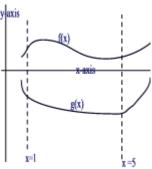
- 1.[12 points] [Calculators are not allowed on this question] Let $f(x) = xe^x$ and let $F(x) = xe^x e^x + \pi$. Show by differentiating F(x) that F is an anti-derivative of f. Show *all* your work.
- 2.[16 points] Let $F(x) = \int_{1}^{\cos x} e^{\sin t} dt$
 - (a) Find F'(x)
 - (b)Find $F(2\pi)$
- 3.[12 points] If $\int_{1}^{7} f(x)dx = 19$ and $\int_{1}^{5} f(x)dx = 25$ find:
 - (a) $\int_{5}^{7} f(x) dx$
 - (b) $\int_{1}^{5} 3f(x) dx$
- 4.[12 points] If $0 \le f(x)$ and $g(x) \le 0$ for $1 \le x \le 5$, $\int_1^5 f(x) dx = 10$, and $\int_1^5 g(x) dx = -30$. The graph looks like:



Find

- (a) The area of the region bounded by x = 1, x = 5, y = f(x), and y = g(x)
- (b) $\int_{0}^{5} |g(x) f(x)| dx$
- (c) $\int_{1}^{5} (g(x) + f(x)) dx$
- 5.[10 points] Use the substitution rule to show that

$$\int_{0}^{10} x^{2} e^{x^{3}} dx = \frac{1}{3} \int_{0}^{1000} e^{u} du$$

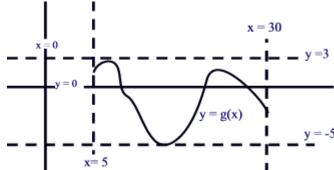
6.[10 points] Let R be the region of the plane bounded by $y = x^2 + 2$ and $y = x^3 + 2$. Find the area of R.

7.[10 points] Let R be the region of the plane bounded by $y^2 - 2 = x$ and y = x. Find the area of R.

8.[20 points] From the top of a 192 feet tall building a ball is thrown up with an initial velocity of 64 ft/sec. The acceleration due to gravity is -32 ft/sec². Assuming that the only force acting on the ball is gravity find:

- The velocity function. (a)
- The position function. (b)
- The time the ball takes to reach the ground. (c)
- The total distance traveled by the ball. (d)
- The displacement of the ball. (e)

[10 points] Let g(x) be a continuous function on [5, 30] and with g having an absolute minimum of -5 and an absolute maximum of 3 on [5,30]. So that the graph looks like:



Show that:

(a)
$$-125 \le \int_{5}^{30} g(x) dx \le 75$$

(b) $0 \le \int_{5}^{30} |g(x)| dx \le 125$

(b)
$$0 \le \int_{5}^{30} |g(x)| dx \le 125$$