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1 Introduction

What is measurement error?

Occurs when we cannot observe exactly some of the variables which define

our model of interest. Usually this is instrument error or sampling error.

A few examples of error-prone variables:

True Value Observed

presence or absence of disease result of diagnostic test

dietary intake measure from questionnaire,

or physical activity diary, replication, etc.

air pollution exposure indoor measures

or local monitors

Food expenditures self report

Employment status self report

Education level self report

Land area classification value from satellite image

animal abundance estimate from sampling

Delivered “dose” (e.g.,concentration, target dose

speed on treadmill)
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The main ingredients in a M.E. problem.

• MODEL FOR THE TRUE VALUES. e.g.,

1. Estimation of a single proportion, mean, variance, etc.

2. Contingency tables

3. Linear regression

4. Nonlinear Regression (including Binary regression)

• MODEL FOR MEASUREMENT ERROR

Specification of relationship between error-prone measurements and true

values (more later)

• EXTRA INFORMATION/DATA (allowing us to correct for ME)

1. Knowledge about some of ME parameters or functions of them.

2. Replicate values

3. Estimated standard errors attached to error prone variable

4. Validation data (internal or external)

5. Instrumental variables.
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General Questions

• What are the consequences of analyses which ignore the measurement error

(so-called naive analyses) on estimation, testing, confidence intervals,

etc.?

• How do we correct for measurement error?

This usually requires information or extra data.

- Direct bias corrections.

- Moment approaches.

- Likelihood based techniques.

- Regression calibration.

- Simex.

- Modified estimating equations.
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Differentiality, surrogacy and conditional independence.

X = true value, W = error-prone version of X

Y = another variable (usually a response)

• Differential and non-differential measurement error.

Nondifferential error: Measurement error in X is non-differential with

respect to y if the distribution of W |x, y = distribution of W |x

Differential error: distribution of W |x, y depends on y.

• Surrogacy: Distribution of Y |x, w = that of Y |x

w contains no information about y beyond that contained in x.

• Conditional independence:

Y and W are independent given X = x

Surrogacy ⇔ conditional independence ⇔ nondifferential error
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2 Misclassification in Estimating a Proportion

2.1 Examples

Example 1 : Prevalence of HIV Virus.

Mali et al. (1995): Estimate 4.9% of 4404 women attending a family planning

clinic in Nairobi have HIV.

What if assessment is subject to misclassification?

ELISA(w)

0 1

Truth(x) 0 293 (275) 4 (22) 297

1 2 86 88

External validation data for the ELISA test for presence of HIV. x is the

true value, with indicating being HIV positive, and w is the error prone

measure from the assay. Based on Weiss et al. (1985).

If what Weiss et al. (1985) considered borderline are classified as negative

then there are only 4 false positives, while if they are considered positive there

are 22 false positives.
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Example 2 . From Fleiss (1981, p. 202). Goal is to estimate the proportion

of heavy smokers in a population.

• x = “Truth” from blood test. (1 = heavy smoker)

• w = self report

Internal validation sample. Overall random sample of 200. 50 subsampled

for validation.

w

0 1

x = 0 24 2 26

1 6 18 24

30 20 50

? 82 68 150

112 88 200

Example 3. Lara et al. (2004) use as the randomized response tech-

nique (RRT) to estimate the proportion of induced abortions in Mexico. With

probability 1/2 the woman answered the question “Did you ever interrupt a

pregnancy?” and with probability 1/2 answered the question “Were you born

in April?”. Only the respondent knew which question they answered. Of 370

women interviewed, 56 answered yes.

The RRT intentionally introduces misclassification but with known misclas-

sification probabilities (sensitivity = 13/24 = .5 + (1/2)(1/12); specificity =

23/24 = 1/2 + (1/2)11/12)).
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Example 4. Use satellite imagery to classify habitat types. Validation data

taken from Canada Centre for Remote Sensing for five classes of land-use/land-

cover maps produced from a Landsat Thematic Mapper image of a rural area

in southern Canada. Unit is a pixel.

LANDSTAT

Water BareGround Deciduous Coniferous Urban

TRUTH

Water 367 2 4 3 6

BareGround 2 418 8 9 17

Deciduous 3 14 329 24 25

Coniferous 12 5 26 294 23

Urban 16 26 29 43 422

Other Examples.

• Theau et al. (2005): 10 categories involved in mapping lichen in Caribou

habitat

• Chandramohan et al. (2001). Misclassification based on “verbal autopsy”

in determination of the cause of death.

