CUDA Threads

Bedrich Benes, Ph.D.
Purdue University
Department of Computer Graphics

Terminology

« Streaming Multiprocessor (SM)

» Streaming Processors (SP)
also called CUDA Cores

» A SP processes threads

belonging to a block (shared resources)

© Bedrich Benes

Terminology !

Input Assembler

R —

Global Memory

© Bedrich Benes

How it works

1) Grid is launched

2) Blocks are assigned to streaming
multiprocessors (SM) on block-by-block
basis in arbitrary order (scalability)
(Each SM can process more blocks)

e.g., GT200 can do max 8 blocks or
max 1024 threads per SM

Bedrich Benes

10/16/2011

How it works E

3) An assigned block is partitioned into warps.
Their execution is interleaved

4) Warps are assigned to SM
(one thread to one SP)

5) Warps can be delayed if idle for some
reason (waiting for memory)

© Bedrich Benes

UNIVERSI {i

G80 Architecture E

has 16 SMs

each can process

< 8 blocks

or

< 768 threads

max: 8x16=128 CUDA Cores (SPs)
max: 16x768=12,288 threads

© Bedrich Benes

. . . |
Basic Considerations E

* the size of a block is limited to 512 threads
blockDim(512,1,1)
blockDim(8,16,2)
blockDim(16,16,2)

* kernel can handle up to
65,536x65,536 blocks

© Bedrich Benes

has 30 SMs

each can process

< 8 blocks

or

<1024 threads

max: 8x30=240 CUDA Cores (SPs)
max: 30x1,024= 30,720 threads

© Bedrich Benes

10/16/2011

GT200 Architecture

GT200

GDDR3 Memory
Controllers x16

(EEEIELEE: It

 EEEEEET" 3

8x8B @ 2.2GT/s 2B @ 4GTis

Image © Nvidia
© Bedrich Benes

GT200 Architecture a

30,720 threads max
240 CUDA cores

GT400 (Fermi)

has 16 SM

each can process

< 8 blocks

1 SM has 32 cuda cores

total: 512 cuda cores

plus 16kb or 48kb L1 Caches per SM
can run two different warps per kernel
(dual warp scheduler)

© Bedrich Benes

One SM limits: g | i | i

1024 threads = 4x256 or N
8x128 etc. oo [o Il o [« flf = [|

One block limits: EE EE EE

512 threads = 2x256 or = Tm:m =

8x64 etc.
PR D U e ———————
Block Assignment !

* if more than the max amount of
blocks are assigned to SM
they will be scheduled for later execution

* Isit good or bad?
Well, it depends, but usually good.

Bedrich Benes

10/16/2011

© Bedrich Benes

Warps E

» A thread block is divided into warps

* A block of 32 threads
(hw dependent and can change)

» Warps are scheduling units of SM
e warpg: ty,tq,...,ts4
warp,: tao,ts,.. ., tg3

© Bedrich Benes

Warps E

« Example:
3 blocks assigned to SM,

each with 128 threads.
How many warps we have in the SM?

» 128 threads/32 (warp length)=4 warps
« 4(warps) x 3 (blocks) = 12
warps at the same time

© Bedrich Benes

Warps E

« Example2:
How many warps in the GT2007?

* 1024 threads/32 (warp length)=32 warps

© Bedrich Benes

10/16/2011

. . 2]
Warp Assignment)

» one thread is assigned to one SP

* SM has 8 SPs

* warp has 32 threads

* so awarp is executed in four steps

© Bedrich Benes

Warps — latency hiding E

* Why do we need so many warps if there
are just 8 CUDA cores in SM (GT200)?

Latency hiding:

* a warp executes a global memory read
instruction that delays it for 400 cycles

* any other warp can be executed in the
meantime

 if more than one is available - priorities

© Bedrich Benes

. =]
Warps — processing _—

* Awarpis SIMT

(single instruction multiple thread)

all run in parallel and the same instruction
+ Two warps are MIMD

can do branching, loops, etc.
» Threads within one warp do not need

synchronization — they run the same time
instruction

© Bedrich Benes

|
Warps — zero-overhead E

Zero-overhead thread scheduling

* having many warps available,
the selection of warps that are ready to
go keeps the SM busy (no idle time)

« thatis why,
caches are not usually necessary

© Bedrich Benes

10/16/2011

|
Example - granularity 2

« Having GT200 and matrix multiplication.
Which tiles are the best 4x4, 8x8, 16x16,
or 32x327?

