Math 551

Introduction to Scientific Computing

Spring 2021

Homework Set 7

Due 9PM on Wednesday, April 21

1. Consider the matrix A and vector x:

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

- (a) Find $||x||_2$ and $||Ax||_2$.
- (b) Find $||A||_1$ and $||A||_{\infty}$.
- (c) Find the eigenvalues of A.

2. Consider solving Ax = b, where $A \in \mathbb{R}^{3x3}$, $x \in \mathbb{R}^3$, and $b = \begin{bmatrix} 0, 1, -1 \end{bmatrix}^T$.

You call an LU decomposition routine that employs partial pivoting with A as an input, which returns L and U stored in the original memory space of A, and the pivot vector p as

$$A = \begin{bmatrix} 1/2 & -1 & 2\\ 1/2 & -1/2 & 5/2\\ 2 & 1 & -1 \end{bmatrix} \quad \text{and} \quad p = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}.$$

Using these, compute the solution x.

3. Consider an invertible matrix $A \in \mathbb{R}^{nxn}$. For some odd reason (maybe it is a question on a hw) you want to find A^{-1} . Note that $AA^{-1} = I$, which is the same as saying that $A * col_k(A^{-1}) = e_k$, the k-th column of the identity.

So you execute the following algorithm:

- Use GE with partial pivoting to find the LU decomposition.
- Use you LU decomposition to solve $A * col_k(A^{-1}) = e_k$, $1 \leq k \leq n$, thus computing each column of A^{-1} one at a time.

If $O(Cn^p)$ is the **total** operation count of this algorithm for finding A^{-1} , what are C and p?