
HW #3 Solutions: M552 Spring 2006

1. (4.1-Trefethen & Bau: parts (a), (c) and (e)) Determine the SVDs of the following matrices (by hand
calculation):

(a)

[

3 0
0 −2

]

(c)





0 2
0 0
0 0



 (e)

[

1 1
1 1

]

ANS: In each case we seek A = UΣV ∗. The general algorithm is to first find A∗A = (UΣV ∗)∗UΣV ∗ =
V Σ∗ΣV ∗ = V DV ∗, the spectral decomposition of the hermitian matrix A∗A. Then take Σ =

√
D,

noting that Σ may have to be extended to the size of A, i.e. zero rows appended, and solve for U
from AV = UΣ. However, if A = A∗, then we can use A’s spectral decompostion A = PDP ∗ =
P |D|sign(D)P ∗ = UΣV ∗, where U = P , Σ = |D| and V ∗ = sign(D)P ∗.

(a): A∗ = A, and in fact A is already in diagonal form. So D = A and P = I. Then

A = PDP ∗ = IDI = I ∗ |D| ∗ sign(D)I =

[

1 0
0 1

] [

3 0
0 2

] [

1 0
0 −1

]

= UΣV ∗.

(c): Following the general algorithm, A∗A =

[

0 0
0 4

]

= I ∗
[

0 0
0 4

]

∗ I∗, the spectral decompostion

of A∗A. Note that the diagonal entries of D are not decreasing. We can achieve this by interchanging
the columns of I and the diagonal entries of D, which simply amounts to reordering the e-pairs of

A∗A, giving A∗A =

[

0 0
0 4

]

=

[

0 1
1 0

] [

4 0
0 0

] [

0 1
1 0

]

. Then extending

√

[

4 0
0 0

]

=

[

2 0
0 0

]

,

Σ =





2 0
0 0
0 0



 and V =

[

0 1
1 0

]

. Now choose U unitary so that AV = UΣ, or





2 0
0 0
0 0



 =

[u1 u2 u3]





2 0
0 0
0 0



. We see that this gives U = I. Thus,

A =





1 0 0
0 1 0
0 0 1









2 0
0 0
0 0





[

0 1
1 0

]

= UΣV ∗.

(e): A∗ = A, and it is easy to see that the e-values of A are λ1 = 2 and λ2 = 0, and corresponding

mutually orthogonal e-vectors p1 =

[

1/
√

2

1/
√

2

]

and p2 =

[

−1/
√

2

1/
√

2

]

(do the computation if you don’t

see this). Then

A = PDP ∗ =

[

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

] [

2 0
0 0

] [

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]

= UΣV ∗.



2. (4.3-Trefethen & Bau) Write a MATLAB program which, given a real 2 × 2 matrix A, plots the
right singular vectors v1 and v2 in the unit circle and also the left singular vectors u1 and u2 in the

appropriate ellipse, as in Figure 4.1. Apply your program to the matrix (3.7), A =

[

1 2
0 2

]

, and also

the 2 × 2 matrices of exercise 4.1. You may use MATLAB’s svd command to generate the singular
vectors and values.

ANS: Here is the code for a given 2 × 2 matrix A:

[U,S,V]=svd(A); S=diag(S); % find SVD

th=0:2*pi/256:2*pi;

dom=[cos(th); sin(th)]; ran=A*dom; % define points on unit circle and image

subplot(1,2,1)

plot(dom(1,:),dom(2,:),’.’),axis(’image’),grid,hold

arrow([0,0],[V(1,1),V(2,1)])

arrow([0,0],[V(1,2),V(2,2)])

title(’Right Singular Vectors’)

subplot(1,2,2)

plot(ran(1,:),ran(2,:),’r.’),axis(’image’),grid,hold

arrow([0,0],S(1)*[U(1,1),U(2,1)])

if (abs(S(2)) > 10e-10) % check that singular value is nonzero

arrow([0,0],S(2)*[U(1,2),U(2,2)])

end

title(’Image & Left Singular Vector(s)’)

