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Strategy for using integration by parts

Recall the integration by parts formula:

/udv:uv—/vdu.

To apply this formula we must choose dv so that we
can integrate it! Frequently, we choose u so that the
derivative of u is simpler than u. If both properties
hold, then you have made the correct choice.
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Examples using strategy: [udv = uv — [ vdu

xe* dx : Choose u = x and dv = e* dx

t?el dt : Choose u = t2 and dv — et dt

xsinxdx : u=xand dv = sinxdx

x%sin2x dx : u = x2 and dv = sin 2x dx

o /Inxdx: Choose u = Inx and dv = dx
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Example Find | xe* dx.
Solution Let

u=x dv=e“dx.

Then
du=dx v=-¢e*

Integrating by parts gives

/XexdX:XGX—/eXdX:XGX—eX—I—C.
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Example Evaluate [ Inx dx.
Solution Let

u=Inx dv=dx.

Then
1

du=-dx v=x
X

Integrating by parts, we get

/Inxdx:xlnx—/x%
X

:xlnx—/dx:xlnx—x+C.
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Solution Let u =t?> dv = e'dt

Then du = 2tdt v = et,

Integration by parts gives | [ t?e’ dt = t?e' — 2 [tetdt (1)
Using integration by parts a second time, this time with

u=t dv=edt

Then
du=dt, v=e
and
[ tet dt = te' — [ e dt = te' — e’ + C. Putting this in
Equation (1), we get

/tzet dt = t?e' — 2/ te' dt = t’e’ — 2(te' — e’ + C)
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Example Find [ t?e! dt.

Solution Let u =t?> dv = e'dt

Then du = 2tdt v = et,

Integration by parts gives | [ t?e’ dt = t?e' — 2 [tetdt (1)
Using integration by parts a second time, this time with

u=t dv=edt

Then
du=dt, v=e
and
[ tet dt = te' — [ e dt = te' — e’ + C. Putting this in
Equation (1), we get

/tzet dt = t?e' — 2/ te' dt = t’e’ — 2(te' — e’ + C)

= t?et — 2tet + 2e! + C; where(G = —2C.
T
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Example Evaluate [ e*sinx dx.

Solution Solving this integral involves integrating by parts
twice. We try choosing u = €* and dv = sinxdx. Then

du = e*dx and v = — cos x, so integration by parts gives

[ e¥sinxdx = —e*cosx + [ e cosx dx. |(2)

Next we use u = e* and dv = cosxdx. Then du = e*dx,

Vv = sin x, and

[ e¥cosxdx = e“sinx — [ e*sinx dx.|(3)

We put Equation (3) into Equation (2) and we get

[ e¥sinx dx = —e*cosx + e*sinx — [ e*sinx dx.
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twice. We try choosing u = €* and dv = sinxdx. Then
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integral.
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Example Evaluate [ e*sinx dx.

Solution Solving this integral involves integrating by parts
twice. We try choosing u = €* and dv = sinxdx. Then

du = e*dx and v = — cos x, so integration by parts gives

[ e¥sinxdx = —e*cosx + [ e cosx dx. |(2)

Next we use u = e* and dv = cosxdx. Then du = e*dx,

Vv = sin x, and

[ e¥cosxdx = e“sinx — [ e*sinx dx.|(3)

We put Equation (3) into Equation (2) and we get

[ e¥sinx dx = —e*cosx + e*sinx — [ e sinxdx. This can
be regarded as an equation to be solved for the unknown
integral. Adding [ e*sin x dx to both sides, we obtain

2 [ e*sinxdx = —ecosx + €*sin x.
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Example Evaluate [ e*sinx dx.

Solution Solving this integral involves integrating by parts
twice. We try choosing u = €* and dv = sinxdx. Then

du = e*dx and v = — cos x, so integration by parts gives

[ e¥sinxdx = —e*cosx + [ e cosx dx. |(2)

Next we use u = e* and dv = cosxdx. Then du = e*dx,

Vv = sin x, and

[ e¥cosxdx = e“sinx — [ e*sinx dx.|(3)

We put Equation (3) into Equation (2) and we get

[ e¥sinx dx = —e*cosx + e*sinx — [ e sinxdx. This can
be regarded as an equation to be solved for the unknown
integral. Adding [ e*sin x dx to both sides, we obtain

2 [ e*sinxdx = —ecosx + €*sin x.

Dividing by 2 and adding the constant of integration, we get
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Example Evaluate [ e*sinx dx.

