Polar Coordinates (r, θ) in the plane are described by

Polar Coordinates (r, θ) in the plane are described by r = distance from the origin

```
Polar Coordinates (r, \theta) in the plane are described by r =  distance from the origin and \theta \in [0, 2\pi) is the counter-clockwise angle.
```

Polar Coordinates (r, θ) in the plane are described by r = distance from the origin and

 $heta \in [\mathbf{0},\mathbf{2}\pi)$ is the counter-clockwise angle.

We make the convention

$$(-\mathbf{r},\theta)=(\mathbf{r},\theta+\pi).$$

Polar Coordinates (r, θ) in the plane are described by $\mathbf{r} = \mathbf{distance}$ from the origin and

 $\theta \in [0,2\pi)$ is the counter-clockwise angle.

We make the convention

$$(-\mathbf{r},\theta)=(\mathbf{r},\theta+\pi).$$

Example Plot the points whose **polar** coordinates are given.

Example Plot the points whose **polar** coordinates are given.

(a)
$$\left(1, 5\frac{\pi}{4}\right)$$
 (b) $(2, 3\pi)$ (c) $\left(2, -2\frac{\pi}{3}\right)$ (d) $\left(-3, 3\frac{\pi}{4}\right)$

Example Plot the points whose **polar** coordinates are given.

(a)
$$\left(1, 5\frac{\pi}{4}\right)$$
 (b) $(2, 3\pi)$ (c) $\left(2, -2\frac{\pi}{3}\right)$ (d) $\left(-3, 3\frac{\pi}{4}\right)$

Solution The points are plotted in Figure 3.

Example Plot the points whose **polar** coordinates are given.

(a)
$$\left(1, 5\frac{\pi}{4}\right)$$
 (b) $(2, 3\pi)$ (c) $\left(2, -2\frac{\pi}{3}\right)$ (d) $\left(-3, 3\frac{\pi}{4}\right)$

Solution The points are plotted in Figure 3. In part (d) the point $\left(-3,3\frac{\pi}{4}\right)$ is located three units from the pole in the fourth quadrant because the angle $3\frac{\pi}{4}$ is in the second quadrant and r=-3 is negative.

Example Plot the points whose **polar** coordinates are given.

(a)
$$\left(1, 5\frac{\pi}{4}\right)$$
 (b) $(2, 3\pi)$ (c) $\left(2, -2\frac{\pi}{3}\right)$ (d) $\left(-3, 3\frac{\pi}{4}\right)$

Solution The points are plotted in Figure 3. In part (d) the point $\left(-3,3\frac{\pi}{4}\right)$ is located three units from the pole in the fourth quadrant because the angle $3\frac{\pi}{4}$ is in the second quadrant and r=-3 is negative.

Coordinate conversion - Polar/Cartesian

Coordinate conversion - Polar/Cartesian

$$\mathbf{x} = \mathbf{r}\cos\theta \quad \mathbf{y} = \mathbf{r}\sin\theta$$

Coordinate conversion - Polar/Cartesian

$$\mathbf{x} = \mathbf{r} \cos \theta \quad \mathbf{y} = \mathbf{r} \sin \theta$$
 $\mathbf{r}^2 = \mathbf{x}^2 + \mathbf{y}^2 \quad \tan \theta = \frac{\mathbf{y}}{\mathbf{x}}$

$$x = r \cos \theta$$

Solution Since
$$r=2$$
 and $\theta=\frac{\pi}{3}$,

$$x = r\cos\theta = 2\cos\frac{\pi}{3}$$

Solution Since
$$r = 2$$
 and $\theta = \frac{\pi}{3}$,

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2}$$

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

Solution Since r = 2 and $\theta = \frac{\pi}{3}$,

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

У

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

$$y = r \sin \theta$$

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

$$y = r\sin\theta = 2\sin\frac{\pi}{3}$$

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

$$y = r\sin\theta = 2\sin\frac{\pi}{3} = 2\cdot\frac{\sqrt{3}}{2}$$

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

$$y = r\sin\theta = 2\sin\frac{\pi}{3} = 2\cdot\frac{\sqrt{3}}{2} = \sqrt{3}$$

Solution Since r = 2 and $\theta = \frac{\pi}{3}$,

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\cdot\frac{1}{2} = 1$$

$$y = r \sin \theta = 2 \sin \frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}$$

Therefore, the point is $(1, \sqrt{3})$ in **Cartesian** coordinates.

