
Math 552 Scientific Computing II Spring 2020

SOLUTIONS: Homework Set 2

1. (Integral Mean Value Theorem) Assume the g ∈ C[a, b] and that f is an integrable function
that is either nonnegative or nonpositive throughout the interval [a, b]. Then there exists a
point η ∈ [a, b] such that ∫ b

a
g(x)f(x) dx = g(η)

∫ b

a
f(x) dx .

ANS: Assume f ≥ 0. The proof for f ≤ 0 is similar. Since [a, b] is a closed and bounded
subset of R – hence compact – and g(x) is continuous, there exists constants m,M such that
m ≤ g(x) ≤M for all x ∈ [a, b] and

mI ≤
∫ b

a
g(x)f(x) ≤MI .

where I =
∫ b
a f(x) dx. If I = 0 then f ≡ 0 and the result is true for any ξ ∈ [a, b]. Otherwise,

I > 0 and

m ≤
∫ b
a g(x)f(x) dx

I
≤M .

Since g(x) is continuous it attains all values in [m,M ] for some x ∈ [a, b]. Then there must
be at least one point in [a, b], call it ξ, where

g(ξ) =

∫ b
a g(x)f(x) dx

I
,

or
∫ b
a g(x)f(x) dx = g(ξ)I = g(ξ)

∫ b
a f(x) dx. #
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2. Suppose that A is n × n symmetric matrix, i.e. AT = A. A is called positive definite if
xTAx > 0 for all x 6= 0 in Rn. Show that the following matrices are positive definite:

(a)

[
2 1
1 2

]
(b)

[
2 −1
−1 2

]
(b)

 2 −1 0
−1 2 −1

0 −1 2


ANS: It is clear that each of the matrices above is symmetric. We are left to show that
xTAx > 0 for all x 6= 0.

(a) xTAx =
[
x1 x2

] [ 2 1
1 2

] [
x1
x2

]
=
[
x1 x2

] [ 2x1 + x2
x1 + 2x2

]
= 2x21 + 2x1x2 + 2x22.

Rewriting this, we have x21 + x22 + x21 + 2x1x2 + x22 = x21 + x22 + (x1 + x2)
2 > 0 since x 6= 0.

(b) xTAx =
[
x1 x2

] [ 2 −1
−1 2

] [
x1
x2

]
=
[
x1 x2

] [ 2x1 − x2
−x1 + 2x2

]
= 2x21−2x1x2+2x22.

Rewriting this, we have x21 + x22 + x21 − 2x1x2 + x22 = x21 + x22 + (x1 − x2)2 > 0 since x 6= 0.

(c) xTAx =
[
x1 x2 x3

]  2 −1 0
−1 2 −1

0 −1 2

 x1
x2
x3

 =
[
x1 x2 x3

]  2x1 − x2
−x1 + 2x2 − x3
−x2 + 2x3

 =

2x21 − 2x1x2 + 2x22 − 2x2x3 + 2x23 = x21 + (x1 − x2)2 + (x2 − x3)2 + x23 > 0 since x 6= 0.
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3. Given a function f(x), use Taylor approximations to show that a 2nd order one-sided approx-
imation to f ′(xj) is given by

f ′(xj) ≈
−3fj + 4fj+1 − fj+2

2h
.

Here fj =f(xj), fj+1=f(xj +h), and fj+2=f(xj +2h). What is the precise form of the error
term? Using the formula approximate f ′(0) where f(x) = ex for h = 2−N for N = 1 : 12.
Form a table with columns giving h, the approximation, absolute error and absolute error
divided by h2. For each indicate to which values they are converging. Finally, verify that the
last column appears to be converging to a value derived using the error term.

ANS: Expanding each term at x = xj gives

−3

2h
fj =

−3

2h
[fj ]

4

2h
fj+1 =

4

2h
[fj + hf ′j +

h2

2
f ′′j +

h3

6
f ′′′(ξ1)]

−1

2h
fj+2 =

−1

2h
[fj + 2hf ′j +

(2h)2

2
f ′′j +

(2h)3

6
f ′′′(ξ2)] ,

where ξ1 ∈ (xj , xj+1) and ξ2 ∈ (xj , xj+2). Summing each column gives

−3 + 4− 1

2h
fj = 0 , (

4

2h
h− 1

2h
2h)f ′j = f ′j , (

4

2h

h2

2
− 1

2h

(2h)2

2
)f ′′j = 0 .

