REVIEW PROBLEMS

- 1. Find the area bounded by $\begin{cases} y = x^3 x \\ y = 3x \end{cases}$
- 2. If $f'(x) = e^{2x}$ and f(0) = 5 find f(10),
- 3. If $0 \le f'(x)$ for $-5 \le x \le 5$ and if the area bounded by y = f'(x), x = -5, x = 5, and y = 0 is 29

- a. find:
- b. f(5) if f(-5) = 10.

c.
$$\int_{5}^{5} |f'(x)| dx$$

4. Find the radius of convergence of

a.
$$\sum_{n=0}^{\infty} \frac{4}{3^n (n!)} x^{2n}$$

b.
$$\sum_{n=0}^{\infty} \frac{4^n x}{3^n}$$

5. Determine if the following series are absolutely convergent:

a.
$$\sum_{n=0}^{\infty} \frac{4n+1}{(2n+1)!}$$

$$b. \quad \sum_{n=0}^{\infty} \frac{4^n}{3^n}$$

c.
$$\sum_{n=1}^{\infty} \frac{1}{4^n - 2^n}$$

- 6. Determine if $\int_{5}^{\infty} \frac{1}{x} dx$ converges or diverges
- 7. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n}{3^n} x^n$

8. Let
$$f(x) = \frac{1}{1+x^2}$$

- a. Find a power series, $\sum_{n=0}^{\infty} a_n x^n$ whose sum is equal to f(x) for
- |x| < 1. (Hint: Use infinite geometric series.) b. Find a power series whose sum is $tan^{-1} x$ for |x| < 1. (Hint:

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x.$$

9.
$$F(x) = \int_{3}^{3x} e^{t^2} dt$$
,

- a. Find F'(x)
- b. F'(0)
- c. F(1)
- 10. Let C be the curve described by $\begin{cases} x = e^t + t^2 \\ y = \sin t + 2t 3 \end{cases}$
 - a. Find $\frac{dy}{dx}$
 - b. Find $\frac{ds}{dt}$ (s stands for arc length).
 - c. Find the length of the arc from t = 0 to t = 1.
 - d. Find an equation of the line tangent to the curve C at (1, -3) (t = 0)
- 11. Show that $\sum \frac{4n^3}{2n^3}$ is divergent.
- 12. Find $\int \frac{e^x dx}{e^{2x} + 1}$