% arrow.m is a user-contributed M-file available at www.mathworks.com

Results for A =

[

1 2
0 2

]

:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Right Singular Vectors

−2 −1 0 1 2
−2

−1

0

1

2
Image & Left Singular Vector(s)



Results for A =

[

3 0
0 −2

]

:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Right Singular Vectors

−2 0 2
−2

−1

0

1

2
Image & Left Singular Vector(s)

Results for A =

[

2 0
0 3

]

:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Right Singular Vectors

−2 −1 0 1 2
−3

−2

−1

0

1

2

3
Image & Left Singular Vector(s)



Results for A =

[

1 1
0 0

]

:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Right Singular Vectors

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Image & Left Singular Vector(s)

Results for A =

[

1 1
1 1

]

:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Right Singular Vectors

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Image & Left Singular Vector(s)



3. (4.5-Trefethen & Bau) Theorem 4.1 asserts that every A ∈ C
m×n has an SVD A = UΣV ∗. Show that

is A is real, then it has a real SVD (U ∈ R
m×m, V ∈ R

n×n).

ANS: If A ∈ R
m×n then A∗A = AT A ∈ R

n×n is symmetric, hence AT A = V DV T where D ∈ R
n×n

is a real diagonal matrix, with non-negative entries (we proved this in class), and V ∈ R
n×n is a real

orthogonal matrix. Hence Σ =
√

D ∈ R
n×n is defined. If m > n we can append zero rows to Σ to

ensure Σ ∈ R
m×n. What if m < n? Think about it!

We can solve for U using AV = UΣ, showing that U can be chosen to ensure U ∈ R
m×m since A,Σ

and V are all real matrices.



4. (5.1-Trefethen & Bau) In Example 3.1 we considered the matrix (3.7), A =

[

1 2
0 2

]

, and asserted,

among other things, that its 2-norm is approximately 2.9208. Using the SVD, work out (on paper)
the exact values of σmin(A) and σmax(A) for this matrix.

ANS: To find the singular values, form A∗A = (UΣV ∗)∗UΣV ∗ = V Σ∗ΣV ∗ = V DV ∗, the spectral
decomposition of the hermitian matrix A∗A. The e-values are the diagonal entries of D, and Σ =

√
D.

A∗A =

[

1 0
2 2

] [

1 2
0 2

]

=

[

1 2
2 8

]

⇒ |A∗A − λI| =

∣

∣

∣

∣

[

1 − λ 2
2 8 − λ

]∣

∣

∣

∣

= λ2 − 9λ + 4,

whose roots are λ1,2 =
9 ±

√

(−9)2 − 4 ∗ 1 ∗ 4

2
=

9 ±
√

65

2
. So we have

σmin(A) =

√

9 −
√

65

2
≈ 0.6847, σmax(A) =

√

9 +
√

65

2
≈ 2.9208,

giving ‖A‖2 = σmax(A) ≈ 2.9208.



5. (5.4-Trefethen & Bau) Suppose A ∈ C
m×m has an SVD A = UΣV ∗. Find an eigenvalue decomposition

(5.1), XΛX−1, of the 2m × 2m hermitian matrix

[

0 A∗

A 0

]

.

ANS: Working on it!



6. Find the eigenvalues and a corresponding eigenfunction for the operator −d2/dx2 applied to functions
with homogeneous boundary conditions on [0, 1], i.e., solutions of

−y′′ = λy, y(0) = y(1) = 0.

Note that there are a infinite number of them, say (λk, yk(x)) for k = 1, 2, . . ., with 0 < λ1 < λ2 < . . ..

ANS: We have to solve a second order constant coefficient ODE, whose solution must also satisfy the
given boundary conditions (BCs). We have

y′′ + λy = 0 ⇒ r2 + λ = 0 ⇒ r1,2 = ±
√
−λ.