Example Represent the point with Cartesian coordinates (1, -1) in terms of polar coordinates.

r

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2}$$

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

$$r=\sqrt{x^2+y^2}=\sqrt{1^2+(-1)^2}=\sqrt{2}$$

$$\tan heta$$

$$r=\sqrt{x^2+y^2}=\sqrt{1^2+(-1)^2}=\sqrt{2}$$

$$\tan\theta=rac{y}{x}$$

$$r=\sqrt{x^2+y^2}=\sqrt{1^2+(-1)^2}=\sqrt{2}$$

$$\tan\theta=\frac{y}{x}=-1$$

$$r=\sqrt{x^2+y^2}=\sqrt{1^2+(-1)^2}=\sqrt{2}$$

$$\tan\theta=\frac{y}{x}=-1$$

Since the point (1,-1) lies in the fourth quadrant, we choose $\theta=-\frac{\pi}{4}$ or $\theta=7\frac{\pi}{4}$.

$$r=\sqrt{x^2+y^2}=\sqrt{1^2+(-1)^2}=\sqrt{2}$$

$$\tan\theta=\frac{y}{x}=-1$$

Since the point (1,-1) lies in the fourth quadrant, we choose $\theta=-\frac{\pi}{4}$ or $\theta=7\frac{\pi}{4}$. Thus, one possible answer is $(\sqrt{2},-\frac{\pi}{4})$; another is $(\sqrt{2},7\frac{\pi}{4})$.

Graph of a polar equation

Definition The graph of a polar equation $r = f(\theta)$, or more generally $F(r, \theta) = 0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Example What curve is represented by the **polar** equation $\mathbf{r} = \mathbf{2}$?

Solution The curve consists of all points (\mathbf{r}, θ) with $\mathbf{r} = \mathbf{2}$.

Solution The curve consists of all points (\mathbf{r}, θ) with $\mathbf{r} = \mathbf{2}$. Since r represents the distance from the point to the pole, the curve $\mathbf{r} = \mathbf{2}$ represents the circle with center O and radius 2.

Solution The curve consists of all points (\mathbf{r}, θ) with $\mathbf{r} = \mathbf{2}$. Since r represents the distance from the point to the pole, the curve $\mathbf{r} = \mathbf{2}$ represents the circle with center O and radius 2. In general, the equation $\mathbf{r} = \mathbf{a}$ represents a circle with center O and radius $|\mathbf{a}|$.

Solution The curve consists of all points (\mathbf{r}, θ) with $\mathbf{r} = \mathbf{2}$. Since r represents the distance from the point to the pole, the curve $\mathbf{r} = \mathbf{2}$ represents the circle with center O and radius 2. In general, the equation $\mathbf{r} = \mathbf{a}$ represents a circle with center O and radius $|\mathbf{a}|$.

 $r = \frac{1}{2}$ r = 4 r = 1

Sketch the curve with **polar equation** $\mathbf{r} = 2 \cos \theta$.

Sketch the curve with **polar equation** $\mathbf{r} = \mathbf{2} \cos \theta$. **Solution** Plotting points we find what seems to be a circle:

Sketch the curve with **polar equation** $\mathbf{r} = \mathbf{2} \cos \theta$. **Solution** Plotting points we find what seems to be a circle:

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

2x

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

$$2x = r^2$$

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

$$2x = r^2 = x^2 + y^2$$

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

$$2x = r^2 = x^2 + y^2$$

or

$$x^2 - 2x + y^2 = 0$$

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

$$2x = r^2 = x^2 + y^2$$

or

$$x^2 - 2x + y^2 = 0$$

or

$$(x-1)^2 + y^2 = 1.$$

Solution Since $x = r \cos \theta$, the equation $r = 2 \cos \theta$ becomes $r = \frac{2x}{r}$ or

$$2x = r^2 = x^2 + y^2$$

or

$$x^2 - 2x + y^2 = 0$$

or

$$(x-1)^2 + y^2 = 1.$$

This is the equation of a circle of radius 1 centered at (1,0).

