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Mismeasured Variables in Econometric 
Analysis: Problems from the Right and 
Problems from the Left 

Jerry Hausman 

he effect of mismeasured variables in statistical and econometric analysis 
is one of the oldest known problems, dating from the 1870s in Adcock 
(1878). In the most straightforward regression analysis with a single re- 

gressor variable, the least squares estimate is downward biased in magnitude toward 
zero.' While a mismeasured right-hand side variable creates this problem, a mis- 
measured left-hand side variable under classical assumptions does not lead to bias. 
The only result is less precision in the estimated coefficient and a lower t-statistic. 

I will begin by reviewing these classical issues involving mismeasured variables. 
By the "classical mismeasurement assumptions," I mean that the error of measure- 
ment is uncorrelated with the true variables and is uncorrelated with the stochastic 
disturbance in the regression specification. Then I will consider three recent 
developments for the effect of mismeasurement on econometric models. The first 
issue involves difficulties in using instrumental variables as a method of addressing 
the problem of mismeasured variables. A second involves the consistent estimators 
that have recently been developed for mismeasured nonlinear regression models. 
Finally, I return to mismeasured left-hand side variables, where I will focus on issues 
in binary choice models and duration models but also will point out some open 
issues in other models. 

1 Surveys of these classical results are found in Aigner et al. (1984), Fuller (1987), and Hausman, Newey 
and Powell (1995). For related issues, see Griliches (1986). Henceforth, I will assume that the "true" 
parameter is positive so that I will not repeat the "in magnitude" qualifier. 

* Jerry Hausman is John and Jennie S. MacDonald Professor of Econometrics and Public 
Finance, Massachusetts Institute of Technology, Cambridge, Massachusetts. His e-mail 
address is (jhausman@mit.edu). 
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Linear Models with Mismeasured Variables 

I begin with the classic linear regression mismeasurement model. I assume a 
linear specification in which means of all the variables have been subtracted off so 
that we need not worry about an intercept term.2 

yi = Zi + 1i = nXi + 8i- i = Xi + T i n 

Xi = Zi + q7i 

Begin with yi as the dependent variable, with the true regressor zi and an error term 

Si. The problem is that zi cannot be observed accurately--it is mismeasured. 
Instead, the observed variable is xi, which, as the second equation shows, is equal 
to zi plus an error in observation m7i, which is taken to have mean zero and to be 
uncorrelated with zi and with si. (I will assume, here and throughout the paper, 
that the sample is independent and identically distributed.) Thus, the equation 
actually estimated is a regression of yi on xi, with an error term Ti that mixes 
together the effects of the "true" error si and the measurement error mi. 

The classic result is usually that the estimated coefficient calculated by the 
ordinary least squares regression based on the observable variable xi-call it b-is 
biased downward from the coefficient that would have been calculated based on 
the true variable z. Thus, the classic result is that usually the least squares estimator 
b < 1. This result follows because xi in the above equation is negatively correlated 
with the stochastic disturbance term Ti.3 

These results do not hold in general if the measurement error is correlated 
with z or with s, although the downward bias still often occurs.4 For instance, 
Aigner (1973) showed that with misclassification error, if zi is a binary indicator 
variable, the ordinary least squares estimator b is again biased downward. At MIT I 
have called this the "Iron Law of Econometrics"-the magnitude of the estimate is 
usually smaller than expected. It is also called "attenuation" in the statistics litera- 
ture. In the large sample result, the extent of the bias depends on the ratio of the 
variance of the "signal" (true variable) to the sum of the variance of the signal and 
the variance of the "noise" (error in measurement). As the variance of the noise 
becomes relatively larger compared to the variance of the signal, the bias increases. 
One situation where the bias increases in this manner is when the regression 
specification is panel data with fixed effects. Estimation of the fixed effects typically 

