- Consider the integral ∫ Arctan x dx.
- Use the integration by parts formula on this integral. Clearly (a) indicate your choice for u and v, as well as their differentials, du and dv
- Using part (a), complete the integration. (b)
- (c) Check your answer (how?)
- Is the following improper integral convergent or divergent?

If it is convergent, find the value of the integral.

- Consider curve given by  $x = t^2$ ,  $y = t^3 3t$
- Find the equations of all horizontal tangent lines to the (a) curve.
- Find an expression for the second derivative,  $\frac{d^2y}{dx^2}$ . (b)
- Consider the curve given parametrically by  $x = e^{t}$ , y = In t. 4.
- Write an expression for the differential of arc length, ds. (a)
- Set up an integral that gives the length of the (b) curve from t - 1 to t = 2.

- (c) Set up an integral that gives the length of the curve from t = 1 to t = 2.(c) Use the calculator to evaluate this integral to at least 4 decimal places.
- 5. Find the area bounded by the curve given in polar coordinates  $r = 1 + 3\theta$ , inside the sector  $0 < 0 < 7\pi$ .
- 6. Are the following sequences {an} convergent or divergent? If convergent, find the limit of the sequence.
- (a)  $a_n = e_n^n (n^2 + 3)$
- (b)  $a_n = \sqrt{n+1} \sqrt{n}$
- 7. Determine if the following series are convergent or divergent. If convergent, find the sum of the series.
- $(a) \qquad \qquad \sum_{n=1}^{\infty} \frac{3n}{2n-1}$
- (b)  $\sum \frac{(-1)^n}{\pi^n}$