Example Sketch the curve $r = 1 + \sin \theta$.

Example Sketch the curve $r = 1 + \sin \theta$. This curve is called a **cardioid**.

Example Sketch the curve $r = 1 + \sin \theta$. This curve is called a **cardioid**. **Solution**

Example Sketch the curve $r = 1 + \sin \theta$. This curve is called a **cardioid**. **Solution**

Example Sketch the curve $r = \cos 2\theta$.

Example Sketch the curve $r = \cos 2\theta$. This curve is called a **four-leaved rose**.

Example Sketch the curve $r = \cos 2\theta$. This curve is called a **four-leaved rose**. **Solution**

Example Sketch the curve $r = \cos 2\theta$. This curve is called a **four-leaved rose**. **Solution**

$$\mathbf{x} = \mathbf{r} \cos \theta$$

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta$

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

To find a **tangent line** to a polar curve $\mathbf{r} = \mathbf{f}(\theta)$ we regard θ as a parameter and write its **parametric equations** as

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

To find a **tangent line** to a polar curve $\mathbf{r} = \mathbf{f}(\theta)$ we regard θ as a parameter and write its **parametric equations** as

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$\frac{dy}{dx}$$

To find a **tangent line** to a polar curve $\mathbf{r} = \mathbf{f}(\theta)$ we regard θ as a parameter and write its **parametric equations** as

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}} = \frac{\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \theta}}{\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} \theta}}$$

To find a **tangent line** to a polar curve $\mathbf{r} = \mathbf{f}(\theta)$ we regard θ as a parameter and write its **parametric equations** as

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$\frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\frac{\mathbf{dy}}{\mathbf{d}\theta}}{\frac{\mathbf{dx}}{\mathbf{d}\theta}} = \frac{\frac{\mathbf{dr}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta}{\frac{\mathbf{dr}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta}$$

To find a **tangent line** to a polar curve $\mathbf{r} = \mathbf{f}(\theta)$ we regard θ as a parameter and write its **parametric equations** as

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$\frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\frac{\mathbf{dy}}{\mathbf{d}\theta}}{\frac{\mathbf{dx}}{\mathbf{d}\theta}} = \frac{\frac{\mathbf{dr}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta}{\frac{\mathbf{dr}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta}$$

We locate **horizontal tangents** by finding the points where

$$\frac{d\mathbf{y}}{d\theta} = \mathbf{0}$$
 (provided that $\frac{d\mathbf{x}}{d\theta} \neq 0$.)

To find a **tangent line** to a polar curve $\mathbf{r} = \mathbf{f}(\theta)$ we regard θ as a parameter and write its **parametric equations** as

$$\mathbf{x} = \mathbf{r}\cos\theta = \mathbf{f}(\theta)\cos\theta$$
 $\mathbf{y} = \mathbf{r}\sin\theta = \mathbf{f}(\theta)\sin\theta$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$\frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\frac{\mathbf{dy}}{\mathbf{d}\theta}}{\frac{\mathbf{dx}}{\mathbf{d}\theta}} = \frac{\frac{\mathbf{dr}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta}{\frac{\mathbf{dr}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta}$$

We locate **horizontal tangents** by finding the points where $\frac{dy}{d\theta} = 0$ (provided that $\frac{dx}{d\theta} \neq 0$.) Likewise, we locate **vertical tangents** at the points where $\frac{dx}{d\theta} = 0$ (provided that $\frac{dy}{d\theta} \neq 0$).

