
HW #1 Solutions: M552 Spring 2006

1. (1.4-Trefethen & Bau) Let f1, . . . , f8 be a set of functions defined on the interval [1, 8] with the property
that for any numbers d1, . . . , d8, there exists a set of coefficients c1, . . . , c8 such that

8
∑

j=1

cjfj(i) = di, i = 1, . . . , 8.

(a) Show by appealing to the theorems of this lecture that d1, . . . , d8 determine c1, . . . , c8 uniquely.

(b) Let A be the 8 × 8 matrix representing the linear mapping from data d1, . . . , d8 to coefficients
c1, . . . , c8. What is the i, j entry of A−1?

ANS:

(a) The expression is equivalent to the 8 × 8 system

Fc = d, Fij = fj(i), c = [c1, . . . , c8]
T , d = [d1, . . . , d8]

T .

To say there exists a c given any d is equivalent to saying that the columns of F span R
8 (or C

8). But
F is 8 × 8, so rank(F ) = 8, and by Theorem 1.3 F is invertible. Hence c = F−1d, i.e., c is uniquely

determined.

(b) We have Ad = c or d = A−1c. But form (a), d = Fc, so we must have A−1 = F . Therefore,
A−1

ij = Fij = fj(i).



2. (2.2-Trefethen & Bau) The Pythagorean theorem asserts hat for a set of n orthogonal vectors {xi},
∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

2

=

n
∑

i=1

‖xi‖2.

(a) Prove this in the case n = 2 by an explicit computation of ‖x1 + x2‖2.

(b) Show that this computation also establishes the general case, by induction.

ANS:

(a) A direct calculation using ‖x‖2 = x∗x for a general vector x shows:

‖x1 + x2‖2 = (x1 + x2)
∗(x1 + x2)

= x1
∗x1 + x1

∗x2 + x2
∗x1 + x2

∗x2

= x1
∗x1 + 0 + 0 + x2

∗x2

= ‖x1‖2 + ‖x2‖2.

(b) Above we established the result for n=2. Assume (the induction hypothesis) that the result is true

for n − 1, i.e.,
∥

∥

∥

∑n−1

i=1
xi

∥

∥

∥

2

=
∑n−1

i=1
‖xi‖2 for n − 1 mutually orthogonal vectors x1, . . . , xn−1. Then

given n mutually orthogonal vectors x1, . . . , xn, let x =
∑n−1

i=1
xi and y = xn. Since xn is orthogonal

to each xi for i = 1, . . . , n − 1, by linearity of the inner product we have x∗y = 0. Then applying (a)
to x and y gives

‖x + y‖2 = ‖x‖2 + ‖y‖2 =
∥

∥

∥

n−1
∑

i=1

xi

∥

∥

∥

2

+ ‖xn‖2,

and applying the induction hypothesis to the term
∥

∥

∥

∑n−1

i=1
xi

∥

∥

∥

2

gives the desired result.



3. (2.3-Trefethen & Bau) Let A ∈ C
m×m be hermitian. An eigenvector of A is a nonzero vector x ∈ C

m

such that Ax = λx for some λ ∈ C, the corresponding eigenvalue.

(a) Prove that all eigenvalues are real.

(b) Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x and y are
orthogonal.

ANS: Suppose Ax = λxx and Ay = λyy, where A∗ = A, x 6= 0 and y 6= 0, and λx 6= λy.

(a) Ax = λxx ⇒ x∗Ax = x∗(λxx) = λxx∗x ⇒ λx =
x∗Ax

x∗x
, noting that x∗x 6= 0.

⇒ λx =
x∗Ax

x∗x
=

(x∗Ax)∗

(x∗x)∗
=

x∗A∗x

x∗x
=

x∗Ax

x∗x
= λx ⇒ λx = λx ⇒ λx ∈ R.

(b) We have
(λx − λy)x

∗y = λxx∗y − λyx
∗y

= (λxx)∗y − x∗(λyy)

= (λxx)∗y − x∗(λyy) since λx ∈ R

= (Ax)∗y − x∗(Ay)

= x∗A∗y − x∗Ay

= x∗Ay − x∗Ay since A∗ = A

= 0

⇒ x∗y = 0 since λx 6= λy ⇒ x and y are orthogonal.



4. (2.4-Trefethen & Bau) What can be said about the eigenvalues of a unitary matrix?

