Math 551

Homework Set 3

1. Given a function f(x), use Taylor approximations to derive a second order approximation to $f'(x_0)$ is given by

$$f'(x_0) = af(x_0 - h) + bf(x_0 + h) + cf(x_0 + 2h) + O(h^2).$$

What is the precise form of the error term? Using the formula approximate f'(0) where $f(x) = \sin x$ for $h = 1/(2^p)$ for p = 1:15. Form a table with columns giving h, the approximation, absolute error and absolute error divided by h^2 . For each indicate to which values they are converging. Finally, verify that the last column appears to be converging to a value derived using the error term.

- 2. The floating point representation of a number is $x = \pm (0.b_1b_2...b_n)_{\beta} \times \beta^e$, where $b_1 \neq 0$, $-M \leq e \leq M$. Suppose $\beta = 2$, n = 6, and M = 4.
 - (a) Find the smallest positive (x_{min}) and largest positive (x_{max}) floating point numbers that can be represented. Give the answers in decimal form (base 10).
 - (b) What is the machine epsilon, *eps*, of this number system?
 - (c) Find the floating point number in this system that is closest to $x = 2\pi$.
- 3. Let the initial interval used for the Bisection method is $[\pi, 3\pi]$. What is the minimum number of steps to guaranteed that the approximation is within a tolerance of 10^{-10} .
- 4. Use the Bisection method to find the following to within a tolerance of 10^{-8} :
 - (a) The real root of $x^3 x^2 x 1 = 0$.
 - (b) The smallest positive root of $\cos x \sin x 1/2 = 0$.
 - (c) The smallest positive root of $\tan x x = 0$.
 - (d) The root of $\tan x x = 0$ closest to x = 100.

Include the output for each and be sure to display the root(s) to full precision.