Example For the cardioid $\mathbf{r} = \mathbf{1} + \sin \theta$ find the slope of the tangent line when $\theta = \frac{\pi}{3}$.

 $\frac{dy}{dx}$

$$\frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\frac{\mathbf{dr}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta}{\frac{\mathbf{dr}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta}$$

$$\frac{\mathbf{dy}}{\mathbf{dx}} = \frac{\frac{\mathbf{dr}}{\mathbf{d\theta}}\sin\theta + \mathbf{r}\cos\theta}{\frac{\mathbf{dr}}{\mathbf{d\theta}}\cos\theta - \mathbf{r}\sin\theta} = \frac{\cos\theta\sin\theta + (\mathbf{1} + \sin\theta)\cos\theta}{\cos\theta\cos\theta - (\mathbf{1} + \sin\theta)\sin\theta}$$

$$\begin{aligned} \frac{\mathbf{dy}}{\mathbf{dx}} &= \frac{\frac{\mathbf{dr}}{\mathbf{d\theta}} \sin \theta + \mathbf{r} \cos \theta}{\frac{\mathbf{dr}}{\mathbf{d\theta}} \cos \theta - \mathbf{r} \sin \theta} = \frac{\cos \theta \sin \theta + (\mathbf{1} + \sin \theta) \cos \theta}{\cos \theta \cos \theta - (\mathbf{1} + \sin \theta) \sin \theta} \\ &= \frac{\cos \theta (\mathbf{1} + \mathbf{2} \sin \theta)}{\mathbf{1} - \mathbf{2} \sin^2 \theta - \sin \theta} \end{aligned}$$

$$\begin{aligned} \frac{\mathbf{dy}}{\mathbf{dx}} &= \frac{\frac{\mathbf{dr}}{\mathbf{d\theta}} \sin \theta + \mathbf{r} \cos \theta}{\frac{\mathbf{dr}}{\mathbf{d\theta}} \cos \theta - \mathbf{r} \sin \theta} = \frac{\cos \theta \sin \theta + (\mathbf{1} + \sin \theta) \cos \theta}{\cos \theta \cos \theta - (\mathbf{1} + \sin \theta) \sin \theta} \\ &= \frac{\cos \theta (\mathbf{1} + \mathbf{2} \sin \theta)}{\mathbf{1} - \mathbf{2} \sin^2 \theta - \sin \theta} = \frac{\cos \theta (\mathbf{1} + \mathbf{2} \sin \theta)}{(\mathbf{1} + \sin \theta)(\mathbf{1} - \mathbf{2} \sin \theta)} \end{aligned}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\left.\frac{\mathsf{d}\mathsf{y}}{\mathsf{d}\mathsf{x}}\right|_{\theta=\frac{\pi}{3}} = \frac{\cos\left(\frac{\pi}{3}\right)(1+2\sin\left(\frac{\pi}{3}\right))}{(1+\sin\left(\frac{\pi}{3}\right))(1-2\sin\left(\frac{\pi}{3}\right))}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\left.\frac{\mathrm{d} y}{\mathrm{d} x}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos\left(\frac{\pi}{3}\right)\left(1+2\sin\left(\frac{\pi}{3}\right)\right)}{\left(1+\sin\left(\frac{\pi}{3}\right)\right)\left(1-2\sin\left(\frac{\pi}{3}\right)\right)}$$

$$=\frac{\frac{1}{2}(1+\sqrt{3})}{(1+\frac{\sqrt{3}}{2})(1-\sqrt{3})}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\left.\frac{\mathrm{d} y}{\mathrm{d} x}\right|_{\theta=\frac{\pi}{3}} = \frac{\cos\left(\frac{\pi}{3}\right)\left(1+2\sin\left(\frac{\pi}{3}\right)\right)}{\left(1+\sin\left(\frac{\pi}{3}\right)\right)\left(1-2\sin\left(\frac{\pi}{3}\right)\right)}$$