• Ekelund et al. (2006). Measure if someone is meeting PA quidelines using

7-day International Physical Activity Questionnaire (IPAQ). This is w; 1 =

meets standard. x = assessment by accelerometer (treated as truth).
w

0 1

x = 0 25 30 55

1 30 100 130
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2.2 Models

X = true value = 1 if ”success”, = 0 if ”failure”

X1, . . . , Xn a random sample(i.i.d.)

OBJECTIVE: Inferences for π = P (Xi = 1).

With no measurement error: T = number of successes is Binomial(n, π).

p = T/n = proportion of successes in sample, E(p) = π, V (p) = π(1−π)/n.

- Exact techniques are based on the Binomial.

- Large sample confidence interval: p ± zα/2(p(1 − p)/n)1/2.

- Large sample tests based on normal approximation.

With misclassification

Observe W , fallible/error-prone measurement, instead of X .

P (W = 1|X = 1) = θ1|1 (sensitivity), P (W = 0|X = 1) = 1 − θ1|1

P (W = 0|X = 0) = θ0|0 (specificity), P (W = 1|X = 0) = 1 − θ0|0

Since X is random, we can also derive reclassification/predictive prob-

abilities

λx|w = P (X = x|W = w).
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Observe W1, . . . , Wn: pW = sample proportion with W = 1. Naive anal-

ysis uses pW .

πW = P (Wi = 1) = π(θ1|1 + θ0|0 − 1) + 1 − θ0|0. (1)

We can also reverse the roles of X and W , leading to

π = πW (λ1|1 + λ0|0 − 1) + 1 − λ0|0. (2)

Since E(pW ) = πW rather than π, the naive estimator has a bias of

BIAS(pw) = πW − π = π(θ1|1 + θ0|0 − 2) + (1 − θ0|0).

For a simple problem the nature of the bias can be surprisingly complex. The

absolute bias can actually increase as the sensitivity or specificity increases with

the other held fixed.
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2.3 Correcting for misclassification

Using known or estimated misclassification rates,

π̂ =
pW − (1 − θ̂0|0)

θ̂0|0 + θ̂1|1 − 1
. (3)

Ignoring uncertainty in the misclassification rates

SE(π̂) =




pW (1 − pW )

n(θ1|1 + θ0|0 − 1)2




1/2

and an approximate large sample Wald confidence interval for π is

π̂ ± zα/2SE(π̂). (4)

Exact CI. Get an “exact” CI (LW , UW ) for πW (based on the Binomial)

and transform it.

Assuming θ̂1|1 + θ̂0|0 − 1 > 0 (it usually is)

[L, U ] =



(LW − (1 − θ̂0|0))

(θ̂1|1 + θ̂0|0 − 1)
,
(UW − (1 − θ̂0|0))

(θ̂1|1 + θ̂0|0 − 1)


 . (5)
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Example 3 Abortion example (n = 370).

Sensitivity θ1|1 = 13/24 and specificity θ0|0 = 23/24.

Method Estimate SE Wald Interval Exact Interval

Naive .1514 .0186 (.1148,.1878) (.1161,.1920)

Corrected .2194 .0373 (.1463, .2924) (.1488, .3007)

2.3.1 Correction using external validation data.

- nV independent observations (not involving units from the main study), on

which W and X are both observed.

- An important assumption is that the misclassification model is the same

for this data as the main data; that is, the measurement error model is

exportable.

Representation of external validation data
W

0 1

X 0 nV 00 nV 01 nV 0.

1 nV 10 nV 11 nV 1.

nV.0 nV.1 nV

Estimated specificity: θ̂0|0 = nV 00/nV 0.

Estimated sensitivity: θ̂1|1 = nV 11/nV 1.

π̂ =
pW − (1 − θ̂00)

θ̂00 + θ̂11 − 1
.

This is the Maximum Likelihood Estimate (MLE) of π if 0 ≤ π̂ ≤ 1.
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An “exact” approach: Get confidence intervals for each πW , θ0|0 and

θ1|1 and get a confidence set for π by using the minimum and maximum value

of π computed over πW , θ0|0 and θ1|1 ranging over their intervals. If each of

the intervals has confidence coefficient 1−α∗, the confidence coefficient for the

interval for π is ≥ (1 − α∗)3.

Delta Method/Approximate normal based interval:

π̂ = Z1/Z2, where Z1 = pW − (1 − θ̂00), Z2 = θ̂00 + θ̂11 − 1

Account for uncertainty in estimates of sensitivity and specificity to get the

approximate variance

V (π̂) ≈
1

(θ0|0 + θ1|1 − 1)2

[
V (Z1) − 2πcov(Z1, Z2) + π2V (Z2)

]

V (Z1) = V (pW ) + V (θ̂00) =
πW (1 − πW )

n
+

θ0|0(1 − θ0|0)

nV 0.