ANS: Suppose Q is unitary (Q−1 = Q∗) and (λ, x) is an e-pair, i.e. Qx = λx. Then for any vector y

‖Qy‖ =
√

(Qy)∗Qy =
√

y∗Q∗Qy =
√

y∗(Q∗Q)y =
√

y∗y = ‖y‖
So multiplying any vector by Q preserves the length of the vector. Now let y = x. We have

‖x‖ = ‖Qx‖ = ‖λx‖ =
√

(λx)∗λx =
√

λλx∗x = |λ|‖x‖,

and ‖x‖ 6= 0 since x is an e-vector, so we must have |λ| = 1. Thus all the e-values of a unitary matrix
must lie on the unit circle in the complex plane.



5. (2.5-Trefethen & Bau) Let S ∈ C
m×m be skew-hermitian, i.e., S∗ = −S.

(a) Show by using Exercis 2.3 that the eigenvalues of S are pure imaginary.

(b) Show that I − S is nonsingular.

(c) Show that the matrix Q = (I − S)−1(I +S), known as the Cayley transform of S, is unitary. (This
is the matrix analogue of a linear fractional transformation (1 + s)/(1 − s), which maps the left half
os the complex s-plane conformally onto the unit disk.)

ANS: Suppose Sx = λx where S∗ = −S, x 6= 0.

(a) Sx = λx ⇒ x∗Sx = x∗(λx) = λx∗x ⇒ λ =
x∗Sx

x∗x
, noting that x∗x 6= 0.

⇒ λ =
x∗Sx

x∗x
=

(x∗Sx)∗

(x∗x)∗
=

x∗S∗x

x∗x
= −x∗Sx

x∗x
= −λ ⇒ λ = −λ,

that is, λ is pure imaginary.

(b) Suppose (λ, x) is an e-pair of S, and p(t) = antn +an−1t
n−1 + . . .+a1t+a0 is a polynomial. Then,

p(S)x = (anSn + an−1S
n−1 + . . . + a1S + a0I)x = (anλn + an−1λ

n−1 + . . . + a1λ + a0I)x = p(λ)x,

i.e., (p(λ), x) is an e-pair of p(S). Let p(t) = 1− t. Then the e-values of I −S = p(S) are p(λ) = 1−λ
where λ is an e-value of S. From (a) we know that λ is pure imaginary, thus 1 − λ 6= 0, hence no
e-value of I−S equals 0, i.e., I−S is nonsingular. The same argument shows I +S is also nonsingular.

(c) Recall (AB)∗ = B∗A∗, (A+B)∗ = A∗ +B∗, I∗ = I, and if A is nonsingular that (A∗)−1 = (A−1)∗.
Then

QQ∗ = (I − S)−1(I + S)[(I − S)−1(I + S)]∗

= (I − S)−1(I + S)(I + S)∗[(I − S)−1]∗

= (I − S)−1(I + S)(I + S∗)(I − S∗)−1

= (I − S)−1(I + S)(I − S)(I + S)−1

= (I − S)−1(I − S)(I + S)(I + S)−1, since (I − S) and (I + S) commute

= I ∗ I = I

Thus Q∗ = Q−1, showing Q is unitary.



6. Let A =

(

2 −1
−1 2

)

and b =

(

1
0

)

. Solve Ax = b (by hand) using the spectral decomposition of A.

Show all details.

ANS: AT = A ⇒ A is symmetric, hence diagonalizable by a orthogonal matrix, A = UDU−1 =
UDUT , where D = diag(λ1, λ2). First we need to find the e-values and a corresponding unit e-vector
for each, i.e., the e-pairs (λ1, u1) and (λ2, u2).

det(A−λI) = det

(

2 − λ −1
−1 2 − λ

)

= (2−λ)2−(−1)2 = λ2−4λ+3 = (λ−1)(λ−3) ⇒ λ1 = 1, λ2 = 3.

λ = 1 : (A − 1I)u = 0 ⇒
(

1 −1
−1 1

)

u = 0 ⇒ u = (1, 1)T ⇒ u1 =
u

‖u‖ = (1/
√

2, 1/
√

2)T .

λ = 3 : (A − 3I)u = 0 ⇒
(

−1 −1
−1 −1

)

u = 0 ⇒ u = (−1, 1)T ⇒ u2 =
u

‖u‖ = (−1/
√

2, 1/
√

2)T .

So we have Au1 = λ1u1 and Au2 = λ2u2 where both u1 and u2 are unit vectors. Thus, U = [u1|u2], or

U =

(

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)

⇒ U−1 = UT =

(

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)

.

Then,

U−1b = UT b =

(

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)(

1
0

)

=

(

1/
√

2

−1/
√

2

)

, or b =

(

1
0

)

=
1√
2
u1 +

−1√
2
u2,

giving the coordinates of b in the e-basis {u1, u2}. So finally,

x =
1

λ1

1√
2
u1 +

1

λ2

−1√
2
u2 =

1√
2

(

1/
√

2

1/
√

2

)

+
−1

3
√

2

(

−1/
√

2

1/
√

2

)

=

(

1/2
1/2

)

+

(

1/6
−1/6

)

=

(

2/3
1/3

)

.