$$=\frac{\frac{1}{2}(1+\sqrt{3})}{(1+\frac{\sqrt{3}}{2})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\left.\frac{\mathrm{d} y}{\mathrm{d} x}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos\left(\frac{\pi}{3}\right)\left(1+2\sin\left(\frac{\pi}{3}\right)\right)}{\left(1+\sin\left(\frac{\pi}{3}\right)\right)\left(1-2\sin\left(\frac{\pi}{3}\right)\right)}$$

$$=\frac{\frac{1}{2}(1+\sqrt{3})}{(1+\frac{\sqrt{3}}{2})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{-1-\sqrt{3}}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\left.\frac{\mathrm{d} y}{\mathrm{d} x}\right|_{\theta=\frac{\pi}{3}} = \frac{\cos\left(\frac{\pi}{3}\right)\left(1+2\sin\left(\frac{\pi}{3}\right)\right)}{\left(1+\sin\left(\frac{\pi}{3}\right)\right)\left(1-2\sin\left(\frac{\pi}{3}\right)\right)}$$

$$=\frac{\frac{1}{2}(1+\sqrt{3})}{(1+\frac{\sqrt{3}}{2})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{-1-\sqrt{3}}=-1$$

The **area** of a region "under" a polar function $\mathbf{r} = \mathbf{f}(\theta)$ is described by either of the following formulas.

The **area** of a region "under" a polar function $\mathbf{r} = \mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_1 \leq \theta \leq \theta_2$ portion of a circle of radius r is given by $\frac{1}{2}(\theta_2 - \theta_1)r^2$.

The **area** of a region "under" a polar function $\mathbf{r} = \mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_1 \leq \theta \leq \theta_2$ portion of a circle of radius r is given by $\frac{1}{2}(\theta_2 - \theta_1)r^2$.

$$\mathsf{A} = \int_\mathsf{a}^\mathsf{b} frac{1}{2} [\mathsf{f}(heta)]^2 \ \mathsf{d} heta,$$

The **area** of a region "under" a polar function $\mathbf{r} = \mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_1 \leq \theta \leq \theta_2$ portion of a circle of radius r is given by $\frac{1}{2}(\theta_2 - \theta_1)r^2$.

$$\mathsf{A} = \int_\mathsf{a}^\mathsf{b} frac{1}{2} [\mathsf{f}(heta)]^2 \ \mathsf{d} heta,$$

$$A = \int_a^b \frac{1}{2} r^2 d\theta$$

The **area** of a region "under" a polar function $\mathbf{r} = \mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_1 \leq \theta \leq \theta_2$ portion of a circle of radius r is given by $\frac{1}{2}(\theta_2 - \theta_1)r^2$.

$$\mathsf{A} = \int_\mathsf{a}^\mathsf{b} frac{1}{2} [\mathsf{f}(heta)]^2 \; \mathsf{d} heta,$$

$$A = \int_a^b \frac{1}{2} r^2 d\theta$$

Also see the two figures below.

Example Find the **area** enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

By our area formulas,

Area

Area
$$=\int_{-rac{\pi}{4}}^{rac{\pi}{4}}rac{1}{2}\mathsf{r}^2\,\mathsf{d} heta$$

$$\mathbf{Area} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathsf{r}^2 \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta$$

$$\text{Area} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathsf{r}^2 \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta$$

$$\begin{aligned} \mathbf{Area} &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathbf{r}^2 \, \mathrm{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathrm{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathrm{d}\theta \\ &= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos 4\theta) \, \mathrm{d}\theta \end{aligned}$$

$$\begin{aligned} \text{Area} &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathsf{r}^2 \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta \\ &= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos 4\theta) \, \mathsf{d}\theta = \frac{1}{4} (\theta + \frac{1}{4} \sin 4\theta) \bigg|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \end{aligned}$$

$$\begin{split} \text{Area} &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathsf{r}^2 \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, \mathsf{d}\theta \\ &= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos 4\theta) \, \mathsf{d}\theta = \frac{1}{4} (\theta + \frac{1}{4} \sin 4\theta) \bigg|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{\pi}{8}. \end{split}$$

Definition The velocity vector of a curve C(t) = (x(t), y(t)) is

Definition The velocity vector of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)).

