
Math 552 Introduction to Scientific Computing Spring 2020

SOLUTIONS: Homework Set 1

1. (A result concerning Lagrange polynomials) Consider a set {x0, x1, . . . , xn} of n+1 distinct
points, and the corresponding Lagrange basis functions {l0(x), l1(x), . . . , ln(x)}. Prove that

n∑
k=0

lk(x) = 1 .

(Hint - Consider interpolating the function f(x) = 1, a polynomial of degree 0, at the
points {x0, x1, . . . , xn}.)
ANS: As the hint suggests, let f(x) = 1. The Lagrange form of the polynomial pn(x) of
degree less than or equal to n that interpolates f(x) at the n+ 1 points {xi}ni=0 is

pn(x) =
n∑
k=0

f(xk)lk(x) =
n∑
k=0

1 ∗ lk(x) =
n∑
k=0

lk(x) .

Now consider the polynomial p(x) = pn(x) − 1, which has degree ≤ n. But p(xi) =
pn(xi)−1 = 0 since pn(x) interpolates f(x) = 1 at the points xi, i = 0, . . . , n. This implies
that p(x) has at least n+ 1 roots. Since deg(p(x)) ≤ n, by the Fundamental Theorem of
Algebra it can have at most n roots unless it is the zero polynomial, so we have p(x) ≡ 0
In other words

pn(x) =
n∑
k=0

lk(x) = 1 ,

for every value of x.



2. Let f(x) = 1/x. Take x0 = 2, x1 = 3, x2 = 4.

(a) Find the Lagrange form and standard form of the interpolating polynomial P2(x)
of f(x) at the given interpolation points. Expand out the Lagrange form to verify
that it agrees with the standard form of P2(x) that you found. Also, verify that
P2(xi) = f(xi) for 0 ≤ i ≤ 2.

(b) Use the theorem stated in class to find an upper bound for the error

||f − P2||∞ = max
2≤x≤4

|f(x)− P2(x)| .

(c) Find ||f − P2||∞ to at least 5 decimal places of accuracy.

ANS:

(a) The Lagrange form is

P2(x) =
2∑

k=0

f(xk)lk(x)

= f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

+ f(x2)
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

=
1

2

(x− 3)(x− 4)

(2− 3)(2− 4)
+

1

3

(x− 2)(x− 4)

(3− 2)(3− 4)
+

1

4

(x− 2)(x− 3)

(4− 2)(4− 3)
.

For the standard form we simplify the above expression, giving

P2(x) =
1

4
(x− 3)(x− 4)− 1

3
(x− 2)(x− 4) +

1

8
(x− 2)(x− 3)

=
1

4
(x2 − 7x+ 12)− 1

3
(x2 − 6x+ 8) +

1

8
(x2 − 5x+ 6)

=
1

24
x2 − 3

8
x+

13

12
.

Checking

P2(x0) = P2(2) =
1

24
∗ 22 − 3

8
∗ 2 +

13

12
=

1

6
− 3

4
+

13

12
=

1

2
= f(x0) ,

P2(x1) = P2(3) =
1

24
∗ 32 − 3

8
∗ 3 +

13

12
=

3

8
− 9

8
+

13

12
=

8

24
=

1

3
= f(x1) ,

P2(x2) = P2(4) =
1

24
∗ 42 − 3

8
∗ 4 +

13

12
=

2

3
− 3

2
+

13

12
=

3

12
=

1

4
= f(x2) .

Then P2(x) = 1/2− 1/6(x− 2) + 1/24(x− 2)(x− 3) which when expanded gives the
same polynomial as above.

(b) Using the error expression for polynomial interpolation, for each 2 ≤ x ≤ 4

|f(x)− P2(x)| = |f
3(ξ)|
3!

∣∣∣∣∣
2∏

k=0

(x− xk)

∣∣∣∣∣ ,



for some ξ in [2, 4]. First we bound
∣∣∣∏2

k=0(x− xk)
∣∣∣ = |(x− 2)(x− 3)(x− 4)|. Let

g(x) = (x−2)(x−3)(x−4), then g′(x) = 3x2−18x+26, whose roots are x = 3±1/
√

3.
Plugging each into g(x) and taking the absolute value gives the same value, which
is approximately 0.38490017945975, so I’ll use 0.4 = 2/5 as a bound for |g(x)| over
[2, 4]. Then

||f − P2||∞ = max
2≤x≤4

|f(x)−P2(x)| ≤ 1

6
max
2≤ξ≤4

|f3(ξ)|∗2

5
=

1

15
max
2≤ξ≤4

∣∣∣∣ 6

x4

∣∣∣∣ =
1

15

6

16
=

1

40
,

so an upper bound on the error is 1/40 = 0.025.

