NOTES FOR MATH 132

Antiderivatives

Definition: A function F is called an antiderivative of f on an interval I if
F'(z) = f(z) for all z in I (Vz € I).

Recall that antiderivatives are not unique, and the following theorem gives
the connection between all antiderivatives of a function.

Theorem: If F' is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is F/(x) + C, where C is an arbitrary constant
(VC € R).

This most general antiderivative is also called an indefinite integral of f and
is denoted by [ f(z)dz.

Areas

To define the area under a continuous curve y = f(z) over an interval [a, b]
the following steps are needed:

1. divide the interval [a, b] into n equal (having equal width) subintervals[z; 1, z;],
i =1,2,...,n with endpoints xg, z1, ..., T,

a=29< 21 <..<x, =0
2. constract approximating rectangles having as bases the intervals [z;_1, %],
and as heights f(z;).

3. improve the approximation by increasing n, and eventually passing to the
limit n — oo.

Definition: The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles

A= lim Ry, = lim [f(21)Az + f(22) Az +--- + f(zn)Az].

Note: The limit in the definition is guaranted to exist provided the function
is continious.



Definite Integral

f is a continious function on the interval [a, b]:

1. divide the interval [a, b] into n subintervals of equal width Az = (b—a)/n
with endpoints zg, 21, ..., Tn:

a=29< 21 <..<x, =0

2. chose sample points x7, x5, ..., 2} in these subintervals (z} € [x;—1,2]).
3. >, f(zF)Az is called Riemann sum for the function f over interval [a, b].

Definition:The definite integral of f from a to b is defined to be
b n
/a f(z)dz = T}l_}rrgo;f(wz)Aw

in this notation a and b are called imits of integration (a-lower limit, b-upper
limit; f is called integrand.

Note: The limit in the definition is guaranted to exist provided the function
is continious.

Notice that with the definition of Definite Integral the area under the curve
y = f(z) over the interval [a,b] is exactly fab f(z)d=.

Properties of Definite Integrals

1. fab f@)de = — [' f(z)da.
2. [ f(z)dz = 0.

3. f: cdz = c¢(b—a) ¢ is any constatnt (V¢ € R).
4. fab[f(x) + g(z)|dz = f: f(z)dz + f;g(m)dz.
5. f: cf(z)dx = cf: f(z)dz ¢ is any constatnt (Vc € R).

6. [ f(a)dz + [ f(z)dz = [} f(z)da.
Comparison properties
7. if f(z) > 0 for Yz € [a,b] = [ f(z)dz > 0.
8. if f(z) < g(z) for Vz € [a,0] = [ f(z)dz < [’ g(x)de.

9. if m < f(z) < M for Vz € [a,b] = m(b—a) < fabf(x)dx < M- a).



Note: [} f(2)g(@)dw # ([} f(2)dz) ([} g(z)ds).

Fundamental Theorem of Calculus

FTC Part 1: If f is continious on [a, b] then the function defined by
g(z) = [T f(t)dt, a <z <b;is continiuos on [a,b] , is differentiable on (a,b)
and ¢'(z) = f(z) (g is an antiderivative of f).

FTC Part 2: If f is continious on [a,b], then f: f(z)dz = F(b) — F(a)
where F' is any antiderivative of f.

Notice that FTC suggests that differentiation and integration are inverse

operations:
d x
[ roa] = s

Techniques of Integration

Substitution Rule

For indefinite integrals:
If uw = g(x) is a differentiable function having range on interval I and f is
continious on I then

[ a@ng @iz = [ .

For definite integrals:
If ¢’ is continious on [a,b] and f is continious on the range of u = g(z) then

b 9(b)
[ g we= [ saan

Note: it is permissable to operate with dx and du after the integral signs as
if they were differentials (dg(z) = ¢'(z)dx or du = %¢dz; ¢ — derivative).

Integration by Parts

For indefinite integrals:

/ f(@)g @)de = f(x)g(z) — / o) ' (x)dz



or equivalently taking u = f(z),v = g(z); [udv =uv — [vdu.

For definite integrals:

b
a

b b
/ f@)g @)z = f(2)g(z)| © — / o(@) f'(2)da.

Trigonometric Integrals

Strategy for evaluating [ sin™(z) cos™(z)dz:

a) if n = 2k + 1 (the power of cosine is odd)

/sinm (z)cos™(x)dx = /sinm (z)(1 — sin®(x))* cos(x)dx

make substitution v« = sin .

b) if m = 2k + 1 (the power of sine is odd)

/sinm (z)cos™ (z)dx = /(1 — cos?(z))* cos™ () sin(z)dx

make substitution u = cosz.

c¢) if both n and m are even, then use power reduction formulas (half-angle
identities):

1 1
sin?x = 5( 1—cos(2z)) cos’z = 5(1 + cos(2x)).

Strategy for evaluating [ tan™(z) sec™(z)dz:

a) if n = 2k (the power of secant is even)
/ tan™ (z) sec” (z)dz = / tan™ (2)(1 + tan2(z))F" sec?(z)dz

make substitution u = sec z.

b) if m = 2k + 1 (the power of tangent is odd)

/tanm (z) sec™(z)dx = /(sec2 (z) — 1)F sec” 1 (z) tan(x) sec(x)dx

make substitution v = tan z.

c) if n is odd and m is even - no standart methods.



