 − 2y − x2.
Find all of the critical points of f and classify them as either local
maximum, local minimum, or saddle points.

Step 1: Find the critical points.

Calculate ∇f (x , y) and solve

∇f (x , y) = 〈2xy − 2x , x2 − 2y − 2〉 = 〈0, 0〉
The first equation 2xy − 2x = 2x(y − 1) = 0 implies x = 0 or
y = 1

If x = 0, the second equation −2y − 2 = 0⇒ y = −1.

If y = 1, the second equation x2 − 4 = 0⇒ x = ±2.

This gives a set of three critical points:

{(0,−1), (−2, 1), (2, 1)}.



Problem 35(a) - Spring 2009

Let f (x , y) = x2y − y2 − 2y − x2.
Find all of the critical points of f and classify them as either local
maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

The set of critical points is {(0,−1), (−2, 1), (2, 1)}.
Now write the Hessian of f (x , y):

D =

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ =

∣∣∣∣2y − 2 2x
2x −2

∣∣∣∣ = −4y + 4− 4x2

Apply the Second Derivative Test.

D(0,−1) = 8 > 0 and fxx = −4 < 0, so (0,−1) is a local
maximum.

D(−2, 1) = −16 < 0, so (−2, 1) is a saddle point.

D(2, 1) = −16 < 0, so (2, 1) is a saddle point.



Problem 35(b) - Spring 2009

Let f (x , y) = x2y − y2 − 2y − x2.
Find the linearization L(x , y) of f at the point (1, 2) and use it to
approximate f (0.9, 2.1).

Solution:

Calculate the partial derivatives of f at (1, 2):

∇f (x , y) = 〈2xy − 2x , x2 − 2y − 2〉 ∇f (1, 2) = 〈2,−5〉
Compute the linearization L(x , y) of f at (1, 2):

L(x , y) = f (1, 2) + fx(1, 2)(x − 1) + fy (1, 2)(y − 2)

= −7 + 2(x − 1)− 5(y − 2)
Approximate f (0.9, 2.1) by L(0.9, 2.1):

L(0.9, 2.1) = −7 + 2(−0.1)− 5(0.1) = −7.7



Problem 36 (a-c) - Spring 2009

Consider the function f (x , y) = x2 − 2xy + 3y + y2. (a) Find the
gradient ∇f (x , y).

∇f (x , y) = 〈2x − 2y ,−2x + 3 + 2y〉.

(b)

Find the directional derivative of f at the point (1, 0) in the
direction 〈3, 4〉.

Normalize the direction: u = 〈3,4〉
|〈3,4〉| = 1

5〈3, 4〉
Evaluate: Duf (1, 0) = ∇f (1, 0) · u = 〈2, 1〉 · 15〈3, 4〉 = 2.

(c)

Compute all second partial derivatives of f .

fxx(x , y) = ∂
∂x (2x − 2y) = 2

fxy (x , y) = fyx(x , y) = ∂
∂y (2x − 2y) = −2

fyy (x , y) = ∂
∂y (−2x + 3 + 2y) = 2.



Problem 36(d) - Spring 2009

Consider the function f (x , y) = x2 − 2xy + 3y + y2.
Suppose x = st2 and y = es−t . Find ∂f

∂s and ∂f
∂t at s = 2 and

t = 1.

Solution:

If s = 2 and t = 1, then x = 2 · 12 = 2 and y = e2−1 = e.

The Chain Rule states that

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
.

So, ∂f

∂s
= (2x − 2y)(t2) + (−2x + 3 + 2y)(es−t)

= (4− 2e) + (−4 + 3 + 2e)(e) = 4− 3e + 2e2.

∂f

∂t
= (2x − 2y)(2st) + (−2x + 3 + 2y)(−es−t)

= (4− 2e)(4) + (−4 + 3 + 2e)(−e) = 16− 7e − 2e2.



Problem 37(a) - Spring 2009

Consider the function f (x , y) = exy over the region D given by
x2 + 4y2 ≤ 2. Find the critical points of f .

Solution:

∇f (x , y) = 〈yexy , xexy 〉 = 〈0, 0〉
Since exy is positive, the only critical point is (0, 0).



