HW #1 Solutions: M552 Spring 2006

1. (1.4-Trefethen & Bau) Let f1,..., fs be a set of functions defined on the interval [1, 8] with the property
that for any numbers dy, ..., ds, there exists a set of coefficients ¢y, ..., cg such that

3
Zijj(i):di, ’iZl,...,S.
j=1

(a) Show by appealing to the theorems of this lecture that dy,...,ds determine cy, ..., cs uniquely.

(b) Let A be the 8 x 8 matrix representing the linear mapping from data di,...,dg to coefficients
ci,...,cs. What is the 7,5 entry of A71?

ANS:

(a) The expression is equivalent to the 8 x 8 system
Fe=d, Fj=f(i), c=lc1,...,cs]", d=[di,...,ds]".

To say there exists a ¢ given any d is equivalent to saying that the columns of F' span R® (or C®). But
F is 8 x 8, so rank(F) = 8, and by Theorem 1.3 F is invertible. Hence ¢ = F~!d, i.e., c is uniquely
determined.

(b) We have Ad = c or d = A~te. But form (a), d = Fc, so we must have A~! = F. Therefore,
A= Fy = f50).



2. (2.2-Trefethen €& Bau) The Pythagorean theorem asserts hat for a set of n orthogonal vectors {x;},

n 2 n
[ Yo = Sl
i=1 =1

(a) Prove this in the case n = 2 by an explicit computation of || + x2]|?.
(b) Show that this computation also establishes the general case, by induction.
ANS:

(a) A direct calculation using ||z||> = 2*z for a general vector 2 shows:

Hxl + x2|]2 = (xl + azg)*(xl + xg)
= z1*r1 + a1 20 + x2% T + 22 29
= 21*21+ 04+ 0+ x2%x9
= | + [Jz2?.

(b) Above we established the result for n=2. Assume (the induction hypothesis) that the result is true
Z?Qf Li
given n mutually orthogonal vectors z1,...,z,, let z = 2?2_11 x; and y = x,. Since x, is orthogonal

to each x; for i = 1,...,n — 1, by linearity of the inner product we have z*y = 0. Then applying (a)
to x and y gives

for n — 1, i.e., = Z?:_ll H:EZ||2 for n — 1 mutually orthogonal vectors z1,...,z,_1. Then

2
+ ”an27

n—1
Iz + 9l = llall + o = | 3
=1

n—1

2
and applying the induction hypothesis to the term H > x| gives the desired result.




3. (2.3-Trefethen & Bau) Let A € C™*™ be hermitian. An eigenvector of A is a nonzero vector x € C™
such that Az = Ax for some A € C, the corresponding eigenvalue.

(a) Prove that all eigenvalues are real.

(b) Prove that if  and y are eigenvectors corresponding to distinct eigenvalues, then x and y are
orthogonal.
ANS: Suppose Az = A,z and Ay = \yy, where A* = A, x # 0 and y # 0, and A\, # A,.

A
(a) Az =Xz = srfAz=z"(N\x) =Nx'r = A= %, noting that z*z # 0.

N )\—x:x_Am:(xsz:mAa::mAw:)\x ~ Y=\ = AER

(b) We have

Az = Ay = Aga™y — Ay
(Aaw)*y — " (Ayy)
(Azx)*y — x*(Ayy) since Ay € R

(Az)*y — z*(Ay)

= z*A*y —z*Ay
= x*Ay — z*Ay since A* = A
= 0

= 2"y =0since \; #\y = =« and y are orthogonal.



4. (2.4-Trefethen & Bau) What can be said about the eigenvalues of a unitary matrix?
ANS: Suppose Q is unitary (Q~' = Q*) and (), z) is an e-pair, i.e. Qz = Az. Then for any vector y

IRyl = V(Qy)*Qu = Vy*Q*Qy = Vy*(Q*Q)y = /vy = ||y
So multiplying any vector by ) preserves the length of the vector. Now let y = . We have
2]l = Qx| = [IAz] = V(Az)*Az = V Mz = |A|[[],

and ||z|| # 0 since x is an e-vector, so we must have |A| = 1. Thus all the e-values of a unitary matrix
must lie on the unit circle in the complex plane.



o.