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is s(t) = |C'(t)|

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is $s(t) = |C'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$.

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is $s(t) = |C'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$. Since the integral of the speed is the distance traveled or **length** for $C: [a, b] \to \mathbb{R}^2$,

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is $s(t) = |C'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$. Since the integral of the speed is the distance traveled or **length** for $C: [a, b] \to \mathbb{R}^2$,

Length of a curve(C)

Speed and length

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is $s(t) = |C'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$. Since the integral of the great is the distance.

Since the integral of the speed is the distance traveled or length for $C: [a,b] \to \mathbb{R}^2$,

Length of a curve(C) =
$$\int_a^b s(t) dt$$

Speed and length

Definition The **velocity vector** of a curve C(t) = (x(t), y(t)) is C'(t) = (x'(t), y'(t)). The **speed** of C(t) is $s(t) = |C'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$.

Since the integral of the speed is the distance traveled or length $\mbox{ for } C\colon [a,b]\to \mathbb{R}^2,$

Length of a curve(C) =
$$\int_a^b s(t) dt$$

$$= \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

Problem 30 As the parameter t increases forever, starting at t=0, the curve with parametric equations $\begin{cases} x=e^{-t}\cos t, \\ y=e^{-t}\sin t \end{cases}$ spirals inward toward the origin, getting ever closer to the origin (but

never actually reaching) as $t \to \infty$.

Problem 30 As the parameter t increases forever, starting at t = 0, the curve with parametric equations $\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Problem 30 As the parameter t increases forever, starting at t = 0, the curve with parametric equations $\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t}) = (\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t})) = (\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}|$ is $\mathbf{c}'(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:

$$t = 0$$
, the curve with parametric equations
$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$c'(t) = (x'(t), y'(t)).$$

$$t = 0$$
, the curve with parametric equations

$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$\begin{aligned} c'(t) &= (x'(t), y'(t)). \text{ So,} \\ c'(t) &= (-e^{-t}\cos t - e^{-t}\sin t, -e^{-t}\sin t + e^{-t}\cos t) \end{aligned}$$

$$t = 0$$
, the curve with parametric equations
$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$\begin{split} c'(t) &= (x'(t), y'(t)). \text{ So,} \\ c'(t) &= (-e^{-t}\cos t - e^{-t}\sin t, -e^{-t}\sin t + e^{-t}\cos t) = \\ -e^{-t}(\cos t + \sin t, \sin t - \cos t). \end{split}$$

$$t = 0$$
, the curve with parametric equations $x = e^{-t} \cos t$.

$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

 $c(t)=(x(t),y(t))=(e^{-t}\cos t,e^{-t}\sin t|$ is c'(t) and it is found by taking the derivative of the coordinate functions:

$$\begin{split} c'(t) &= (x'(t), y'(t)). \text{ So,} \\ c'(t) &= (-e^{-t}\cos t - e^{-t}\sin t, -e^{-t}\sin t + e^{-t}\cos t) = \\ -e^{-t}(\cos t + \sin t, \sin t - \cos t). \text{ Recall that the speed } s(t) \text{ of } c(t) \\ \text{is } |c'(t)| \end{split}$$

$$t = 0$$
, the curve with parametric equations
$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$\begin{split} c'(t) &= (x'(t),y'(t)). \text{ So,} \\ c'(t) &= (-e^{-t}\cos t - e^{-t}\sin t, -e^{-t}\sin t + e^{-t}\cos t) = \\ -e^{-t}(\cos t + \sin t, \sin t - \cos t). \text{ Recall that the speed } s(t) \text{ of } c(t) \\ \text{is } |c'(t)| \text{ which is equal to } \sqrt{(x'(t))^2 + (y'(t))^2} \end{split}$$