© Bedrich Benes

|
Example - granularity 2

* 4x4 will need 16 threads per block
SM can take up to 1024 threads
We can take 1024/16=64 blocks
BUT! The SM is limited to 8 blocks
There will be 8*16=128 threads in each SM
128/32=4 -> 8 warps, but each half full

heavily underutilized !
(fewer warps to schedule)

© Bedrich Benes

|
Example - granularity E

+ 8x8 will need 64 threads per block
SM can take up to 1024 threads
We can take 1024/64=16 blocks
BUT! The SMis limited to 8 blocks
There will be 8*64=512 threads in each SM
512/32=16 warps

still underutilized !
(fewer warps to schedule)

© Bedrich Benes

|
Example - granularity E

* 16x16 will need 256 threads per block
SM can take up to 1024 threads
We can take 1024/256=4 blocks
The SM can take it 2x
There will be 8*64=512 threads in each SM
512/32=16

full capacity and a lot of warps to schedule

© Bedrich Benes

10/16/2011

Example - granularity E

» 32x32 will need 1024 threads per block
a block (GT200) can take max 512
Not even one will fit in the SM

(not true in GT400)

© Bedrich Benes

Example - granularity E

 granularity does not automatically mean a
good performance

* depends on using shared memory,
branching, loops, etc.

* but it does mean low latency

» Blocks (resp. # of threads in block) should
be multiples 32 for better alignment

© Bedrich Benes

UNIVERSITY

Warps/block alignment E

« 1D Case
block of 100 threads — how many warps?
100/32=3+1/4

mm- t93 t94 t95 t96 t97 t98 t99
\ Y Il Y Il Y Il Y J
W, W, W, Va of wy

 the last warp will be occupied entirely, but
only the 8 threads will have meaning

© Bedrich Benes

UNIVERSITY

- |
Warps/block alignment E
* 2D Case T A O O O A A A1
bIoclem(9,9 :01:11:21:31t41:51:61:11:51
81 threads znzzatigias

100/32=2/warps
and 17 threads

Y
Bedrich Benes WO (32)

10/16/2011

Warps/block alignment mﬂ
+ 3D Case
blockDim(4,4,5) S
30 threads A,
100/32=2 w P to,2q4t1.2at22.0t.2.0 ::
an d 16 th a to,3qt1,3,dt23,0t5,3,0
to,0,0[t1,00 ts 34
L Y A Y A Y)
Wo(32) w,(32) wy(16)

© Bedrich Benes

: |
Warp execution E

» SIMT - single instruction, multiple threads
the same instruction is broadcasted to all
threads and execute at the same time in
the SM.

* All SPs in the SM
execute the same instruction.

© Bedrich Benes

Thread Divergence E

* How can all threads execute the same
instruction if we have the “if’ command?
Example:

if (threadIdx.x<10)
{a[0]=10;}
else {a[l]=10;}

Threads [0-9] will do “then”
the others will do “else”
This is called thread divergence

© Bedrich Benes

Thread Divergence E

* The compiler will unroll both branches
and the GPU will perform both branches.
Then in the first pass, else in the second.

« But not all ifs cause thread divergence!
a=tex2D (tex,u,v);
if (a<0.5)

{a[0]=10;}
else {a[l]=10;}

© Bedrich Benes

10/16/2011

|
Thread Divergence 2

» What causes thread divergence?

1) If statements with functions of threadldx
2) Loops with functions of threadldx

ifs are expensive anyway...

© Bedrich Benes

|
Thread Divergence 2

Example:
for (int i=0;i<threadIdx.x;i++)
a[i]l=i;

All loops that should finished will finish, but

the GPU will iterate for the others till the end

© Bedrich Benes

. . :
Reading E
* NVIDIA CUDA Programming Guide

+ Kirk, D.B., Hwu, W.W.,
Programming Massively
Parallel Processors,
NVIDIA,

Morgan Kaufmann 2010

Programming Massively
Parallel Processors

© Bedrich Benes

(21

10/16/2011