So we indeed have an approximation to f ′(xj). What is the error term? Well,

4

2h

h3

6
f ′′′(ξ1)−

1

2h

(2h)3

6
f ′′′(ξ2) =

h2

3
f ′′′(ξ1)−

2h2

3
f ′′′(ξ2) = −h

2

3
f ′′′(η) ,

where η ∈ (xj , xj+2), so we have

f ′(xj) ≈
−3fj + 4fj+1 − fj+2

2h
+O(h2) .

To approximate f ′(0) where f(x) = ex use the following MATLAB code

h=[1/2 1/8 1/32 1/128 1/512]’;

fp= (-3*exp(0)+4*exp(0+h)-exp(0+2*h))./ (2*h);

err=abs(fp-1);

errdh2 = err ./ (h.^2);

format short e

disp(’ ’)

disp(’ h fp err err/h^2 ’)

disp(’ ----------------------------------------------------’)

disp([h fp err errdh2])
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The result is

h fp err err/h^2

----------------------------------------------------

5.0000e-01 8.7660e-01 1.2340e-01 4.9359e-01

1.2500e-01 9.9427e-01 5.7264e-03 3.6649e-01

3.1250e-02 9.9967e-01 3.3326e-04 3.4126e-01

7.8125e-03 9.9998e-01 2.0465e-05 3.3529e-01

1.9531e-03 1.0000e+00 1.2734e-06 3.3382e-01

We see that column 1 is converging to 0, column 2 to 1 = f ′(0), column 3 to 0, and column
4 to 1/3. The last result follows from the error term above:

1

3
f ′′′(0) =

1

3
e0 =

1

3
.
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4. The method of undetermined coefficients was used to derived the 2nd order centered finite
difference approximation to both f ′(xj) and f ′′(xj), given respectively by

(Df)(xj) =
fj+1 − fj−1

2h
, (D2f)(xj) = D−(D+f)(xj) = D+(D−f)(xj) =

fj−1 − 2fj + fj+1

h2

Here fj =f(xj) and fj±1=f(xj ± h) where xj±1=x± h. Derive the same approximations as
follows:

(a) Find the Lagrange form of the polynomial P2(x) of degree ≤ 2 such that P2(xj) = fj
and P2(xj±1) = fj±1.

(b) Compute P ′2(x) and show that P ′2(xj) = (Df)(xj).

(c) Compute P ′′2 (x) and show that P ′′2 (xj) = (D2f)(xj).

ANS: (a) P2(x) is given by

P2(x) =
(x− xj)(x− xj+1)

(xj−1 − xj)(xj−1 − xj+1)
fj−1 +

(x− xj−1)(x− xj+1)

(xj − xj−1)(xj − xj+1)
fj

+
(x− xj−1)(x− xj)

(xj+1 − xj−1)(xj+1 − xj)
fj+1

=
(x− xj)(x− xj+1)

2h2
fj−1 −

(x− xj−1)(x− xj+1)

h2
fj +

(x− xj−1)(x− xj)
2h2

fj+1

(b) P ′2(x) =
2x− (xj + xj+1)

2h2
fj−1 −

2x− (xj−1 + xj+1)

h2
fj +

2x− (xj−1 + xj)

2h2
fj+1.

Then

P ′2(xj) =
xj − xj+1

2h2
fj−1 −

2xj − (xj−1 + xj+1)

h2
fj +

xj − xj−1
2h2

fj+1

=
−h
2h2

fj−1 −
(xj − xj−1)− (xj − xj+1)

h2
fj +

h

2h2
fj+1

= − 1

2h
fj−1 −

h− h
h2

fj +
1

2h
fj+1 =

fj+1 − fj−1
2h

= (Df)(xj)

(c) P ′′2 (x) =
1

h2
fj−1 −

2

h2
fj +

1

h2
fj+1 =

fj−1 − 2fj + fj+1

h2
, a constant, independent of x. So

we see that P ′′2 (xj) = (D2f)(xj).
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5. (Method of Undetermined Coefficients) We derived Simpson’s rule to approximate I(f) =∫ b
a f(x) dx,

S =
h

3
(f(a) + 4f(

a+ b

2
) + f(b)), h = (b− a)/2 ,

by interpolating f(x) at the points x = a, (a+b)
2 , b, then integrating the interpolant over [a, b].

The approximation satisfies

I(f) = S − 1

90
h5f (4)(η) , where η ∈ (a, b) .

Note that the term f (4)(η) implies Simpson’s rule is exact if f(x) is a polynomial of degree
<= 3, i.e., Pn(x) for 0 ≤ n ≤ 3.