Strategy for a) [ sin(mz) cos(nz)dz, b) [ sin(mz)sin(nz)dz, ¢) [ cos(mz) cos(nz)dz:

a) sin Acos B = 1[sin(A — B) +sin(4 + B).
b) sinAsinB =

[cos(A — B) — cos(A + B)].
c) cos Acos B = L[cos(A — B) + cos(4 + B)).

Trigonometric Substitution

Use the following trigonometric substitutions for the corresponding expres-
sions:

a? — x? r=asing; -3<6<3 (a® — a?sin®(z) = a® cos?(z))
Vva? + z? r=atanf; —-3<6<3% (a? +a®tan?(z) = a®sec?(x))
Vz? — a? x = asecH; 0<6< 3 (a? sec? —a? = a® tan?(z))

Improper Integrals

Improper Integrals of Type 1:

Definition:

a) If fi f(z)dz exists for every number ¢ > a, then define / flz)dz =
" a
tlim f(z)dz, provided the limit exists (as a finite number).
— 00 a

b
b) If ftb f(z)dz exists for every number ¢ < b, then define / f(z)dz =

t——o0

b
lim / f(x)dz, provided the limit exists (as a finite number).
¢

c) if faoo f(z)dz and ffoo f(x)dx are both defined (corresponding limits exist
as finite numbers), then we define / f(z)dz = / f(z)dz+ / f(z)dz

(any number a can be used).
In these definitions the improper integrals are called convergent if the corre-

sponding limits exist(as finite numbers), and divergent otherwise.
Note: for ¢) both integrals in a) and b) must be convergent.



Improper Integrals of Type 2:

Definition:

a) If f is continious on [a,b) and has a (infinite) discontinuity at b then
define /a b f(z)dz = tl_i)rl?_ /a t f(z)dz, provided the limit exists (as a finite
number).

b) If f is continious on (a,b] and has a (infinite) discontinuity at a then
define /a b flx)dx = tl_i)r;lJr /t ’ f(x)dz, provided the limit exists (as a finite
number).

¢) If f has a (infinite) discontinuity at ¢ where a < ¢ < b, and both [ f(z)dx
and fcb f(z)dz are defined (corresponding limits exist as finite numbers),

b c b
then we deﬁne/ f(a:)dm:/ f(a:)dx—}—/ f(z)dz.

In these definitions the improper integrals are called convergent if the corre-
sponding limits exist (as finite numbers), and divergent otherwise.
Note: for ¢) both integrals in a) and b) must be convergent.

Curves Defined by Parametric Equations

Tangents
If the curve y = F(z), a < z < b is also given by parametric equations

{ ;jf 5 ((f)) , a<t<pB; then the following fomula for the tangent to
the curve in terms of the parametric equations holds:

By _H g(t)
= =4t jfar 4 or F'(z) =
e =0

If % =0 and Cé—ff # 0 — horizontal tangent.

If ‘fi—f =0 and % # 0 — vertical tangent.

(The case ‘;—f =0 and ‘;—f = 0 must be handled with more care considering
lim( )/ (55))-

Similarly for the second derivative one has:

2y d C@) %(%)'

if f'(t) # 0.

2 = dz
dx dx \ dz o
Note:
2 dy
y , a2
2 iz’
dx 45



Areas
If the curve y = F(x), a < x < b is also given by parametric equations

{ ;:5((;)) , a<t<p and a = f(a),b = f(B), then the area under
the curve over the interval [a, b] is:
8

b
A= / Fz)ds = / (&) (t)dt.

Arc Length

Similar to areas under curves, one can procede with the definition of arc
length of a curve by dividing the interval on which the curve is defined into
subintervals, and taking the limit of the lengths of approximating polygons,
having vertices at the points on the curve corresponding to the endpoints of
subintervals.

= f(®)

If the curve C' is given by its parametric equations { Z; — o(t) a<t<p;

both f' and g' are continious on [a, 8] (and C is traversed exactly once as t
increases from a to S then the length of C in terms of parametric equations is

given by:
A dz\’ dy 2
L= — — .
/ ﬂdt) + (%) @

Polar Coordinates

Change of coordinates from polar coordinates to cartesian coordinates
[(r,8) = (z,y)] is given by the following formulas:

T =rcosf
y=rsind



Change of coordinates from cartesian coordinates to polar coordinates
[(z,y) = (r,0)] is given by the following formulas:

r? =z 4+ y?
tanf = £

Tangents to polar curves

If the curve y = F(x) is also given in terms of polar coordinates r = f(6),
then the tangent to the curve (in terms of polar coordinates) is given by:

dy _ G _ ghsin0+rcosd oo [(0)sind + [(6)cosd
dr dz B d4r cos — rsinf ~ f'(0) cosf — f(B)sinf’

Areas of polar regions

The same process of approximation is employed in the definition of the area
of polar regions, with the only difference of taking circular segments instead of
approximating rectangles.

The area of a polar region R, bounded by the curve r = f() and rays § = a
and 0 = b is given by:

A:/a SUOFd o A:/a Srdb.

Arc Length

By treating 6 as a parameter in the formula for the arc length, one easily
finds that the length of a polar curve r = f(0) with a <8 < b is:

L=/:,/T2+ <%>2d0 or L:/ab VIFOF + [7/0)ds.