The specific form of the solution depends on the sign of λ as follows:

λ < 0: So −λ > 0. The general solution is given by y(x) = C1e
√
−λx + C2e

−
√
−λx. Applying the BCs,

0 = y(0) = C1e
√
−λ0 + C2e

−
√
−λ0 = C1 + C2,

0 = y(1) = C1e
√
−λ1 + C2e

−
√
−λ1 = C1e

√
−λ + C2e

−
√
−λ,

or in matrix form
[

1 1

e
√
−λ e−

√
−λ

] [

C1

C2

]

=

[

0
0

]

⇒ C1 = C2 = 0 since

∣

∣

∣

∣

[

1 1

e
√
−λ e−

√
−λ

]∣

∣

∣

∣

= e−
√
−λ−e

√
−λ 6= 0,

so the system has only the trivial solution, thus y(x) ≡ 0 which can’t be an eigenfunction.

λ = 0: The general solution is given by y(x) = C1 + C2x. Applying the BCs,

0 = y(0) = C1 + C2 ∗ 0 = C1 ⇒ C1 = 0,

0 = y(1) = C2 ∗ 1 = C2 ⇒ C2 = 0.

So again, we arrive at the trivial solution y(x) ≡ 0 which can’t be an eigenfunction.

λ > 0: So −λ < 0 which gives rise to complex roots r1,2. In this case the general real solution is given
by y(x) = C1 cos

√
λx + C2 sin

√
λx. Applying the BCs,

0 = y(0) = C1 cos
√

λ0 + C2 sin
√

λ0 = C1 ∗ 1 + C2 ∗ 0 = C1 ⇒ C1 = 0,

0 = y(1) = C2 sin
√

λ1 = C2 sin
√

λ.

Choosing C2 = 0 gives y(x) ≡ 0, the trivial solution. For a nontrivial solution we must have sin
√

λ = 0,
which is satisfied by an infinite number of λ > 0, given by (note

√
λ > 0)

√

λk = kπ for k = 1, 2, . . . , ⇒ λk = (kπ)2 for k = 1, 2, . . . .

These {λk}∞k=1 are thus the eigenvalues of the continuous second derivative operator for functions
defined on [0, 1] with homogeneous BCs. For each k, taking C2 = 1, a corresponding eigenfunction is
given by yk(x) = sin

√
λkx = sin kπx.

Summarizing, the e-pairs are given by

(λk, yk(x)) = ((kπ)2, sin kπx) for k = 1, 2, . . . , and note 0 < λ1 < λ2 < . . . with lim
k→∞

λk = ∞.



7. Consider the discrete analog of the eigenproblem in the previous problem, with −d2/dx2 ≈ −D+D− =
−D2. To this end, choose N > 0, let h = 1/N and xi = i ∗ h for i = 0, 1, . . . ,N . Note we now have
N + 1 grid points with x0 = 0 and xN = 1. So we seek e-pairs which satisfy

(−D2u)i =
−ui−1 + 2ui − ui+1

h2
= λui for i = 1, 2, . . . ,N − 1, u0 = uN = 0,

or in matrix form,

1

h2

















2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2































u1

u2
...

uN−2

uN−1















= λ















u1

u2
...

uN−2

uN−1















(a) Show that (λk, uk) is an e-pair for k = 1, 2, . . . ,N − 1 where λk = 2(1 − cos kπh)/h2 and uk is
the vector with components (uk)i = sin ikπh. Hint: Use trig identities, and note that sin 0kπh =
sin Nkπh = 0.

(b) For each N = 8 and N = 16 plot graphs (using subplot) of the continuous eigenfunctions found in
the previous problem, and the discrete eigenvectors from (a) for k = 1, 2,N/2 and N − 1. Thus
each plot should have 4 images. Use a linetype for the continuous eigenfunctions and symbols for
the discrete eigenvectors. Label and title your graphs.