Solution Solving this integral involves integrating by parts
twice. We try choosing u = €* and dv = sinxdx. Then

du = e*dx and v = — cos x, so integration by parts gives

[ e¥sinxdx = —e*cosx + [ e cosx dx. |(2)

Next we use u = e* and dv = cosxdx. Then du = e*dx,

Vv = sin x, and

[ e¥cosxdx = e“sinx — [ e*sinx dx.|(3)

We put Equation (3) into Equation (2) and we get

[ e¥sinx dx = —e*cosx + e*sinx — [ e sinxdx. This can
be regarded as an equation to be solved for the unknown
integral. Adding [ e*sin x dx to both sides, we obtain

2 [ e*sinxdx = —ecosx + €*sin x.

Dividing by 2 and adding the constant of integration, we get

[ e¥sinx dx = Le*(sinx — cosx) + C.
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Trigonometric integrals

Trigonometric integrals are integrals of functions
f(x) that can be expressed as a product of
functions from trigonometry. For example;

0 f(x) = cos®x

@ f(x) = sin’ x cos® x
o f(x) =sin’x.
Integrating such functions involve several techniques
and strategies which we will describe today.
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Aside from the most basic relations such as
sin(0)

d =
cos(f) ane seex cos(f)
know the following trig identities:

cos®(0) + sin*(f) = 1.
sec?(#) — tan?() = 1.

tanx = , you should

20

cos2(h) = H%S()
— 20

sin?(6) = 1= cos(20) C;S( )

sin(20) = 2sin(#) cos(0)
cos(260) = cos®(#)—sin*(0) = 2 cos*(#)—1 = 1—2sin*(6)
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Example Evaluate [ cos® x dx.
Solution So here we recall the formula:
sinx+cos° =1 or cos’x =1 —sin®x.

We then get:
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Let u = sinx, so du = cos x dx.



Example Evaluate [ cos® x dx.
Solution So here we recall the formula:
sinx+cos° =1 or cos’x =1 —sin®x.

We then get:
/cos3x dx = /cos2 X-Cos x dx = /(l—sin2 x) cos x dx

Let u = sinx, so du = cosx dx. So, we get

/(l—uz)du:u—%u3+C



Example Evaluate [ cos® x dx.
Solution So here we recall the formula:

sinx+cos° =1 or cos’x =1 —sin®x.

We then get:
/cos3x dx = /cos2 X-Cos x dx = /(l—sin2 x) cos x dx

Let u = sinx, so du = cosx dx. So, we get

/(l—uz)du:u—%u3+C

:sinx—gsin3x+ C.
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Example Find [ sin?x dx.
Solution Here we use the double angle formula:

sin® x dx = %(1 — cos 2x).

T 1 [ 1 1
/ sin2xdx:—/ (1 — cos2x) dx = —<x——sin2x>
. 2/, 2 2

™
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Example Find [ sin?x dx.
Solution Here we use the double angle formula:

sin® x dx = %(1 — cos 2x).

T 1 [ 1 1
/ sin2xdx:—/ (1 — cos2x) dx = —<x——sin2x>
. 2/, 2 2

1 1 1 1
= E(W— Esin27r) — 5(0— ESIHO)

™

0



Example Find [ sin?x dx.
Solution Here we use the double angle formula:

sin® x dx = %(1 — cos 2x).

T 1 [ 1 1
/ sin2xdx:—/ (1 — cos2x) dx = —<x——sin2x>
. 2/, 2 2

1 1 1 1 1
= 5(7{'— ESinQW) — E(O— ESIHO) — 57'(.

Here we mentally made the substitution u = 2x when
integrating cos 2x.

™

0



Strategy for Evaluating [ sin” x cos” x dx

(a) If the power of cosine is odd (n = 2k + 1), save

one cosine factor and use

express the remaining factors in terms of sine:

Cos

2

x=1—-sin

2

X

to



Strategy for Evaluating [ sin” x cos” x dx

(a) If the power of cosine is odd (n = 2k + 1), save

one cosine factor and use

express the remaining factors in terms of sine:

Cos

2

x=1—-sin

2

X

to

/sin’”xcoszl‘*1 x dx = /sin"’x(cos2 x)¥ cos x dx



Strategy for Evaluating [ sin” x cos” x dx

(a) If the power of cosine is odd (n = 2k + 1), save

one cosine factor and use

express the remaining factors in terms of sine:

Cos
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x=1—-sin

2

X
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Strategy for Evaluating [ sin” x cos” x dx

(a) If the power of cosine is odd (n = 2k + 1), save

one cosine factor and use |cos?x = 1 — sin® x| to

express the remaining factors in terms of sine:

/sin"’xcoszk“L1 x dx = /sin"’x(cos2 x)¥ cos x dx
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Strategy for Evaluating [ sin” x cos” x dx

(b) If the power of sine is odd (m = 2k + 1), save

one sine factor and use

sin

2

x =1 — cos?x

to

express the remaining factors in terms of cosine:

/sin”‘“xcos"x dx = /(sin2 x)¥ cos” x sin x dx

= /(1 — cos® x)¥ cos" x sin x dx.



