Practice Problems for Test 2 Set 1

- 1. An object is thrown from the top of a 126 foot tall building with an initial velocity of 80 ft./sec in the horizontal (x) direction with an initial velocity of 64 ft/sec. in the vertical (y) direction.
- (a) Sketch a graph of the path of the object.
- (b) Find the parametric equations that describe the velocity at any time t.
- (c) Find the parametric equations that describe the position at any time t.
- (d) Find the maximum height that the object attains.
- (e) Find the speed of the object at its maximum height.
- (f) Find when the object passes the top of the building on its way down.
- (g) Find the distance of the object from the building at the time found in (f).
- (h) Find the displacement of the object at the time found in (e).
- (i) Find the total distance traveled at time found in (e).
- (j) Find the speed with which the object strikes the ground.
- (k) Find the distance from the building of the object when it strikes the ground.
- (l) Find the total distance that the object travels. Show both the integral and the value.
- (m) Find the displacement of the object when it is on the ground.
- 2. Determine if each of the following sequences converge or diverge. Explain your answer (This means: If the sequence converges find the limit. If the sequence diverges show the limit does not exist.)

(a)
$$\left\{ \tan \frac{(n^5 + 5n^3 - 10)\pi}{4n^5 + 7n^4 + 1} \right\}$$

(b)
$$\left\{ \ln \frac{n^3 + n - 10}{101n^2 + 3n + 1} \right\}$$

(c)
$$\left\{\cos\frac{(4n^3 + 71n^2 - 10)\pi}{3n^5 + 1}\right\}$$

- 3. Find:
- (a) $\int_{0}^{1} \ln x dx$
- (b) $\int_{0}^{\infty} x e^{-x} dx$
- 4. Use integrations by parts to find $\int e^x \cos x \, dx$. Calculators should not be used.

- 5. Show that $\sum_{n=0}^{\infty} \frac{4n^3 + n}{2n^3 + 5}$ diverges. Explain your answer.
- 6. Find a geometric series whose sum is $\frac{1}{1-x}$ when |x| < 1.
- 7. Consider the 4 leaf rose $r = f(\theta) = \sin 2\theta$ (polar coordinates).
- (a) Sketch the graph of f when $0 \le \theta \le \pi$. If you use calculator be sure to include the size of the window that you are using.
- (b) Find the area of one of the leafs.
- 8. This problem is in polar coordinates. The region, R, bounded by

$$r = \csc \theta$$
 for $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$

$$r = \sec \theta \text{ for } 0 \le \theta \le \frac{\pi}{4}$$

$$r = \frac{1}{\sin \theta + \cos \theta} \text{ for } 0 \le \theta \le \frac{\pi}{2}.$$

- a. Sketch R.
- b. Find the area of R.
- 9. Find an equation of the line tangent to the curve described by the parametric

equations
$$\begin{cases} x(t) = e^{t} & \frac{\pi}{4} \\ y(t) = \cos t + \sin t \end{cases}$$
 at $(e^{\frac{\pi}{4}}, \sqrt{2})$.

- 10. Find $\int e^x \sin x \, dx$.
- 11. If the curve C is described by $\begin{cases} x = \tan t \\ y = \sec t \end{cases}$ find an equation of the line tangent to C at $(1, \sqrt{2})$.