2 Other right-hand side variables, assumed to be measured without error, have been "partialled out" of 
the model. For the effect on the estimated coefficients of the other variables in the regression 
specification that have been "partialled out," see Meijer and Wansbeek (2000). 
3 In terms of a large sample result, p lim b = aqp < 1, where a = = o-2/(o-2 + o-) < 1. The result 
also holds in expectation in finite samples if the stochastic terms are both normal or in the non-normal 
case if the model conditional expectation is linear. Then the result is E(b) = a1p. 
4A straightforward calculation demonstrates the effect of correlated measurement error on the estima- 
tor b. 
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increases the variance of the noise relative to the variance of the signal, as Griliches 
and Hausman (1986) discuss. Griliches and Hausman also demonstrate how to 
estimate the magnitude of the observation error and recommend determining if its 
size is "reasonable" in the context of the model. Card (2000) reviews empirical 
evidence of downward bias in estimation of the coefficient of the return to school- 
ing from the many papers in the literature. He finds that the downward bias is often 
in the range of 25 percent to 33 percent, a substantial downward bias. 

Another classic result arises if the left-hand side and right-hand side variables 
are interchanged in the regression specification. The inverse of the ordinary least 
squares estimator of the coefficient in the reverse regression, g, gives an upward- 
biased estimate of the true regression coefficient that would have been derived 
from a regression on z. Thus, the downward-biased estimate and the upward-biased 
estimate can be thought of as bracketing the true value of the coefficient so that the 
true coefficient b < f < g.5 Indeed, a less well-known result tells the width of the 
bounds based on the regression R2, which will be the same for both the original 
regression and the reverse regression. This equation holds that b/g = R2. Thus, for 
cross-section econometrics where R2 is often about 0.3, then the b coefficient will 
be only one-third of the g coefficient, and the bounds will be quite wide. However, 
if the R2 is quite high, as is often (but not always) true in time series applications, 
mismeasurement will not have a large effect on the least squares estimate. For 
example, a test of the times series version of the "permanent income hypothesis," 
in which the true regressor z is permanent income but the observed variable x is 
measured income, the estimate of the marginal propensity to consume will not be 
greatly affected by mismeasurement of permanent income, because the R2 in this 
time series data is quite high. 

A last result is to focus on the consequences of a mismeasured left-hand side 
variable, where the right-hand side variable is measured without error. In this case, 
the ordinary least squares estimator would be unbiased under a wide range of 
assumptions. To understand this point, think of an observed left-hand variable qi 
that is equal to the sum of the unobserved "true" left-hand variable yi and a 
measurement error term wi assumed to be uncorrelated with the error term si in 
the regression. Then 

Yi= ziz+ 8 and qi = yi + wi, so 

qi = zi + vi, where vi = Si + Wi. 

Thus, when the left-hand side variable is mismeasured, the result is actually an error 
term on the right-hand side with increased variance, since the new error term vi 
includes both a component for measurement error on the right-hand side and a 

5 This result has been known since 1921. If the error in measurement is correlated with the error in the 
equation, no bounds for the true coefficient exist. For a discussion of using prior information and for 
references to other generalizations considered in the literature, see Erickson (1993). 
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component for the original error expected in the regression. Overall, the outcome 
will be an unbiased estimate of f3, but reduced precision in the estimate b, a lower 
t-statistic and a reduced R2. 

What happens if both left- and right-hand side variables are mismeasured, with 
errors of measurement uncorrelated with each other, the true variables, and with 
Si? In this case, the estimate of the regression coefficient b remains biased down- 
ward, compared with the coefficient that would have been derived from a mea- 
surement of the "true" x variable. The extent of the bias is not changed by 
mismeasurement of the left-hand side variable. However, as a result of mismeasure- 
ment on the left-hand side, the coefficient b is measured with less accuracy, and the 
R2 of the regression will decrease. If one carries out the reverse regression estima- 
tion mentioned, the upward-biased coefficient g in the reverse regression will be 
expected to rise. Since b/g = R2, when b remains the same and R2 declines, g must 
rise. Intuitively, when measurement error occurs in both the left- and right-hand 
side variables, the result is a less statistically accurate estimate of b, and because of 
the decline in statistical accuracy, the estimation bounds for the true coefficient 
also increase. 