t = 0, the curve with parametric equations

$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$c'(t)=(x'(t),y'(t)).$$
 So,
$$c'(t)=(-e^{-t}\cos t-e^{-t}\sin t,-e^{-t}\sin t+e^{-t}\cos t)=\\-e^{-t}(\cos t+\sin t,\sin t-\cos t).$$
 Recall that the speed $s(t)$ of $c(t)$ is $|c'(t)|$ which is equal to $\sqrt{(x'(t))^2+(y'(t))^2}$ and the length is the integral of the speed:

$$t = 0$$
, the curve with parametric equations

$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$c'(t)=(x'(t),y'(t)).$$
 So,
$$c'(t)=(-e^{-t}\cos t-e^{-t}\sin t,-e^{-t}\sin t+e^{-t}\cos t)=\\-e^{-t}(\cos t+\sin t,\sin t-\cos t).$$
 Recall that the speed $s(t)$ of $c(t)$ is $|c'(t)|$ which is equal to $\sqrt{(x'(t))^2+(y'(t))^2}$ and the length is the integral of the speed:

$$\int_0^\infty \sqrt{e^{-2t}(\cos^2 t + \sin^2 t + 2\cos t \sin t + \sin^2 t + \cos^2 t - 2\cos t \sin t)} dt$$

$$t = 0$$
, the curve with parametric equations
$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$c'(t)=(x'(t),y'(t)).$$
 So,
$$c'(t)=(-e^{-t}\cos t-e^{-t}\sin t,-e^{-t}\sin t+e^{-t}\cos t)=\\-e^{-t}(\cos t+\sin t,\sin t-\cos t).$$
 Recall that the speed $s(t)$ of $c(t)$ is $|c'(t)|$ which is equal to $\sqrt{(x'(t))^2+(y'(t))^2}$ and the length is the integral of the speed:

$$\int_0^\infty \sqrt{e^{-2t}(\cos^2 t + \sin^2 t + 2\cos t \sin t + \sin^2 t + \cos^2 t - 2\cos t \sin t)} dt$$

$$= \int_0^\infty e^{-t} \sqrt{2} dt$$

$$t = 0$$
, the curve with parametric equations
$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

 $c(t)=(x(t),y(t))=(e^{-t}\cos t,e^{-t}\sin t|$ is c'(t) and it is found by taking the derivative of the coordinate functions:

$$c'(t)=(x'(t),y'(t)).$$
 So,
$$c'(t)=(-e^{-t}\cos t-e^{-t}\sin t,-e^{-t}\sin t+e^{-t}\cos t)=\\-e^{-t}(\cos t+\sin t,\sin t-\cos t).$$
 Recall that the speed $s(t)$ of $c(t)$ is $|c'(t)|$ which is equal to $\sqrt{(x'(t))^2+(y'(t))^2}$ and the length is the integral of the speed:

$$\int_0^\infty \sqrt{e^{-2t}(\cos^2 t + \sin^2 t + 2\cos t \sin t + \sin^2 t + \cos^2 t - 2\cos t \sin t)} dt$$

$$= \int_0^\infty e^{-t} \sqrt{2} dt = \lim_{t \to \infty} -\sqrt{2}e^{-t} \Big|_0^t$$

$$t = 0$$
, the curve with parametric equations
$$\begin{cases} x = e^{-t} \cos t, \\ y = e^{-t} \sin t \end{cases}$$

spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \to \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve

$$c'(t)=(x'(t),y'(t)).$$
 So,
$$c'(t)=(-e^{-t}\cos t-e^{-t}\sin t,-e^{-t}\sin t+e^{-t}\cos t)=\\-e^{-t}(\cos t+\sin t,\sin t-\cos t).$$
 Recall that the speed $s(t)$ of $c(t)$ is $|c'(t)|$ which is equal to $\sqrt{(x'(t))^2+(y'(t))^2}$ and the length is the integral of the speed:

$$\int_0^\infty \sqrt{e^{-2t}(\cos^2 t + \sin^2 t + 2\cos t \sin t + \sin^2 t + \cos^2 t - 2\cos t \sin t)} dt$$

$$= \int_0^\infty e^{-t} \sqrt{2} dt = \lim_{t \to \infty} -\sqrt{2}e^{-t} \Big|_0^t = \sqrt{2}.$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$.

```
In polar coordinates \mathbf{x}=\mathbf{r}\cos\theta, \mathbf{y}=\mathbf{r}\sin\theta. Then \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta}
```