(c) This is a standard calculus problem. Let g(x) = f(x)−P2(x) =
1

x
−
(

1

24
x2 − 3

8
x+

13

12

)
.

To find the maximum, we have to check where g′(x) = 0 in [2, 4], and the endpoints

x = 2, 4. We have g′(x) = − 1

x2
− 1

12
x+

3

8
= −2x3 − 9x2 + 24

24x2
. Then g′(x) = 0 iff

2x3 − 9x2 + 24 = 0. Here is a plot of 2x3 − 9x2 + 24 over [2, 4]: There are clearly
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-4

-2

0

2

4

6

8
f = 2x3-9x2+24

two points in [2, 4] at which 2x3 − 9x2 + 24 = 0. How do we find them? Well, they
are roots of a nonlinear equation. How about Newton’s method! Choosing the intial
guess x0 for each root using the graph,

>> r1 = mynewton(’2*x^3-9*x^2+24’,’6*x^2-18*x’,2.4,1e-14,50);

x_n f(x_n)

------------------------------------------------

2.400000000000000e+00 -1.919999999999966e-01

2.377777777777778e+00 2.644718792858214e-03

2.378075705879444e+00 4.675283058475088e-07

2.378075758565229e+00 1.421085471520200e-14

2.378075758565231e+00 -3.552713678800501e-15

>> r2 = mynewton(’2*x^3-9*x^2+24’,’6*x^2-18*x’,3.6,1e-14,50);



x_n f(x_n)

------------------------------------------------

3.600000000000000e+00 6.719999999999970e-01

3.548148148148148e+00 3.359772392420268e-02

3.545269033821574e+00 1.018185464545240e-04

3.545260255416634e+00 9.456471161684021e-10

3.545260255335102e+00 0

3.545260255335102e+00 0

So we take r1 = 2.378075758565231 and r2 = 3.545260255335102. Now, checking the
endpoints, g(2) = g(4) = 0. They have to since f and P2 agree at these points! Also,
g(r1) = −6.682053593859927e−03 and g(r2) = 4.503073410654312e−03. Thus,

||f − P2||∞ = max
2≤x≤4

|f(x)− P2(x)| ≈ 6.682053593859927e−03 .

Note, in line with theory, this is less than the upper bound of 1/40 = 0.025 found in
part (b).



3. Approximate the following definite integrals using the composite Trapezoidal rule T (h) for
N = 2, 4, 8, 16, 32 and 64, where h = (b− a)/N .

(a)
∫ 2
0 3x+ 1 dx

(b)
∫ 2
0 xe

−x2 dx

(c)
∫ 2π
0 cosx+ 1 dx

To do so, write an M-file trap.m, the first line of which should be

function y = my_trap(f,a,b,N)

Include a copy of your code. For each of the functions above make a table, as was done
in class, with columns for N , h, T (h), |error|, and |error|/h2. Are the numbers in the last
column converging, and if so, what does it mean? Specifically, comment on the behavior of
the error for (a) and (b). If your code is correct, you’ll notice that for (c) the last column
is not converging, and that the approximation is very accurate. Can you explain why?

ANS: Here are the results:

(a) N h T(h) err err/h^2

----------------------------------------------------------------

2.0000e+00 1.0000e+00 8.0000e+00 0 0

4.0000e+00 5.0000e-01 8.0000e+00 0 0

8.0000e+00 2.5000e-01 8.0000e+00 0 0

1.6000e+01 1.2500e-01 8.0000e+00 0 0

3.2000e+01 6.2500e-02 8.0000e+00 0 0

6.4000e+01 3.1250e-02 8.0000e+00 0 0

(b) N h T(h) err err/h^2

-------------------------------------------------------------------

2.0000e+00 1.0000e+00 3.8620e-01 1.0465e-01 1.0465e-01

4.0000e+00 5.0000e-01 4.6685e-01 2.3995e-02 9.5980e-02

8.0000e+00 2.5000e-01 4.8494e-01 5.9053e-03 9.4485e-02

1.6000e+01 1.2500e-01 4.8937e-01 1.4708e-03 9.4133e-02

3.2000e+01 6.2500e-02 4.9047e-01 3.6737e-04 9.4046e-02

6.4000e+01 3.1250e-02 4.9075e-01 9.1821e-05 9.4025e-02

(c) N h T(h) err err/h^2

-------------------------------------------------------------------

2.0000e+00 3.1416e+00 6.2832e+00 0 0

4.0000e+00 1.5708e+00 6.2832e+00 0 0

8.0000e+00 7.8540e-01 6.2832e+00 0 0

1.6000e+01 3.9270e-01 6.2832e+00 1.7764e-15 1.1519e-14

3.2000e+01 1.9635e-01 6.2832e+00 0 0

6.4000e+01 9.8175e-02 6.2832e+00 0 0

In (a) we expect the Trapezoidal method to perform well since f ′′(x) ≡ 0, so the method is
exact! For (b), one sees that err/h2 is approaching a constant which indicates the expected



second order convergence in this example. For (c), even though f ′′(x) is not identically
zero, we see that, except for roundoff when N = 16, the method is again exact. The reason
is that the Trapezoidal method is particularly accurate when the integrand is a periodic
function which is the case here.

Here is the code:

function y = my_trap(f,a,b,N)

%

h = (b-a)/N; % grid spacing

x = a:h:b; % grid points

fval = f(x);

y = (h/2)*(fval(1)+2*sum(fval(2:N))+ fval(N+1));

end

f



4. (Corrected Trapezoidal Rule) Recall that one form of the error term for the composite
Trapezoidal rule T (h) is

(1) E(h) = −h
3

12

N−1∑
i=0

f ′′(ηi) = −h
2

12

(
N−1∑
i=0

f ′′(ηi)h

)
,

where ηi ∈ [xi, xi+1], xi = a + ih, and h = (b − a)/N . Note that the last term in the
parentheses above in (1) can be viewed as a Riemann Sum approximation of∫ b

a
f ′′(x)dx = f ′(b)− f ′(a) .

This suggests we could correct (more precisely improve) the accuracy of the Trapezoidal
Rule by including this term if the values of f ′(a) and f ′(b) are available. The resulting
numerical integration rule is called the Corrected Trapezoidal Rule, whose composite form
is given by

CT (h) =
h

2
(f(x0) + 2f(x1) + . . .+ 2f(xN−1) + f(xN ))− h2

12
(f ′(b)− f ′(a)) .

It can be shown that the error for CT (h) when approximating
∫ b
a f(x)dx is proportional

to h4, a significant improvement over composite T (h), whose error is proportional to h2.

(a) Write a MATLAB function M-file to compute CT (h), where the first line is of the
form:

function y = corrected_trap(f,a,b,N,fpa,fpb)

Include a copy of your code.

(b) To numerically verify the order of CT (h) apply your code to approximate

I =

∫ 2

0
xe−x

2
dx

for N = 2, 4, 8, 16, 32, 64. Make a table, as was done in class, with columns for N , h,
CT (h), |error|, and |error|/h4. Are the numbers in the last column converging, and
if so, what does it mean?

ANS: Here is the table and code:

N h CT(h) err err/h^4

-------------------------------------------------------------------

2.0000e+00 1.0000e+00 4.8021e-01 1.0630e-02 1.0630e-02

4.0000e+00 5.0000e-01 4.9035e-01 4.9066e-04 7.8506e-03

8.0000e+00 2.5000e-01 4.9081e-01 2.9211e-05 7.4779e-03

1.6000e+01 1.2500e-01 4.9084e-01 1.8052e-06 7.3940e-03

3.2000e+01 6.2500e-02 4.9084e-01 1.1251e-07 7.3735e-03

6.4000e+01 3.1250e-02 4.9084e-01 7.0270e-09 7.3684e-03



function y = my_ctrap(f,a,b,fpa,fpb,N)

%

h = (b-a)/N; % grid spacing

x = a:h:b; % grid points

fval = f(x);

y = (h/2)*(fval(1)+2*sum(fval(2:N))+ fval(N+1)) ...

-h^2*(fpb-fpa)/12;

end

We see that the error is going to zero, and that the last column is converging to a fixed
number. This indicates that the Corrected Trapezoidal method is indeed O(h4).


