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Example Convert the point (2,%) from polar to
Cartesian coordinates.

Solution Since r =2 and 0 = Z,
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Example Convert the point (2,%) from polar to
Cartesian coordinates.
Solution Since r =2 and 0 = %

/0

x:rc059:2cos§:2- =1

1
2
y = rsin sm3

Therefore, the point is (1,+/3) in Cartesian
coordinates.
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Example Represent the point with Cartesian
coordinates (1, —1) in terms of polar coordinates.
Solution If we choose r to be positive, then

r= VT =TT (CIR =2

Y _ 4

tanf = =
X

Since the point (1, —1) lies in the fourth quadrant,
we choose 6§ = —7 or § =7 7. Thus, one possible

answer is (\/5, —%); another is (\/5,7%).



Graph of a polar equation

Definition The graph of a polar equation

r = f(6), or more generally F(r,0) = 0, consists of
all points P that have at least one polar
representation (r, ) whose coordinates satisfy the

equation.
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Solution The curve consists of all points (r, ) with
r = 2. Since r represents the distance from the
point to the pole, the curve r = 2 represents the
circle with center O and radius 2. In general, the
equation r = a represents a circle with center O and
radius |al.
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Example Find the Cartesian coordinates for
r =2cos#.

Solution Since x = rcosf, the equation r = 2 cosf

becomes r = 27X or

2x:r2:x2—|—y2

or
X2 —2x+y*=0

or
(x =12 +y?>=1.

This is the equation of a circle of radius 1 centered
at (1,0).
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Four-leaved rose

Example Sketch the curve r = cos 2.
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Tangents to Polar Curves

To find a tangent line to a polar curve r = f(0) we regard 6 as a
parameter and write its parametric equations as

x=rcosf =f(f)cosd y=rsinf =F(0)sinb

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy_% d'sm@—l—rcos@

dx % j(; cosf —rsinf

We locate horizontal tangents by finding the points where

g—g = 0 (provided that 2% £ 0.) Likewise, we locate vertical

tangents at the points where % = 0 (provided that 7 7 0).
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Area under a polar graph r = f(6)

The area of a region "under” a polar function
r = f(0) is described by either of the following
formulas. These formulas arise from the fact that
the area of a #; < 6 < 6, portion of a circle of

radius r is given by %(92 — 01)r?

A= [PLf(0)]? do,

A= [P12dg,

Also see the two figures below.
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the four-leaved rose r = cos 26. Solution First
recall the picture of this curve:

r=cos26

By our area formulas,

71 1 (% 1 (%
A = — 2 = — 2 = — 2
rea /_7r 2r dd 2 /. cos” 260 dd 5 /. cos” 260 dd
4 4 4
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t = 0, the curve with parametric equations
x = e tcost,
{ y=-e tsint
spirals inward toward the origin, getting ever closer to the origin (but
never actually reaching) as t — oo. Find the length of this spiral curve.

Solution The tangent vector to the curve
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