V (Z2) = V (θ̂00 + θ̂11) =
θ0|0(1 − θ0|0)

nV 0.
+

θ1|1(1 − θ1|1)

nV 1.

Cov(Z1, Z2) = V (θ̂00) =
θ0|0(1 − θ0|0)

nV 0.

Get estimated variance σ̂2
π̂, by replacing parameters in σ2

π̂ by estimates and

use approximate confidence interval π̂ ± zα/2σ̂π̂.

Fieller Method: Use Fieller’s approach for getting confidence set (usually

an interval) for a ratio.
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Bootstrapping.

For the bth bootstrap sample, b = 1, . . . , B, where B is large:

1. Generate pwb = Tb/n, θ̂0|0b = nV 00b/nV 0. and θ̂1|1b = nV 11b/nV 1., where Tb,

nV 00b and nV 11b are generated independently as Bin(n, pw), Bin(nV 0., θ̂0|0)

and Bin (nV 1., θ̂1|1), respectively.

2. Use the generated quantities to obtain π̂b = (pwb−(1− θ̂0|0b))/(θ̂0|0b+θ̂1|1b−

1) (truncated to 0 or 1 if necessary).

3. Use the B bootstrap values π̂1, . . . , π̂B to obtain bootstrap estimates of bias

and standard error for π̂, and to compute a bootstrap confidence interval.

Here, simple bootstrap percentile intervals will be used.
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Estimation of prevalence in HIV example. Cor-K refers to corrected es-

timates and intervals treating the misclassification rates as known, while

Cor-U accounts for uncertainty in the estimated misclassification rates.

Boot indicates the bootstrap analysis. Bootstrap means are .0369 and -

.0274 for 4 and 22 false positives, respectively. Confidence intervals are

95% Wald intervals except for the bootstrap where they are percentile in-

tervals.

Method Est. SE CI Fieller Exact

Naive .049 .0033 (.043, .055) (.043, .056)

4 false positives: θ̂1|1 = .977, θ̂0|0 = .986

Cor-K .0369 .0033 (.030, .043) (.030, .044)

Cor-U .0369 .0075 (.022,.052) (.022, .052) (.002, .047)

Boot .0075 (.021, .050)

22 false positives: θ̂1|1 = .977, θ̂0|0 = .926

Cor-K -.0278 .0036 (-.035, -.021) (-.035, -.020)

Cor-U -.0278 .0177 (-.062, .007) (-.064, .006) (-.098, .004)

Boot .0179 (-.065, .006)
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2.3.2 Correcting using internal validation data

Observe Wi on all n units. Also observe Xi on random sample of size nV .

Representation of main study and internal validation data.

W

0 1

X = 0 nV 00 nV 01 nV 0.

1 nV 10 nV 11 nV 1.

nV.0 nV.1 nV

? nI0 nI1 nI

n.0 n.1 n

Could mimic what was done with external validation data, using estimated

misclassification rates, but this is inefficient. More efficient approach is to use

the estimated reclassification rates

λ̂1|1 = nV 11/nV.1 and λ̂0|0 = nV 00/nV.0

and

π̂r = pW (λ̂1|1 + λ̂0|0 − 1) + 1 − λ̂0|0.

This is the maximum likelihood estimator (MLE) as long as 0 < π̂r < 1.

SE(π̂r) =
[
p2

W V̂ (λ̂1|1) + (pW − 1)2V̂ (λ̂0|0) + (λ̂0|0 + λ̂1|1 − 1)2V̂ (pw)
]1/2

(6)

where V̂ (λ̂1|1) = λ̂1|1(1−λ̂1|1)/nV.1, V̂ (λ̂0|0) = λ̂0|0(1−λ̂0|0)/nV.0, and V̂ (pW ) =

pW (1− pW )/n. A Wald confidence interval for π is given by π̂r ± zα/2SE(π̂r).
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Bootstrapping. With the validation sample chosen as a random sample

from the main study units, the bootstrap can be carried out as follows. For the

bth bootstrap sample, b = 1, . . . , B:

1. For i = 1 to n generate Wbi distributed Bernoulli (0 or 1) with P (Wbi =

1) = pw.

2. For i = 1 to nV generate Xbi distributed Bernoulli, with P (Xbi = 1) equal

to 1 − λ̂0|0 = λ̂1|0 if Wbi = 0, and equal to λ̂1|1 if Wbi = 1.

3. Calculate π̂rb = pwb(λ̂1|1b + λ̂0|0b − 1) + 1− λ̂0|0b which is the estimate of π

based on the reclassification rates for the bth bootstrap sample.