(c) In a single plot display the first 32 eigenvalues vs. there number, i.e., k = 1, 2, . . . , 32 of the
continuous problem along with the N − 1 eigenvalues for each N = 8, 16 and 32. For the
continuous case plot the eigenvalues using a linetype with a symbol, and in the discrete case just
symbols. Label, title, and place a legend on your plot.

Discuss the results.

ANS:

(a) Noting that sin 0kπh = sin Nkπh = 0. Fix a k, k = 1, . . . ,N − 1. For i = 1, . . . ,N − 1,

−uk,i−1 + 2uk,i − uk,i+1

h2
=

− sin (i − 1)kπh + 2 sin ikπh − sin (i + 1)kπh

h2

= −(sin ikπh cos kπh−cos ikπh sinkπh)+2 sin ikπh−(sin ikπh cos kπh+cos ikπh sin kπh)
h2

=
−2 sin ikπh cos kπh + 2 sin ikπh

h2

=
2(1 − cos kπh)

h2
sin ikπh

= λk sin ikπh.

= λkuk,i.

So we have Auk = λkuk for k = 1, . . . , N − 1, where A is the matrix representing −D2. Thus, (λk, uk) are
e-pairs for k = 1, . . . , N − 1.



(b) Here is the code for N = 8:

N=8; h=1/N; x=0:h:1; xx=0:0.01:1; k=[1 2 N/2 N-1];

for i=1:4

subplot(2,2,i)

plot(xx,sin(k(i)*pi*xx),x,sin(k(i)*pi*x),’o’)

grid,axis(’tight’)

title([’sin(’,num2str(k(i)),’\pix): N=’,num2str(N),’, k=’,num2str(k(i))]);

end

And the graphs for N = 8 and N = 16:
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sin(7πx):  N=8, k=7
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sin(15πx):  N=16, k=15



(c) Here is the code to generate the plot, and the plot itself:

N=[8 16 32]; h=1./N; N=N-1;

plot(1:32,(pi*(1:32)).^2,’-o’,...

1:N(1),2*(1-cos((1:N(1))*pi*h(1)))/(h(1)^2),’*’,...

1:N(2),2*(1-cos((1:N(2))*pi*h(2)))/(h(2)^2),’+’,...

1:N(3),2*(1-cos((1:N(3))*pi*h(3)))/(h(3)^2),’p’)

grid,title(’Continuous vs. Discrete spectrum of -d^2/dx^2’)

ylabel(’eigenvalue’),legend(’continuous’,’N=8’,’N=16’,’N=32’,2)
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Discussion: From part (b) we see that the eigenvectors of −D2 are the corresponding eigenfunctions of
the continuous problem evaluated at the grid points determined by the specific N . In this sense the discrete
problem is clearly a very good approximation to the continuous one. On the other hand, note in the plot
above that while for each N the first few discrete eigenvalues are good approximations, this is not the case
for the eigenvalues corresponding to the higher modes. Thus one expects these modes in the continuous
problems not to be modeled well by the discrete approximation.

Note: A Taylor series expansion gives

(kπ)2 − λk = (kπ)2 − 2

h2
(1 − cos kπh)

= (kπ)2 − 2

h2
(1 − (1 − (kπh)2

2
+

(kπh)4

24
− · · · ))

= (kπ)2 − 2

h2

(

(kπh)2

2
− (kπh)4

24
+ · · ·

)

= (kπ)2 − (kπ)2 +
2

h2

(

(kπh)4

24
− · · ·

)

=

(

(kπ)4

12
h2 − O(h4)

)

= O(h2)

So we do have the expected accuracy of approximation, but remember there is still a term in the error that
depends on the eigenvalue being approximated, (kπ)4/12, which explains, even for larger N , why we do not
see rapid convergence of the discrete eigenvalues to the continuous ones as k → N − 1. In fact, for a fixed
N and k large, we see divergence in the upper spectrum.


