Scientific Computation II

Spring 2020

Homework Set 5

Due Friday, 17 April 2020

1. Orthogonality of complex exponentials: Consider the complex exponential functions

· (n m m)

$$\phi_n(x) = e^{-i(\frac{n\pi x}{L})}$$
 for $-\infty < n < \infty$.

Show that

$$\langle \phi_n(x), \phi_m(x) \rangle = \int_{-L}^{L} \phi_n(x) \overline{\phi_m}(x) \, dx = \begin{cases} 0 & \text{if } n \neq m \\ 2L & \text{if } n = m \end{cases},$$

and thus the functions are mutually orthogonal.

2. Fourier Series and Orthogonality of Sines and Cosines: The Fourier series for $f \in L^2[-\pi, \pi]$, given by

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

is an expansion of the function f(x) in the basis of trigonometric functions

$$\{\phi_0(x), \phi_1(x), \phi_2(x), \phi_3(x), \phi_4(x), \ldots\} = \{1, \cos x, \sin x, \cos 2x, \sin 2x, \ldots\}$$

(a) Recall the inner product

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \ dx \,,$$

find an expression for $\langle \phi_n(x), \phi_m(x) \rangle$ for $m, n \ge 0$. In particular, show that the basis functions are mutually orthogonal by showing that for $n \ne m$ the inner product is zero.

- (b) Derive concise expressions for the a_k and b_k in Fourier series for f(x).
- 3. The method of undetermined coefficients was used to derived the 2^{nd} order centered finite difference approximation to both $u'(x_i)$ and $u''(x_i)$, given respectively by

$$(\widetilde{D}u)(x_j) = \frac{u_{j+1} - u_{j-1}}{2h}$$
, and $(D^2u)(x_j) = \frac{u_{j-1} - 2u_j + u_{j+1}}{h^2}$.

Here $u_j = u(x_j)$ and $u_{j\pm 1} = u(x_j \pm h)$ where $x_{j\pm 1} = x \pm h$.

(a) Show that the long stencil centered finite difference approximation to $u'(x_i)$,

$$(\widetilde{D}(1 - \frac{h^2}{6}D^2)u)(x_j) = \frac{u_{j-2} - 8u_{j-1} + 0u_j + 8u_{j+1} - u_{j+2}}{12h}$$

is an $O(h^4)$ approximation to $u'(x_j)$. Derive a concise formula for the $O(h^4)$ error term.

(b) We showed earlier in the term that $\widetilde{D} = \frac{d}{dx} + O(h^2)$. A more careful analysis gives

$$\widetilde{D} = \frac{d}{dx} + \frac{h^2}{6} \frac{d^3}{dx^3} + O(h^4)$$

Use this expression to both (1) derive the operator form of the long stencil approximation $\widetilde{D}(1-\frac{h^2}{6}D^2)$, and (2) in doing so show that it is indeed an $O(h^4)$ approximation to $\frac{d}{dx}$.

- (c) Use the long stencil formula to approximate u'(1), where $u(x) = e^x$, for $h = 2^{-N}$ for N = 2:10. Form a table with columns giving h, the approximation, absolute error and absolute error divided by h^4 . For each indicate to which values they are converging. Finally, verify that the last column appears to be converging to a value derived using the error term.
- 4. Consider the 2-point BVP with Neumann BCs,

$$\begin{cases} -u'' + u = f \\ u'(0) = u'(1) = 0 \end{cases}$$

Let $u(x) = x^2(x-1)^2 e^x$ be the solution, from which you can derive f(x).

(a) Write a MATLAB script to solve the problem by the FFT method, using the *Discrete* Cosine Transform as implemented by dct.m applied to the **2nd** order centered FD scheme, assuming $\sigma > 0$ is a **constant**,

$$-D^2 v_i + \sigma v_i = f_i$$

Assume a meshsize $h = 1/2^p$, where p is a positive integer. For p = 1 : 4, plot the exact solution (u(x) vs. x) and the numerical solution $(v_i \text{ vs. } x_i)$, including the boundary points. The 4 plots should appear separately in one figure, with axes labeled and a title for each indicating p. Investigate **subplot** in MATLAB for how to have multiple plots in a single figure window. Include a copy of your code.

(b) For p = 1: 10 present a table with the following data - column 1: h; column 2: $||u_h - v_h||_{\infty}$; column 3: $||u_h - v_h||_{\infty}/h^2$, where h = 1/n. Discuss the trends in each column. Include a copy of your code.