(a) Use the method of undetermined coefficients to derive S. Assume that

S = c1f(a) + c2f(
a+ b

2
) + c3f(b) ,

where the coefficients c1, c2, and c3 are to be determined. Evaluate the expression using
the three functions f(x) = 1, f(x) = x and f(x) = x2, and for each compute the exact
answer. Then derive and solve a 3× 3 linear system for the coefficients.

(b) Now use S to approximate I(f) with f(x) = x3. Is the answer exact? Discuss.

ANS: (a) First, applying Is(f) to each of the three functions gives

I(1) = Is(1) = b− a = c1 ∗ 1 + c2 ∗ 1 + c3 ∗ 1 ,

I(x) = Is(x) = (b2 − a2)/2 = c1 ∗ a+ c2 ∗ a+b
2 + c3 ∗ b ,

I(x2) = Is(x
2) = (b3 − a3)/3 = c1 ∗ a2 + c2 ∗ (a+b

2 )
2

+ c3 ∗ b2 .

In matrix form we have 1 1 1

a a+b
2 b

a2 (a+b
2 )

2
b2

 c1
c2
c3

 =

 b− a
(b2 − a2)/2
(b3 − a3)/3

 .
The determinant of the coefficient matrix is(

(a+ b)

2
b2 −

(
a+ b

2

)2

b

)
− (ab2 − a2b) +

(
a

(
a+ b

2

)2

− a2 (a+ b)

2

)
= (b− a)3/4 ,

so if a 6= b then the matrix is invertible, and there is a unique solution to the system. A
simple check shows that indeed [c1 c2 c3]

T = [h/3 4h/3 h/3]T is the solution!

(b) For f(x) = x3 we have (check)

Is(x
3) =

h

3

(
a3 + 4

(
a+ b

2

)3

+ b3

)
=

(b− a)

6

(
a3 + 4

(
a+ b

2

)3

+ b3

)
= (b4 − a4)/4 ,

which is exact! This is expected since the error term for Is(f) involves the fourth derivative
of f(x), which for x3 is identically zero.
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6. Write a MATLAB function M-file trilu to find the LU decomposition as discussed in class,
A = LU , for the tridiagonal n× n matrix A,

A =


a1 c1
b2 a2 c2

. . .
. . .

. . .
. . .

. . . cn−1
bn an

 =


1
β2 1

. . .
. . .
. . .

. . .

βn 1




α1 c1

α2 c2
. . .

. . .

. . . cn−1
αn

 = LU.

The function should output the two n-vectors α and β, and its first line should read:

function [alpha,beta] = trilu(a,b,c)

Next, write an M-file function trilu solve to solve Ax = f , which takes the vectors α, β, c
and f and returns x. Its first line should read:

function x = trilu_solve(alpha,beta,c,f)

Test your code with the 5×5 system with ai = 2, bi = −1, ci = −1, and RHS f = [1, 0, 0, 0, 1]T .
The exact solution is clearly x = [1, 1, 1, 1, 1]T . Use MATLAB’s diary command to save your
MATLAB session output showing that your code works properly. Include a copy of both
codes.

ANS: First, let’s test the code:

>> a=2*ones(5,1);

>> b=-ones(5,1); b(1)=0;

>> c=-ones(5,1); c(5)=0;

>> f=[1 0 0 0 1]’;

>> [alpha,beta]=trilu(a,b,c);

alpha beta

----------------

2.0000 0

1.5000 -0.5000

1.3333 -0.6667

1.2500 -0.7500

1.2000 -0.8000

>> x=trilu_solve(alpha,beta,c,f);

>> x

x =

1.0000

1.0000

1.0000

1.0000

1.0000
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Here are the codes:

function [alpha,beta] = trilu(a,b,c)

%

%TRILU - Reduced LU decomposition of tridiagonal matrix.

%

n = length(a); alpha = zeros(n,1); beta = zeros(n,1);

alpha(1) = a(1);

for k = 2:n

beta(k) = b(k)/alpha(k-1);

alpha(k) = a(k)-beta(k)*c(k-1);

end

function x = trilu_solve(alpha,beta,c,f)

%

%TRILU_SOLVE - solve tridiagonal system using decompostion

% produced by TRILU.

%

n = length(c); x = zeros(n,1); z = zeros(n,1);

% solve Lz=f by forward substitution

z(1) = f(1);

for k = 2:n

z(k) = f(k)-beta(k)*z(k-1);

end

% solve Ux=z by backward substitution

x(n) = z(n)/alpha(n);

for k = n-1:-1:1

x(k) = (z(k)-c(k)*x(k+1))/alpha(k);

end
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