(2.5-Trefethen € Bau) Let S € C™*™ be skew-hermitian, i.e., S* = —S.

(a) Show by using Exercis 2.3 that the eigenvalues of S are pure imaginary.
(b) Show that I — S is nonsingular.
(

¢) Show that the matrix Q = (I — S) "' (I+ ), known as the Cayley transform of S, is unitary. (This
is the matrix analogue of a linear fractional transformation (1 + s)/(1 — s), which maps the left half
os the complex s-plane conformally onto the unit disk.)

ANS: Suppose St = Az where S* = -5, x # 0.

a)Sc=Xr = zHSx=x(Ax)=I*z = A= w, noting that z*z # 0.
T*x

N X:x_Sa::(a;Sm) :xSa;:_a:Sa::_)\ ~ X= o

that is, A is pure imaginary.

(b) Suppose (), r) is an e-pair of S, and p(t) = apt™ +a,_1t" "' +...+ait+ag is a polynomial. Then,
p(S)r = (a,S™ + an_ 18" N+ . 4+ a1S+ apgl)x = (ap\" + A NP a N+ apgl)x = p(\)z,

i.e., (p(\),x) is an e-pair of p(S). Let p(t) = 1 —t. Then the e-values of I —S = p(S) are p(A\) =1— A
where A is an e-value of S. From (a) we know that A is pure imaginary, thus 1 — A # 0, hence no
e-value of I — S equals 0, i.e., I — S is nonsingular. The same argument shows I+ .5 is also nonsingular.
(c) Recall (AB)* = B*A*, (A+ B)* = A* + B*, I* = I, and if A is nonsingular that (4*)~! = (4A71)*.
Then

QQ* = (I-8)'I+9)[I—-8)"YI+9)

) (I +9)]
= (=87 U+ + 5[ -5
= (=87 I+ +5)I -5
= I-8)7'I+T-8)I+95)"
= I-8)'I-8)T+8)I+58)"", since (I —5)and (I+S) commute
= IxI=1

Thus Q* = Q~ !, showing Q is unitary.



6. Let A= < _i _; > and b = ( (1) > Solve Az = b (by hand) using the spectral decomposition of A.

Show all details.

ANS: AT = A = A is symmetric, hence diagonalizable by a orthogonal matrix, A = UDU~! =
UDUT, where D = diag(A1, A2). First we need to find the e-values and a corresponding unit e-vector
for each, i.e., the e-pairs (A1, u1) and (Ag, uz).

- A -1

2
det(A—M\I) = det( 1 9.1

> =2-A)?— (12 =2N-D4+3=A-1A=3) =\ =1,y = 3.

1 -1

A=1: (A—1Du=0 = <_1 .

)u:O = u=(1,1)7 = ulzﬁ:(l/\/i,l/\/i)?

-1 -1

A=3: (A-3Nu=0 = <_1 1

>u:0 = u=(-1,1)T = uy= ﬁ = (-1/v2,1/V2)".

So we have Au; = Ajuq and Aug = A\gug where both u; and ug are unit vectors. Thus, U = [ug|uz], or

(VB S g V2 N2
o=(ipvz ) = vt == (L0 ve)

Then,

- (4 YD) () () =)

giving the coordinates of b in the e-basis {uy,us}. So finally,

e () 2= () () - ()

In other words, = A~'b = (UDUT)"'b = UD~1(UTb).



7. Write a MATLAB function M-file trilu to find the LU decomposition as discussed in class, A = LU,
for the tridiagonal m x m matrix A,

aq C1 1 a1 C
by az ¢ B2 1 az  Co

Cm—1 . - - Cm—1
b am Bm 1 Om

The function should output the two m-vectors o and (3, and its first line should read:
function [alpha,betal] = trilu(a,b,c)

Next, write an M-file function trilu_solve to solve Ax = f, which takes the vectors «, 3, ¢ and f and
returns z. Its first line should read:

function x = trilu_solve(alpha,beta,c,f)

Test your code with the 5 x 5 system with a; = 2, b; = —1, ¢; = —1, and RHS f = [1,0,0,0,1]". The
exact solution is clearly # = [1,1,1,1,1]7. Use MATLAB’s diary command to save your MATLAB
session output showing that your code works properly. Include a copy of both codes.

