Introduction to Scientific Computing

Homework Set 4

Math 551

Due Thursday, March 18th

- 1. Prove for any $x_0 \in \mathbb{R}$ that the iteration $x_{n+1} = g(x_n)$ converges to a unique fix point α where $g(x) = \cos x$. Find the value of α to at least 12 decimal places.
- 2. Which of the following iterations will converge to the indicated α , provided x_0 is chosen sufficiently close to α . If it does converge, determine the order of convergence.

(a)
$$x_{n+1} = \frac{15x_n^2 - 24x_n + 13}{4x_n}, \quad \alpha = 1.$$

(b)
$$x_{n+1} = \frac{3}{4}x_n + \frac{1}{x_n^3}, \quad \alpha = \sqrt{2}.$$

- 3. Consider the rootfinding problem f(x) = 0 with root α , and $f'(x) \neq 0$ for any x.
 - (a) Convert it to the fixed-point problem

$$x = x + cf(x) = g(x)$$

with c a nonzero constant. How should c be chosen to ensure rapid convergence to α , provided x_0 is chosen sufficiently close to α .

- (b) Apply your method to $x^3 5 = 0$ and discuss your results.
- 4. (Aitken's Extrapolation) Consider the fixed point iteration $x_{n+1} = g(x_n)$. Once the iterates are "close" to the root α then $\frac{\alpha x_{n+1}}{\alpha x_n} \approx g'(\alpha)$ is nearly a constant (using the MVT). Then applying the approximation to the iterates x_n and x_{n-1} ,

$$\frac{\alpha - x_{n+1}}{\alpha - x_n} \approx \frac{\alpha - x_n}{\alpha - x_{n-1}} \,,$$

or equivalently $(\alpha - x_{n+1})(\alpha - x_{n-1}) \approx (\alpha - x_n)^2$.

- (a) Solve this expression for α , an *extrapolated* value, which in general is a significant improvement in the approximation to the fixed point.
- (b) With $x_0 = 1.8$, and the fixed-point problem

$$x = g(x) = x - \frac{x^2 - 3}{2}$$

compute the iterates $\{x_1, \ldots, x_9\}$ as follows

 $x_1 = g(x_0)$ $x_2 = g(x_1)$ $x_3 = extrapolate using x_0, x_1 and x_2$ $x_4 = g(x_3)$ $x_5 = g(x_4)$ $x_6 = extrapolate using x_3, x_4 and x_5$ $x_7 = g(x_6)$ $x_8 = g(x_7)$ $x_9 = extrapolate using x_6, x_7 and x_8$ Display you results using format long g, and compute the error, $|\sqrt{3} - x_9|$.

(c) Now, again with $x_0 = 1.8$ compute a new set of approximations $\{x_1, \ldots, x_9\}$ using g(x) but WITHOUT extrapolation, and compute the error for this new x_9 . Is this approximation better or worse than that found in **b** above. Comment.