In **polar** coordinates
$$\mathbf{x} = \mathbf{r}\cos\theta$$
, $\mathbf{y} = \mathbf{r}\sin\theta$. Then
$$\frac{\mathbf{dx}}{\mathbf{d}\theta} = \frac{\mathbf{dr}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta}$$

In **polar** coordinates
$$\mathbf{x} = \mathbf{r} \cos \theta$$
, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

$$\left(\frac{\text{d}x}{\text{d}\theta}\right)^2 + \left(\frac{\text{d}y}{\text{d}\theta}\right)^2$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta$$

$$+ \left(\frac{dr}{d\theta}\right)^2 \sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^2\sin^2\theta$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

$$\begin{split} \left(\frac{\mathsf{dx}}{\mathsf{d}\theta}\right)^2 + \left(\frac{\mathsf{dy}}{\mathsf{d}\theta}\right)^2 &= \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 \cos^2\theta - 2\mathsf{r}\frac{\mathsf{dr}}{\mathsf{d}\theta}\cos\theta\sin\theta + \mathsf{r}^2\sin^2\theta \\ &+ \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 \sin^2\theta + 2\mathsf{r}\frac{\mathsf{dr}}{\mathsf{d}\theta}\sin\theta\cos\theta + \mathsf{r}^2\sin^2\theta \\ &= \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 + \mathsf{r}^2. \end{split}$$

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

Using $\cos^2 \theta + \sin^2 \theta = 1$, we get

$$\begin{split} \left(\frac{\mathsf{dx}}{\mathsf{d}\theta}\right)^2 + \left(\frac{\mathsf{dy}}{\mathsf{d}\theta}\right)^2 &= \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 \cos^2\theta - 2\mathsf{r}\frac{\mathsf{dr}}{\mathsf{d}\theta}\cos\theta\sin\theta + \mathsf{r}^2\sin^2\theta \\ &+ \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 \sin^2\theta + 2\mathsf{r}\frac{\mathsf{dr}}{\mathsf{d}\theta}\sin\theta\cos\theta + \mathsf{r}^2\sin^2\theta \\ &= \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 + \mathsf{r}^2. \end{split}$$

Thus the **length L** of a polar curve $\mathbf{r} = \mathbf{f}(\theta)$, $a \le \theta \le b$, is:

In **polar** coordinates $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$. Then

$$\frac{\mathbf{d}\mathbf{x}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\cos\theta - \mathbf{r}\sin\theta \qquad \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\theta} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}\theta}\sin\theta + \mathbf{r}\cos\theta.$$

Using $\cos^2 \theta + \sin^2 \theta = 1$, we get

$$\begin{split} \left(\frac{\mathsf{dx}}{\mathsf{d}\theta}\right)^2 + \left(\frac{\mathsf{dy}}{\mathsf{d}\theta}\right)^2 &= \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 \cos^2\theta - 2\mathsf{r}\frac{\mathsf{dr}}{\mathsf{d}\theta}\cos\theta\sin\theta + \mathsf{r}^2\sin^2\theta \\ &+ \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 \sin^2\theta + 2\mathsf{r}\frac{\mathsf{dr}}{\mathsf{d}\theta}\sin\theta\cos\theta + \mathsf{r}^2\sin^2\theta \\ &= \left(\frac{\mathsf{dr}}{\mathsf{d}\theta}\right)^2 + \mathsf{r}^2. \end{split}$$

Thus the **length L** of a polar curve $\mathbf{r} = \mathbf{f}(\theta)$, $a \le \theta \le b$, is:

$$L = \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta.$$