Instrumental Variables as a Solution to Mismeasurement: 
The Problem of Weak Instruments 

Most solutions to the mismeasurement problem for the linear specification in 
econometrics depend on the use of instrumental variables.6 Instrumental variables 
are assumed to be correlated with the true zi but uncorrelated with either the basic 
error term si and/or the measurement error term m*i.7 A typical approach here is 
to use two-stage least squares.8 Let the vector of instrumental variables be wi and 
the instrumental variable estimator will use a linear combination of the wi to 
achieve a consistent estimator b1v of the true coefficient P3. 

The instrumental variables approach can be useful, if handled carefully. 
However, a significant understanding has emerged over the past few years that 
instrumental variables estimation of the errors-in-variables model can lead to 
problems of estimation and inference in the situation of "weak instruments." Weak 
instruments problems arise when the instruments do not have a high degree of 
explanatory power for the mismeasured variable(s), when the size of the mismea- 
surement is large or when the number of instruments becomes large. In a situation 

6Another solution to the measurement error problem is to find an independent measure of the 
reliability of the variable, usually from a resampling approach. This solution can be given an instru- 
mental variables interpretation. 
7Although the focus of the discussion here is on the basic situation that assumes no heteroskedasticity 
or serial correlation, it is worth noting that in more general situations of conditional heteroskedasticity, 
the White (1984) instrumental variables estimator should be used. 
8 The instrumental variables approach is discussed in this symposium in the paper by Angrist and 
Krueger. 
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of weak instruments, the danger is that the instrumental variables test will fail to 
discern a problem of mismeasured variables, even when significant (finite sample) 
bias is present, because the estimated standard errors are not very accurate. 

Hahn and Hausman (1999) offer an approach to determining whether instru- 
mental variable estimation is reliable in a particular situation. The new specification 
test, which takes the general approach of Hausman (1978), begins by carrying out 
a conventional two-stage least squares estimate of the coefficient of the right-hand 
side mismeasured variable. Then, it applies a two-stage least squares approach to 
the reverse regression using the same set of instruments. If the instrumental 
variable estimate is a reliable way of adjusting for measurement error, then the two 
estimates should be very similar. If they are not, then problems of inference are 
likely to be present. When the reverse regression test using two-stage least squares 
raises a warning flag that mismeasurement may be a problem, Hahn and Hausman 
then offer further specification tests and possible methods of estimation. This 
specification test may be quite useful in cross-section situations with a mismeasured 
right-hand side variable where the instruments do not have high explanatory power 
for the mismeasured variable. 

Nonlinear Models with Mismeasured Variables 

In a nonlinear regression framework, with measurement error in the right- 
hand side variables, two-stage least squares estimates (in either linear or nonlinear 
form) no longer lead to consistent estimates of coefficients (Amemiya, 1985). The 
underlying problem is that the instruments will end up being correlated both with 
the mismeasured right-hand side variable and also with the error term in the 
econometric specification, as demonstrated by Hausman, Newey and Powell 
(1995). 

One approach to this problem of nonlinearity is to use a polynomial specifi- 
cation. For example, allowing the right-hand side variables to take on powers of 
two, three, four or more allows the relationship between x and y to be a curving 
line. Hausman et al. (1991) demonstrate how to solve the problem of measurement 
error and how to achieve consistent estimates in the case of a polynomial specifi- 
cation. Again, begin with a regression where the unobserved independent variable 
zi is replaced by xi, which is observed with measurement error 'ji. In this frame- 
work, Hausman et al. develop a consistent estimator under either of two sets of 
assumptions. The first is a "repeated measurement" specification, which can be 
applied to a situation where the same variable is measured more than once and 
where later measurements can be used to provide information about measurement 
errors in earlier estimates. The second specification uses instrumental variables. 