ANS: First, let’s test the code:

>> a=2%ones(5,1);

>> b=-ones(5,1); b(1)=0;

>> c=-ones(5,1); c(5)=0;

>> f=[1 00 0 1]’;

>> [alpha,betal=trilu(a,b,c);

2.0000 0
1.5000 -0.5000
1.3333 -0.6667
1.2500 -0.7500
1.2000 -0.8000

>> x=trilu_solve(alpha,beta,c,f);

>> X

X:
1.0000
1.0000
1.0000
1.0000
1.0000



Here are the codes:

function [alpha,betal=trilu(a,b,c)

/A

%TRILU - Reduced LU decomposition of tridiagonal matrix.
b

m=length(a);

alpha=zeros(m,1);

beta=zeros(m,1);

alpha(1)=a(l);

for k=2:m
beta(k)=b(k)/alpha(k-1);
alpha(k)=a(k)-beta(k)*c(k-1);

end

function x=trilu_solve(alpha,beta,c,f)

h

%TRILU_SOLVE - solve tridiagonal system using decompostion
yA produced by TRILU.

b

m=length(c);

x=zeros(m,1);

z=zeros(m, 1) ;

% solve Lz=f by forward substitution
z(1)=£(1);
for k=2:m
z(k)=f (k) -beta(k) *z(k-1);
end

% solve Ux=z by backward substitution

x(m)=z(m) /alpha(m) ;

for k=m-1:-1:1
x(k)=(z(k)-c(k)*x(k+1)) /alpha(k);

end



8. Consider the 2-point BVP
{ —y" + (422 4 2)y = 22(1 + 22?)

y(0) =1, y(1) =1+e

Show y(z) = z + €® is the exact solution. Write a MATLAB function M-file to solve the problem
using the 2nd order centered FD scheme we discussed in class, —Dy D_u; + c;u; = f;. Use meshsize
h =1/2P where p is a positive integer. Your code should use your M-files trilu and trilu_solve. For
p =1 : 4, plot the exact solution (y(x) vs. z) and the numerical solution (u; vs. x;), including the
boundary points. The 4 plots should appear separately in one figure, with axes labeled and a title for
each indicating p. Investigate subplot in MATLAB for how to have multiple plots in a single figure
window. For p =1 : 20 present a table with the following data - column 1: h; column 2: |lup, — ypl|o;
column 3: |lup — ynll./h? column 4: cpu time; column 5: (cpu time)/m, where h = 1/(m + 1).
Discuss the trends in each column. Include a copy of your code.

ANS: First we check y(z) is the solution. The boundary conditions are easily seen to be satisfied,
and

Y =1+2ze" =y’ = (43:24—2)6“":2 = —y (422 4+2)y = —(4:E2+2)ex2—|—(43:2+2)(3:+er) = 22(14-22?).

Here is the code for the first part of the problem. A listing of the M-file bup_solve appears at the end
of the solution of this problem. It requires the M-files trilu and trilu_solve from problem 7.

xx=0:0.01:1;xx=xx";

yy=xx+exp (xx."2); % exact solution
c=4%x"2+427; f=22%x*x(1+2%x"2)’; Y functions for BVP
clf;

for p=1:4

[x,ul=bvp_solve(2°p-1,0,1,1,1+exp(1) ,c,f);

subplot(2,2,p) ,plot(xx,yy,x,u,’*’),grid

axis(’tight’) ,xlabel(’x’),ylabel(’y’),title([’p=’ ,num2str(p)])
end

Here is a general BVP solver for our problem:

function [xv,uv,stime]=bvp_solve(m,a,b,ya,yb,c,f)
b
h=(b-a)/(m+1);
xv=a:h:b; xv=xv’;
fv=zeros(m+2,1);
cv=zeros (m+2,1);
for i=1:m+2

x=xv(i);

cv(i)=eval(c);

fv(i)=eval(f);
end
pA
av=(2*ones(m, 1) +hxh*cv(2:m+1) )/ (h*h);
bv=-ones(m,1)/(h*h); bv(1)=0;
cv=-ones(m,1)/(h*h); cv(m)=0;



fv=fv(2:m+1);

fv(1)=fv(1)+ya/(h*h); fv(m)=fv(m)+yb/(h*h);
b

tic;