In other words, x = A−1b = (UDUT )−1b = UD−1(UT b).



7. Write a MATLAB function M-file trilu to find the LU decomposition as discussed in class, A = LU ,
for the tridiagonal m × m matrix A,

A =

















a1 c1

b2 a2 c2

. . .
. . .

. . .
. . .

. . . cm−1

bm am

















=

















1
β2 1

. . .
. . .
. . .

. . .

βm 1

































α1 c1

α2 c2

. . .
. . .
. . . cm−1

αm

















= LU.

The function should output the two m-vectors α and β, and its first line should read:

function [alpha,beta] = trilu(a,b,c)

Next, write an M-file function trilu solve to solve Ax = f , which takes the vectors α, β, c and f and
returns x. Its first line should read:

function x = trilu_solve(alpha,beta,c,f)

Test your code with the 5 × 5 system with ai = 2, bi = −1, ci = −1, and RHS f = [1, 0, 0, 0, 1]T . The
exact solution is clearly x = [1, 1, 1, 1, 1]T . Use MATLAB’s diary command to save your MATLAB
session output showing that your code works properly. Include a copy of both codes.

ANS: First, let’s test the code:

>> a=2*ones(5,1);

>> b=-ones(5,1); b(1)=0;

>> c=-ones(5,1); c(5)=0;

>> f=[1 0 0 0 1]’;

>> [alpha,beta]=trilu(a,b,c);

alpha beta

----------------

2.0000 0

1.5000 -0.5000

1.3333 -0.6667

1.2500 -0.7500

1.2000 -0.8000

>> x=trilu_solve(alpha,beta,c,f);

>> x

x =

1.0000

1.0000

1.0000

1.0000

1.0000



Here are the codes:

function [alpha,beta]=trilu(a,b,c)

%

%TRILU - Reduced LU decomposition of tridiagonal matrix.

%

m=length(a);

alpha=zeros(m,1);

beta=zeros(m,1);

alpha(1)=a(1);

for k=2:m

beta(k)=b(k)/alpha(k-1);

alpha(k)=a(k)-beta(k)*c(k-1);

end

function x=trilu_solve(alpha,beta,c,f)

%

%TRILU_SOLVE - solve tridiagonal system using decompostion

% produced by TRILU.

%

m=length(c);

x=zeros(m,1);

z=zeros(m,1);

% solve Lz=f by forward substitution

z(1)=f(1);

for k=2:m

z(k)=f(k)-beta(k)*z(k-1);

end

% solve Ux=z by backward substitution

x(m)=z(m)/alpha(m);

for k=m-1:-1:1

x(k)=(z(k)-c(k)*x(k+1))/alpha(k);

end



8. Consider the 2-point BVP
{

−y′′ + (4x2 + 2)y = 2x(1 + 2x2)

y(0) = 1, y(1) = 1 + e

Show y(x) = x + ex2

is the exact solution. Write a MATLAB function M-file to solve the problem
using the 2nd order centered FD scheme we discussed in class, −D+D−ui + ciui = fi. Use meshsize
h = 1/2p, where p is a positive integer. Your code should use your M-files trilu and trilu solve. For
p = 1 : 4, plot the exact solution (y(x) vs. x) and the numerical solution (ui vs. xi), including the
boundary points. The 4 plots should appear separately in one figure, with axes labeled and a title for
each indicating p. Investigate subplot in MATLAB for how to have multiple plots in a single figure
window. For p = 1 : 20 present a table with the following data - column 1: h; column 2: ‖uh − yh‖∞;
column 3: ‖uh − yh‖∞/h2; column 4: cpu time; column 5: (cpu time)/m, where h = 1/(m + 1).
Discuss the trends in each column. Include a copy of your code.

ANS: First we check y(x) is the solution. The boundary conditions are easily seen to be satisfied,
and

y′ = 1+2xex2 ⇒ y′′ = (4x2+2)ex2 ⇒ −y′′+(4x2+2)y = −(4x2+2)ex2

+(4x2+2)(x+ex2

) = 2x(1+2x2).