Hausman, Newey and Powell (1995) use these approaches to estimate Engel 
curves for family expenditure in the United States, a subject that has long been an 
area of interest among econometricians. In recent research, it has been common to 
examine the "Leser-Working" form (Leser, 1963) of Engel curve, in which budget 
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shares spent on certain areas of household consumption-in this study, food, 
clothing, recreation, health care and transportation-are regressed on the log of 
income or expenditure. However, few studies of Engel curves have used estimators 
other than least squares or nonlinear least squares. 

This study sought to estimate the Engel curves in a polynomial specification 
using a variety of methods to deal with measurement error: specifically, two 
different kinds of instrumental variable estimation and the "repeated measure- 
ment" approach. A first instrument for current expenditure is expenditure in 
future periods, which follows from a life-cycle model approach to consumption. A 
second set of instruments was based on determinants of income and expenditure, 
such as education and age. The study used the 1982 U.S. Consumer Expenditure 
Survey (CES), which collects data from families over four quarters, so that total 
expenditures from the second quarter of 1982 could be used to correct for 
mismeasurement of total expenditures in the first quarter of 1982. 

Hausman, Newey and Powell (1995) find that the usual assumption of constant 
budget share elasticities, which is imposed by the Leser-Working specification, 
appears inconsistent with the data. They also find that a Hausman-type specification 
test (Hausman, 1978) of the instrumental variable estimates versus ordinary least 
squares estimates strongly rejects the ordinary least squares estimates, indicating 
the importance of the measurement error specification. Thus, there is strong 
evidence that using current expenditure in estimation of Engel curves on micro- 
data involves an errors-in-variables problem.9 In estimation of Engel curves, an 
ordinary least squares approach that uses current expenditure and does not ac- 
count for measurement error leads to inconsistent estimates where the usual 
downward bias is present. 

Perhaps most intriguing of all, Hausman, Newey and Powell (1995) offer an 
empirical investigation of a theoretical result from a notable paper by Gorman 
(1981). Gorman considered Engel curves in which either expenditure or budget 
shares are specified as polynomials in functions of expenditure. Given a certain 
functional form, Gorman demonstrates that the rank of the matrix of coefficients 
for the polynomial terms in income is at most three. More concretely, this finding 
implies that if one estimates two budget share equations, one based on a quadratic 
form and the other on a cubic form, the ratio of the coefficients of the cubic terms 
to the coefficients of the quadratic terms will be constant across budget share 
equations. Indeed, Hausman, Newey and Powell find a rather remarkable result 
that the ratios of the coefficients, estimated to take measurement error into 

9 In a recent doctoral thesis at MIT, Schennach (2000) has extended the Hausman et al. (1991) results 
from the polynomial specification to the consistent estimation of nonlinear models with measurement 
errors in the explanatory variables when one repeated observation exists. Thus, regression models with 
nonlinear functions such as g( zi), where zi is an unobserved variable, can be estimated consistently. Her 
approach is considerably more flexible. Schennach also estimates nonlinear Engel curves using Con- 
sumer Expenditure Survey data since 1984 and finds that her approach, which allows for mismeasured 
right-hand side variables, is preferable to a traditional nonlinear least squares estimator that does not 
take account of mismeasured right-hand side variables. 
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account, are extremely close in actual values and estimated precisely. Specifically, 
the ratios of the coefficients for the different budget share equations are -25.0, 
-25.2, -25.1, -3.3 and -25.6. Thus, use of consistent estimates of a mismeasure- 
ment model for Engel curve analysis provides a situation in which a restriction 
derived from economic theory applies quite well to the data. 

Measurement Error in the Left-Hand Side Variables: 
Probit and Logit 

In the usual linear regression specification, a mismeasured left-hand side 
variable does not lead to a biased coefficient, as discussed above, but only to less 
statistical precision in estimation. However, in certain contexts, misclassification of 
the left-hand side variable can lead to estimators that are biased and inconsistent. 
In particular, this situation often arises when the dependent variable is limited in 
some way: for example, in a probit or logit estimation where the dependent variable 
takes on only two values, zero or one.10 For example, consider a case in which the 
left-hand variable is whether a person has changed jobs or not. 

