MATH 552

Spring 2006

Homework Set 5

Due Tuesday, 2 May 2006

- 1. Problem 10.2 from Trefethen & Bau.
- 2. Problem **11.3** from *Trefethen & Bau*.
- 3. Problem 12.2 from Trefethen & Bau.
- 4. Problem 13.3 from Trefethen & Bau.
- 5. Prove the following:
 - (a) $\kappa(A) \ge 1$ for any induced matrix norm.
 - (b) If U is unitary, then $\kappa_2(U) = 1$, $\kappa_2(UA) = \kappa_2(AU) = \kappa_2(A)$.
 - (c) $\kappa_2(A) = \sigma_{\max}/\sigma_{\min}$.
 - (d) If A is hermitian, then $\kappa_2(A) = |\lambda|_{\text{max}}/|\lambda|_{\text{min}}$.
 - (e) If Ax = b and $(A + \delta A)(x + \delta x) = b$, then $\frac{\|\delta x\|/\|x + \delta x\|}{\|\delta A\|/\|A\|} \le \kappa(A)$.
- 6. Consider Ax = b. Let x be the exact solution and let \tilde{x} be an approximate solution. The **error** is $e = x \tilde{x}$ and the **residual** is $r = b A\tilde{x}$.
 - (a) Show that Ae = r and $\frac{\|e\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|}$.
 - (b) It follows that if A is invertible, then e = 0 if and only if r = 0, but if A is ill-conditioned, then the relative error $\frac{\|e\|}{\|x\|}$ may be large even if the relative residual $\frac{\|r\|}{\|b\|}$ is small. This occurs in the following example (due to W. Kahan).

$$A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}, \ b = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix}, \ x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \ \tilde{x}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \tilde{x}_2 = \begin{pmatrix} 0.9911 \\ -0.4870 \end{pmatrix}$$

Show that Ax = b (using exact arithmetic). Consider \tilde{x}_1 and \tilde{x}_2 as approximate solutions and or each one compute the corresponding $\frac{\|e\|_{\infty}}{\|x\|_{\infty}}, \frac{\|r\|_{\infty}}{\|b\|_{\infty}}$. Find $\kappa_{\infty}(A)$.