[alpha,betal=trilu(av,bv,cv);
uv=trilu_solve(alpha,beta,cv,fv);
stime=toc;

uv=[ya;uv;ybl;

Here is the graph.
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Next we solve the BVP with m =2P — 1 for p = 1,...,20. Here is the code:

c=74%x"2+27; f=22%x*x(1+2%x"~2)’;
clf;
h=zeros(20,1);
m=zeros (20,1);
times=zeros(20,1);
err_inf=zeros(20,1);
for p=1:20
[x,u,stime]=bvp_solve(2°p-1,0,1,1,1+exp(1),c,f);
h(p)=1/(2"p);
m(p)=2"p-1;
times(p)=stime;



y=x+exp(x."2);
err_inf (p)=max(abs(u-y));

end

disp(’ )

disp(’ h inf_err err/h~2 cputime cputime/m )
disp(’ —=m—mmmmmmm e )
disp(’ )

disp([h err_inf err_inf./h."2 times times./m])

The results are:

h inf_err err/h"2 cputime cputime/m
5.0000e-01 6.8077e-02 2.7231e-01 7.5100e-04 7.5100e-04
2.5000e-01 2.0012e-02  3.2019e-01 1.8200e-04 6.0667e-05
1.2500e-01 5.4792e-03 3.5067e-01 1.5800e-04 2.2571e-05
6.2500e-02 1.3851e-03  3.5458e-01 1.4500e-04 9.6667e-06
3.1250e-02  3.4860e-04  3.5697e-01 2.2400e-04  7.2258e-06
1.5625e-02 8.7213e-05 3.5722e-01 2.5800e-04 4.0952e-06
7.8125e-03 2.1807e-05 3.5729e-01 3.8300e-04 3.0157e-06
3.9062e-03 5.4521e-06  3.5731e-01 6.4600e-04  2.5333e-06
1.9531e-03 1.3630e-06 3.5731e-01 1.1700e-03 2.2896e-06
9.7656e-04  3.4076e-07 3.5731e-01 2.2510e-03  2.2004e-06
4.8828e-04 8.5188e-08 3.5730e-01 5.2390e-03  2.5594e-06
2.4414e-04 2.1303e-08 3.5740e-01 8.6270e-03 2.1067e-06
1.2207e-04 5.3250e-09 3.5736e-01 1.7026e-02 2.0786e-06
6.1035e-05 5.2771e-09 1.4166e+00 3.4211e-02 2.0882e-06
3.0518e-05 7.8709e-10 8.4513e-01 6.7547e-02 2.0614e-06
1.5259e-05 2.9901e-10 1.2842e+00 1.3695e-01 2.0897e-06
7.6294e-06 1.4168e-09  2.4340e+01 2.6656e-01 2.0337e-06
3.8147e-06 3.9363e-08 2.7050e+03 5.3246e-01 2.0312e-06
1.9073e-06  3.6684e-07 1.0084e+05 1.0608e+00 2.0234e-06
9.5367e-07 8.2977e-07  9.1234e+05 2.1497e+00 2.0501e-06

We can see from the err/h? column that the expected O(h?) error is observed until h ~ 1.22707e — 4
since err/h? rapidly approaches a constant. But then we lose accuracy. Why? Roundoff error begins
to dominate! Thus, while theoretically as h — 0 we have convergence, floating point errors in the form
of roundoff error eventually dominates! Note, however, that the cputime stills scales linearly with m
as evidenced by the cputime/m column.

Note: I have only timed the linear solver portion of the code.