Here is the code for the first part of the problem. A listing of the M-file bvp solve appears at the end
of the solution of this problem. It requires the M-files trilu and trilu solve from problem 7.

xx=0:0.01:1;xx=xx’;

yy=xx+exp(xx.^2); % exact solution

c=’4*x^2+2’; f=’2*x*(1+2*x^2)’; % functions for BVP

clf;

for p=1:4

[x,u]=bvp_solve(2^p-1,0,1,1,1+exp(1),c,f);

subplot(2,2,p),plot(xx,yy,x,u,’*’),grid

axis(’tight’),xlabel(’x’),ylabel(’y’),title([’p=’,num2str(p)])

end

Here is a general BVP solver for our problem:

function [xv,uv,stime]=bvp_solve(m,a,b,ya,yb,c,f)

%

h=(b-a)/(m+1);

xv=a:h:b; xv=xv’;

fv=zeros(m+2,1);

cv=zeros(m+2,1);

for i=1:m+2

x=xv(i);

cv(i)=eval(c);

fv(i)=eval(f);

end

%

av=(2*ones(m,1)+h*h*cv(2:m+1))/(h*h);

bv=-ones(m,1)/(h*h); bv(1)=0;

cv=-ones(m,1)/(h*h); cv(m)=0;



fv=fv(2:m+1);

fv(1)=fv(1)+ya/(h*h); fv(m)=fv(m)+yb/(h*h);

%

tic;

[alpha,beta]=trilu(av,bv,cv);

uv=trilu_solve(alpha,beta,cv,fv);

stime=toc;

uv=[ya;uv;yb];

Here is the graph.
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Next we solve the BVP with m = 2p − 1 for p = 1, . . . , 20. Here is the code:

c=’4*x^2+2’; f=’2*x*(1+2*x^2)’;

clf;

h=zeros(20,1);

m=zeros(20,1);

times=zeros(20,1);

err_inf=zeros(20,1);

for p=1:20

[x,u,stime]=bvp_solve(2^p-1,0,1,1,1+exp(1),c,f);

h(p)=1/(2^p);

m(p)=2^p-1;

times(p)=stime;



y=x+exp(x.^2);

err_inf(p)=max(abs(u-y));

end

disp(’ ’)

disp(’ h inf_err err/h^2 cputime cputime/m ’)

disp(’ ----------------------------------------------------------------’)

disp(’ ’)

disp([h err_inf err_inf./h.^2 times times./m])

The results are:

h inf_err err/h^2 cputime cputime/m

----------------------------------------------------------------

5.0000e-01 6.8077e-02 2.7231e-01 7.5100e-04 7.5100e-04

2.5000e-01 2.0012e-02 3.2019e-01 1.8200e-04 6.0667e-05

1.2500e-01 5.4792e-03 3.5067e-01 1.5800e-04 2.2571e-05

6.2500e-02 1.3851e-03 3.5458e-01 1.4500e-04 9.6667e-06

3.1250e-02 3.4860e-04 3.5697e-01 2.2400e-04 7.2258e-06

1.5625e-02 8.7213e-05 3.5722e-01 2.5800e-04 4.0952e-06

7.8125e-03 2.1807e-05 3.5729e-01 3.8300e-04 3.0157e-06

3.9062e-03 5.4521e-06 3.5731e-01 6.4600e-04 2.5333e-06

1.9531e-03 1.3630e-06 3.5731e-01 1.1700e-03 2.2896e-06

9.7656e-04 3.4076e-07 3.5731e-01 2.2510e-03 2.2004e-06

4.8828e-04 8.5188e-08 3.5730e-01 5.2390e-03 2.5594e-06

2.4414e-04 2.1303e-08 3.5740e-01 8.6270e-03 2.1067e-06

1.2207e-04 5.3250e-09 3.5736e-01 1.7026e-02 2.0786e-06

6.1035e-05 5.2771e-09 1.4166e+00 3.4211e-02 2.0882e-06

3.0518e-05 7.8709e-10 8.4513e-01 6.7547e-02 2.0614e-06

1.5259e-05 2.9901e-10 1.2842e+00 1.3695e-01 2.0897e-06

7.6294e-06 1.4168e-09 2.4340e+01 2.6656e-01 2.0337e-06

3.8147e-06 3.9363e-08 2.7050e+03 5.3246e-01 2.0312e-06

1.9073e-06 3.6684e-07 1.0084e+05 1.0608e+00 2.0234e-06

9.5367e-07 8.2977e-07 9.1234e+05 2.1497e+00 2.0501e-06

We can see from the err/h2 column that the expected O(h2) error is observed until h ≈ 1.22707e − 4
since err/h2 rapidly approaches a constant. But then we lose accuracy. Why? Roundoff error begins
to dominate! Thus, while theoretically as h → 0 we have convergence, floating point errors in the form
of roundoff error eventually dominates! Note, however, that the cputime stills scales linearly with m
as evidenced by the cputime/m column.

Note: I have only timed the linear solver portion of the code.