Strategy for Evaluating [ sin” x cos” x dx

(b) If the power of sine is odd (m = 2k + 1), save
2x =1 — cos® x| to

one sine factor and use |sin
express the remaining factors in terms of cosine:

/sin”‘“xcos"x dx = /(sin2 x)¥ cos” x sin x dx

= /(1 — cos® x)¥ cos" x sin x dx.

Then substitute u = cos x.
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Strategy for Evaluating [ sin” x cos” x dx

(c) If the powers of both sine and cosine are even,
use the half-angle identities

sinx = 2(1 — cos2x)  cos’x =

(1 + cos 2x)

N
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Strategy for Evaluating [ sin” x cos” x dx

(c) If the powers of both sine and cosine are even,
use the half-angle identities

2

sinx = (1 —cos2x)  cos?x = 2(1 + cos 2x)

It is sometimes helpful to use the identity

SiN X COS X = %sin 2Xx
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save a factor of |sec? x| and use |sec? = 1 + tan? x

to express the remaining factors in terms of tan x:
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Strategy for Evaluating [ tan™ xsec” x dx

(a) If the power of secant is even (n = 2k, k > 2),

save a factor of |sec? x| and use |sec? = 1 + tan? x

to express the remaining factors in terms of tan x:

/tanmxseczkx dx = /tan’"x(sec2 x) 1 sec? x dx

/tan x(1 + tan® x)* " sec® x dx

Then substitute u = tan x.



Strategy for Evaluating [ tan™ xsec” x dx

(b) If the power of tangent is odd (m = 2k + 1),

save a factor of 'sec x tan x| and use

tan® x = sec® x — 1| to express the remaining
factors in terms of sec x:
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(b) If the power of tangent is odd (m = 2k + 1),

save a factor of 'sec x tan x| and use

tan? x = sec?

x—1

to express the remaining

factors in terms of sec x:

/tan2k+1xsec”x dx = /(tan2 x)¥ sec™ ! x sec x tan x d.



Strategy for Evaluating [ tan™ xsec” x dx

(b) If the power of tangent is odd (m = 2k + 1),
save a factor of and use

tanx = sec?x — 1

to express the remaining
factors in terms of sec x:

/tanzkle xsec" x dx = /(tan2 x)¥ sec™ ! x sec x tan x d.

= /(seczx — 1)sec" ! xsec xtan x dx



Strategy for Evaluating [ tan™ xsec” x dx

(b) If the power of tangent is odd (m = 2k + 1),

save a factor of 'sec x tan x| and use

tan® x = sec® x — 1| to express the remaining
factors in terms of sec x:

/tan2k+1xsec”x dx = /(tan2 x)¥ sec™ ! x sec x tan x d.

= /(seczx — 1)sec" ! xsec xtan x dx
Then substitute u = secx.
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using integration by parts.
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Two other useful formulas

Recall that we proved the following formula is class
using integration by parts.

/tanx dx = In|secx| + C.

The next formula can be checked by differentiating
the right hand side.

/secx dx = In|secx + tanx| + C.

2

Also, don't forget that d% tan x = sec” x and

di sec X = sec x tan x.
X
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Example Find [ tan®x dx.

Solution Here only tan x occurs, so we use
tan?x = sec®x — 1 to rewrite a tan? x factor in
terms of sec? x:

ftan3x dx = ftanx tan? x dx =

[ tanx (sec® x — 1) dx



Example Find [ tan®x dx.

Solution Here only tan x occurs, so we use
tan?x = sec®x — 1 to rewrite a tan? x factor in
terms of sec? x:

ftan3x dx = ftanx tan? x dx =

[tanx (sec®x — 1) dx =

[ tan x sec® x dx— [ tan x dx



Example Find [ tan®x dx.

Solution Here only tan x occurs, so we use

tan?x = sec®x — 1 to rewrite a tan? x factor in
terms of sec? x:

ftan3x dx = ftanx tan? x dx =

[tanx (sec®x — 1) dx =

[ tan x sec® x dx— [tanx dx = %—In | sec x|+C.



Example Find [ tan®x dx.