Problem 37(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

Use Lagrange Multipliers to study the behavior of f on the
boundary g(x , y) = x2 + 4y2 = 2.

∇f (x , y) = 〈yexy , xexy 〉 = λ∇g(x , y) = λ〈2x , 8y〉 (1)
Since g(0, 0) 6= 2, x = 0⇒ y 6= 0, and y = 0⇒ x 6= 0.

Since exy is positive and not both x and y are 0, the neither is
0 by equation 1. Hence, λ/exy = y/2x = x/8y ⇒ 8y2 = 2x2.

Substituting into g(x , y) = 2 gives 2x2 = 2 and 8y2 = 2.

There are four possible extremum points:

{(−1,−1

2
), (−1,

1

2
), (1,−1

2
), (1,

1

2
)}

So the extreme values of f on the boundary of D are:
Max = f (1, 1/2) = f (−1,−1/2) =

√
e,

Min = f (1,−1/2) = f (−1, 1/2) = 1√
e

.



Problem 37(c) - Spring 2009

Consider the function f (x , y) = exy over the region D given by
x2 + 4y2 ≤ 2. What is the absolute maximum value and absolute
minimum value of f (x , y) on D?

Solution:

Recall that the only critical point of f is (0, 0), and that on
the boundary {(−1,−1/2), (−1, 1/2), (1,−1/2), (1, 1/2)} are
possible extremum points.

Calculate the value of f at each point.

f (0, 0) = 1

f (1, 1/2) = f (−1,−1/2) =
√
e

f (1,−1/2) = f (−1, 1/2) = 1√
e

So, the maximum value is
√
e and the minimum value is

1√
e

.



Problem 38(a) - Spring 2009

Evaluate the following iterated integral.∫ 2

−1

∫ 1

0
(x2y − xy) dy dx

Solution:∫ 2

−1

∫ 1

0
(x2y − xy) dy dx =

∫ 2

−1

[
x2

y2

2
− x

y2

2

]1
0

dx

=

∫ 2

−1

(
x2

2
− x

2

)
dx =

[
x3

6
− x2

4

]2
−1

=

(
23

6
− 22

4

)
−
(

(−1)3

6
− (−1)2

4

)
=

16− 12 + 2 + 3

12
=

3

4



Problem 38(b) - Spring 2009

Find the volume V of the region below z = x2 − 2xy + 3 and
above the rectangle R = [0, 1]× [−1, 1].

Solution: Calculate using Fubini’s Theorem.

V =

∫ ∫
R

(x2 − 2xy + 3) dA =

∫ 1

0

∫ 1

−1
(x2 − 2xy + 3) dy dx

=

∫ 1

−1

∫ 1

0
(x2 − 2xy + 3) dx dy =

∫ 1

−1

[
x3

3
− x2y + 3x

]1
0

dy

=

∫ 1

−1

(
1

3
− y + 3

)
dy =

[
y

3
− y2

2
+ 3y

]1
−1

=

(
1

3
− 12

2
+ 3(1)

)
−
(
−1

3
− (−1)2

2
+ 3(−1)

)
= 6 +

2

3
.



Problem 39(a) - Spring 2009

Consider the surface S given by the equation x2 + y3 + z2 = 0.
Give an equation for the tangent plane of S at the point
(2,−2, 2).

Solution:

Let f (x , y , z) = x2 + y3 + z2.

Compute the gradient of f at (2,−2, 2).

∇f (x , y , z) = 〈2x , 3y2, 2z〉 ∇f (2,−2, 2) = 〈4, 12, 4〉.
The equation for the tangent plane is

∇f (2,−2, 2) · 〈x − 2, y + 2, z − 2〉 = 0

4(x − 2) + 12(y + 2) + 4(z − 2) = 0



Problem 39(b) - Spring 2009

Consider the surface S given by the equation x2 + y3 + z2 = 0.
Give an equation for the normal line to S at the point (2,−2, 2).

Solution:

Let f (x , y , z) = x2 + y3 + z2.

Compute the gradient of f at (2,−2, 2).

∇f (x , y , z) = 〈2x , 3y2, 2z〉 ∇f (2,−2, 2) = 〈4, 12, 4〉.
The equation for the normal line is

r(t) = 〈2,−2, 2〉+ t〈4, 12, 4〉.