I now consider the consequences of mismeasurement in the left-hand side 
variable in binary outcome models where the observed left-hand side variable is a 
function of an unobserved (latent) dependent variable. The usual latent variable 
specification has an observed latent variable ye and an observed variable yi = 1 if 
y - 0 and yi = 0 if ye < 0. The regression specification that allows for misclassi- 
fication is 

qi= ao + (1 - ao - al)Azip) + -i, 

where a0 is the probability that qi = 1 although the true yi = 0, a1 is the probability 
that qi = 0 although the true yi = 1, and Fis the cumulative probability distribution 
for the probit model or logit model. With no mismeasurement, ao = a1 = 0, and 
this equation becomes a typical probit model or logit model. If one tries to estimate 
a standard logit or probit model without allowing for misclassification when it 
exists, the result will be biased and inconsistent estimates. However, Hausman, 
Abrevaya and Scott-Morton (1998) demonstrate that maximum likelihood estima- 
tion of this equation provides straightforward and consistent estimates so long as a 
monotonicity condition holds: ao + a1 < 1. (This monotonicity condition is 
relatively weak, since it says that the combined probability of misclassification is not 
so high that on average you cannot tell which result actually occurred.) They also 
show that this equation provides a consistent coefficient if estimated by nonlinear 

10 Probit and logit estimation, and binary choice models more generally, are discussed by Horowitz and 
Savin in this symposium. 
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least squares methods. Indeed, the estimated coefficients of ao and a1 provide a 
specification test for whether mismeasurement is a problem. 

Thus, two results arise in the binary limited dependent variable cases that are 
different from the classical regression specification with measurement error in the 
left-hand side variable: 1) inconsistent estimation results from the mismeasure- 
ment; and 2) consistent estimation does not require instrumental variables al- 
though a (strong) distributional assumption is necessary. Hausman, Abrevaya and 
Scott-Morton (1998) use Monte Carlo experiments to demonstrate that relatively 
small amounts of misclassification, as little as 2 percent, can lead to significant 
amounts of bias even in large samples. 

Hausman, Abrevaya and Scott-Morton (1998) also extend this analysis in a 
number of ways. They show that this approach extends readily to discrete response 
models with more than two categories. They also demonstrate that there is no need 
to assume a particular cumulative probability distribution, like the normal distri- 
bution that is assumed in the probit case, and that semiparametric estimation of the 
binary choice equation with misclassification allowed can also provide consistent 
estimation. Thus, the strong distributional assumption required for maximum 
likelihood or nonlinear least squares is no longer necessary. Consistent estimation 
follows without the need for using instrumental variables. 

As an empirical example, Hausman, Abrevaya and Scott-Morton (1998) specify 
and estimate a model of whether people have changed jobs or not using both the 
Current Population Survey (CPS) and Panel Study of Income Dynamics (PSID) 
data sets. The results from the CPS data set, discussed here, demonstrate strong 
evidence of misclassification. Using a probit specification that allows for misclassi- 
fication and applying maximum likelihood estimation, they find that ao, the 
probability of misclassification for non-job changers, is estimated to be 6 percent, 
and a1, the probability of misclassification for job changers, is estimated to be 
31 percent. Both estimates of misclassification are very precisely estimated. More- 
over, the estimates of many of the right-hand side coefficients change by large 
amounts when misclassification is permitted. Thus, misclassification appears to be 
a potentially serious problem in microdata. 

Interestingly, Hausman, Abrevaya and Scott-Morton (1998) also find that 
semiparametric estimates of the extent of misclassification estimates are quite 
similar to the maximum likelihood estimates that allow for misclassification. This 
finding suggests that the maximum likelihood approach to probit or logit allowing 
for misclassification may give reasonable results in many actual empirical situations. 