Solution Here only tan x occurs, so we use

tan?x = sec®x — 1 to rewrite a tan? x factor in
terms of sec? x:

ftan3x dx = ftanx tan? x dx =

[tanx (sec®x — 1) dx =

[ tan x sec® x dx— [tanx dx = %—In | sec x|+C.
In the first integral we mentally substituted

u = tanx so that du = sec? x dx
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use the corresponding identity:
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(c) cos Acos B = L[cos(A — B) + sin(A + B)]
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To evaluate the integrals (a) [ sin mx cos nx dx,
(b) [ sinmxsinn; dx, or (c) | cos mx cos nx dx,
use the corresponding identity:

(a) sin Acos B = 3[sin(A — B) + sin(A + B)]
(b) sin Asin B = Z[cos(A — B) + cos(A + B)]
(c) cos Acos B = L[cos(A — B) + sin(A + B)]

Example Evaluation [ sin4x cos5x dx.
Solution

[ sin4x cos5x dx = [ 3[sin(—x) + sin 9x] dx



To evaluate the integrals (a) [ sin mx cos nx dx,
(b) [ sinmxsinn; dx, or (c) | cos mx cos nx dx,
use the corresponding identity:
(a) sin Acos B = 3[sin(A — B) + sin(A + B)]
(b) sin Asin B = Z[cos(A — B) + cos(A + B)]
(c) cos Acos B = L[cos(A — B) + sin(A + B)]

Example Evaluation [ sin4x cos5x dx.
Solution

[ sin4x cos5x dx = [ 3[sin(—x) + sin 9x] dx
= 1 [(—sinx+sin9x) dx



To evaluate the integrals (a) [ sin mx cos nx dx,
(b) [ sinmxsinn; dx, or (c) | cos mx cos nx dx,
use the corresponding identity:
(a) sin Acos B = 3[sin(A — B) + sin(A + B)]
(b) sin Asin B = Z[cos(A — B) + cos(A + B)]
(c) cos Acos B = L[cos(A — B) + sin(A + B)]

Example Evaluation [ sin4x cos5x dx.
Solution
[ sin4x cos5x dx = [ 3[sin(—x) + sin 9x] dx

= % [(—sinx+sin9x) dx = 3(cos x — § cos 9x) + C.



Table of Trigonometric Substitution

Expression Substitution Identity

Va2 —x2 | x=asiné, -5 <0<7% 1 —sin?0 = cos? 0

Va2 +x2 | x=atané, -2 <0<7% 1+ tan?f = sec?6

Vx2 — a2 x=asec, 0<6<% |sec®d—1=rtan’f
orm <6< 37”




VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0




VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !



Va2 —x2 x=asinf, 1 —sin’6 = cos2f

Example Find the area enclosed by the ellipse
2 2
R !



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives

y:§\/32—x2 andA:‘l;bfoavaz—x2 dx



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives
y=2Va2—x2and A= [7\/a7 — X2 dx
Substitute x = asinf, dx = acosf dfl and use

va? — x?2 = acosf.



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives
y=2Va2—x2and A= [7\/a7 — X2 dx
Substitute x = asinf, dx = acosf dfl and use
va? — x%2 = acosb.

[va*—x?dx= [acosf-acosf df



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives
y=2Va2—x2and A= [7\/a7 — X2 dx
Substitute x = asinf, dx = acosf dfl and use
va? — x%2 = acosb.

[va*—x?dx= [acosf-acosf df

= a° [cos? 6 df



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives
y=2Va2—x2and A= [7\/a7 — X2 dx
Substitute x = asinf, dx = acosf dfl and use
va? — x%2 = acosb.

[va*—x?dx= [acosf-acosf df

= a% [cos?6 df = a* [ (1 + cos26) db



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives
y=2Va2—x2and A= [7\/a7 — X2 dx
Substitute x = asinf, dx = acosf dfl and use
Va2 — x2 = acosé.

[va*—x?dx= [acosf-acosf df
= a% [cos? 0 df = a® [ Z(1 + cos26) df = 2a*(0 + 3 sin 20).



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives
y=2Va2—x2and A= [7\/a7 — X2 dx

Substitute x = asinf, dx = acosf dfl and use

va? — x%2 = acosb.

[va*—x?dx= [acosf-acosf df

= azfcos20 df = a* [ 2(1 + cos26) df = 3a%(0 + 1 sin 20).

_4bf0 32 — x2



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives

y=2Va2—x2and A= [7\/a7 — X2 dx

Substitute x = asinf, dx = acosf dfl and use

va? — x%2 = acosb.

[vVa?—x?dx = facosé’ -acosf db

= azfcos20 df = a* [ 2(1 + cos26) df = 3a%(0 + 1 sin 20).
_4bfo Va2 — x2 =2ab [9+—sm29]



VvVaZ—x2, x = asinf, 1 —sin’0 = cos? 0

Example Find the area enclosed by the ellipse
2 2
R !

Solution Solving for y gives

y=2Va2—x2and A= [7\/a7 — X2 dx

Substitute x = asinf, dx = acosf dfl and use

va? — x%2 = acosb.

[vVa?—x?dx = facosé’ -acosf db

= azfcos20 d@ = a% [ ( 1+cos20) df = 1a*(0 + 3 sin 20).
=2 [ Va2 — x2=2ab [0 + % sin 29] mab.



