Integral Calculus
DEFINITE INTEGRAL

$$
\begin{aligned}
& \text { "Area" }=\int_{a}^{b} f(x) d x \\
& \text { FTC } \\
& =F(b)-F(a) \text { EXACT }
\end{aligned}
$$

$$
y=f(x)
$$

where $F^{\prime}(x)=f(x)$, ie. $\quad F_{(x)}$ is $\left\{\begin{array}{l}\text { indefinite integral } \\ \text { anti-derivative }\end{array}\right.$
Problem: Finding $F(x)$ can be difficult!! \because BRING your cAlCULATOR to class!
Q.1: Average Value of a Function

Ex: average of $\{1,2,4\}$ aug $=\frac{1+2+4}{3}=\frac{7}{3}$ mean DISCRETE
what abut if the data is represented by a function?
ax: $f(x)=2$
A constant function should have the SAME AUERAGE
 over any interval!

$$
2=\begin{gathered}
\text { aug }[1,2]
\end{gathered}=\frac{\begin{array}{l}
\text { area over the } \\
\text { interval }
\end{array}}{\text { length of the interval }}
$$

or | $\operatorname{aug} f(x)$ |
| :--- |
| over $[a, b]$ |$=\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{\text { "Area" }}{\text { length of interval }}$

Ex: $f(x)=2$ over $[1,2]:$ avg $=\frac{1}{2-1} \int_{1}^{2} 2 d x$

$$
=\frac{1}{1} \cdot 2=2
$$

Ex: $f(x)=x$

$$
\begin{aligned}
& \text { aug over }=\frac{1}{1-(-1)} \int_{-1}^{1} x d x \\
& \begin{array}{l}
a=-1,1] \\
b=1 \\
b=1
\end{array}=\frac{1}{2} \cdot 0=0
\end{aligned}
$$

makes sense since $f(x)$ is an odd function over $[-1,1]$.

Ex: $f(x)=x$ ouer $[0,1]$

$$
\begin{aligned}
\text { avy } & =\frac{1}{1-0} \int_{0}^{1} x d x \\
& =\frac{1}{1} \underbrace{\left(\frac{1}{2} \cdot 1 \cdot 1\right)}_{\text {area of triange }}=1 \cdot \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

using an anti-derivative?

$$
\begin{aligned}
& \text { Using an anti-derivative? } \\
& \int_{0}^{1} x d x \stackrel{F C}{=} F(1)-F(0)=\left(\frac{1^{2}}{2}-\frac{0^{2}}{2}\right)=\frac{1}{2}-0=\frac{1}{2} \\
& f(x)=x \Rightarrow F(x)=\frac{x^{2}}{2}+C
\end{aligned}
$$

Ex: Find aug of $f(x)=\sin x$ over $[0,2 \pi]$

$$
\begin{aligned}
\text { aug } & =\frac{1}{2 \pi-0} \int_{0}^{2 \pi} \sin x d x \\
& =\frac{1}{2 \pi}\left[\int_{0}^{2 \pi} \sin x d x\right. \\
& =\frac{1}{2 \pi} \cdot 0=0
\end{aligned}
$$

Ex' $f(x)=\sin x$ over $\left[\begin{array}{cc}a & b \\ 0, & \prime \prime \\ 11\end{array}\right]$

$$
\begin{aligned}
& \text { Ex' } \begin{aligned}
f(x)=\sin x \text { over } \\
\text { avg }=\frac{1}{\pi-0} \int_{0}^{\pi} \sin x d x
\end{aligned}=\frac{1}{\pi} \cdot 2=\frac{2}{\pi}
\end{aligned}=0.63662 \ldots .
$$

$$
\approx 0.63662
$$

Ex: Town population is given by $P(t)=570 \cdot(1.037)^{t}$ where p is measured in 1000's and t in years since 2000. what is the aug population from 2010 to 2020?

$$
\begin{aligned}
\text { ans: } p(0)=570 \cdot(1.037)^{0} & =570 \cdot 1=570 \\
p(10) & =570 \cdot(1.037)^{10} \approx 819.714 \\
\text { aug } & =\frac{1}{20-10} \int_{10}^{20} p(t) d t=\frac{1}{10} \int_{10}^{20} 570 .(1.037)^{t} d t \\
& =\frac{1}{10} .9884 .22 \ldots
\end{aligned}
$$