Measurement Error in the Left-Hand Side Variables: 
More General Models 

The binary choice model of error in left-hand side variables is relatively 
straightforward because with only two choices, only two sorts of errors are possible: 
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0 can be confused for 1, or 1 for 0. Abrevaya and Hausman (1999) suggest a more 
general model in which the observed left-hand side variable qi is a stochastic 
function of the underlying y8; They demonstrate that this model can be used to 
analyze a range of situations: binary choice with misclassification, mismeasured 
discrete dependent variables and mismeasured continuous dependent variables 
that arise in duration and hazard models.11 They demonstrate that conventional 
estimation of these models leads to inconsistent results, except in special 
circumstances. 

Abrevaya and Hausman (1999) offer methods for estimating all of these 
models, which will provide consistent estimates as long as the process of mismea- 
surement follows one sufficient condition. This condition is that the effect of the 
mismeasurement cannot on average permute the ordering of the observed left- 
hand side variables with respect to the ordering of the unobserved latent variables; 
that is, on average it cannot make more frequently occurring outcomes look like 
less frequently occurring outcomes. The effect of the mismeasurement cannot be 
"too large" on average.12 The appropriate question to ask to satisfy the sufficient 
condition is: "Are observational units with larger 'true' values for their left-hand 
side variable more likely to report larger values than observational units with 
smaller 'true' values?" If the answer is "yes," the Abrevaya and Hausman techniques 
can be used. Again, instrumental variables are not required for consistent estimation. 

Abrevaya and Hausman (1999) focus on the increasingly used duration and 
hazard models (for example, Han and Hausman, 1990; Meyer, 1990). In a duration 
model, the left-hand variable might measure, for example, the amount of time that 
someone has spent at a current job. A hazard model, in the context of the return 
to employment for an unemployed person, answers the question of what is the 
probability of becoming employed in the next time period conditional on being 
unemployed up to the previous time period. Abrevaya and Hausman demonstrate 
that conventional estimation of commonly used duration models and hazard 
models is usually inconsistent when the left-hand side variable is mismeasured and 
provides coefficients that are biased toward zero.13 

11 The general approach discussed here does not cover mismeasurement in the case of the quantile 
regression estimator. Quantile regression, as discussed in this symposium by Koenker and Hallock, is 
robust to certain data features that create problems for the classical linear regression model, but it is not 
robust to a mismeasured left-hand side variable, which does not create problems for the classical linear 
regression model. The presence of the error in measurement on the left-hand side biases the quantile 
coefficient estimates toward the coefficient for the median regression estimate. Monte Carlo experi- 
ments demonstrate that the bias can be quite substantial when conditional heteroskedasticity is present. 
Finding a solution to this problem is a good topic for future research. 
12 In more precise terms, the sufficient condition is that the distribution for the observed variable qi for 
a higher latent y* stochastically dominates the distribution of qj for a lower latent y1 The use of the 
notion of first-order stochastic dominance is familiar from microeconomics, where it is used to order 
portfolios or risky distributions (for example, Mas-Colell, Whinston and Green, 1995, p. 195). 
13 The single exception is the highly restrictive Weibull duration model. However, the Weibull specifi- 
cation requires a monotonic (baseline) hazard, which makes it too restrictive for most problems. Also, 
the particular application cannot allow for censoring, which is typically present in applications of 
duration models. 
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Mismeasured durations are common to all data sets that have survey responses. 
Some common findings are that in the Current Population Survey, about 
37 percent of unemployed workers overstated unemployment durations, longer 
spells have a higher proportion of reporting errors, and there are often "focal 
responses" (for instance, at a number of weeks that corresponds to an integer 
month amount, like four or eight weeks). In duration models that do not allow for 
mismeasurement, it is common to find that the size of the unemployment insur- 
ance benefit has a statistically significant effect on the duration of unemployment. 
However, after allowing for mismeasurement, Abrevaya and Hausman (1999) find 
a much smaller and statistically insignificant effect of the unemployment insurance 
benefit levels on unemployment duration. It appears that mismeasurement in the 
left-hand side variable can have an important effect in duration models. 

m This paper is given in memory of Zvi Griliches. Jason Abrevaya, fin Hahn and the editors 
provided helpful comments. 
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