4. Use the B bootstrap values to obtain bootstrap inferences.

Exact confidence interval. Using Bonferonni’s inequality, form 100(1−

α/3) % confidence intervals for πw, λ1|1 and λ0|0 based on the binomial (or

modifications of it). Confidence set for π is formed by value of πW (λ1|1 +λ0|0−

1) + 1 − λ0|0 as the three parameters range over their respective intervals.
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Smoking Example: Estimation of proportion of heavy smokers.

The estimated reclassification rates are

λ̂0|0 = 24/30 = .8 and λ̂1|1 = 18/20 = .9

Method Estimate SE 95% Wald Interval 95% Exact Interval

Naive .44 .0351 (0.3712, .5088) ( .3680, 0.5118)

Corrected .508 .0561 (.3980,.6180) (.0982, .9502)

Bootstrap .509(mean) .0571 95% Bootstrap CI (.3973,.6213)

- The bootstrap estimate of bias (.509 - .508) is small.

- The “exact” corrected interval, which is conservative, is large, and is not

recommended given the relatively large sample sizes involved.

Extensions

• Handling two-phase/designed double sampling with internal validation (meth-

ods above still good except bootstrap needs modification.)

• Finite population adjustments.

• Multiple measures (rather than validation).
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More than two categories.

M ≥ 2 categories with πx = P (X is in category x).

πππ′ = (π1, . . . πM)

πM = 1 − π1 − . . . − πM−1.

Observed W could have a different number of categories but here assume it

has M categories also with

P (W = w|X = x) = θw|x.

γw = P (Wi = w) =
∑M

x=1 θw|xπx.

With γγγ′ = (γ1, . . . , γM) then

γγγ = ΘΘΘπππ and πππ = ΛΛΛγγγ,

where ΘΘΘ has θw|1, . . . θw|M in the wth row.

Similarly, ΛΛΛ is a matrix of reclassification probabilities, using

λx|w = P (X = x|W = w).

Vector of naive proportions, pW , estimate ΘΘΘπππ rather than πππ.

Bias = (ΘΘΘ − I)πππ where I is an identity matrix.
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If we have estimated misclassification rates from external validation data

π̂ππ = Θ̂ΘΘ
−1

pW .

With internal validation data the maximum likelihood estimator (assuming

all components of π̂ππr are between 0 and 1) is π̂ππr = Λ̂ΛΛp, where p is the vector

of proportions formed using all of the observations.

Can get analytical expressions for the covariance of either π̂ππ or π̂ππr using theory

at end of Ch. 3. See also Greenland (1988) and Kuha et al. (1998).

Mapping example. To illustrate consider the mapping validation data

given in Example 3 and suppose there is separate random sample of an area

with 1000 pixels yielding proportions p′
W = (.25, .10, .15, .20, .30), where .25 is

the proportion of pixels that are sensed as water, etc. The combined proportions

for W over the main and validation data are p′ = (.208, .181, .175, .183, .245).

From the validation data, the estimated misclassification and reclassification

rates are

Θ̂ΘΘ =




0.961 0.005 0.010 0.008 0.016

0.004 0.921 0.018 0.020 0.037

0.008 0.035 0.833 0.061 0.063

0.033 0.014 0.072 0.817 0.064

0.030 0.049 0.054 0.080 0.787



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and

Λ̂ΛΛ =




0.918 0.005 0.008 0.030 0.040

0.004 0.899 0.030 0.011 0.056

0.010 0.020 0.831 0.066 0.073

0.008 0.024 0.064 0.788 0.115

0.012 0.034 0.051 0.047 0.856




.

Treating the validation data as external and internal respectively, leads to

π̂ =




0.251

0.087

0.134

0.195

0.337




and π̂r =




0.209

0.185

0.181

0.191

0.243




.

Treating validation data as external. 1000 bootstrap samples.

Estimate Bootstrap

TYPE Naive Corrected SE 90% CI

Water 0.25 0.251 0.015 (0.227, 0.275

BareGround 0.1 0.087 0.011 (0.069, 0.105)

Deciduous 0.15 0.134 0.015 (0.111,0.158)

Coniferous 0.2 0.195 0.017 (0.167, 0.224)

Urban 0.3 0.337 0.021 (0.302, 0.371)
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3 Misclassification in two-way tables

Example 1: Antibiotics/SIDS. From Greenland (1988). Case-control study

of the association of antibiotic use by the mother during pregnancy, X , and the

occurrence of sudden infant death syndrome (SIDS), Y . W = antibiotic use

based on a self report from the mother.

Validation study of 428 women. X = from medical records.

Antibiotic use and SIDS example.

MAIN STUDY

Y

Controls(0) Cases(1)

W No Use (0) 479 442

Use (1) 101 122

580 564

VALIDATION DATA

Control (Y=0) Cases (Y=1)

X X

0 (no use) 1 (use) 0 (no use) 1 (use)

W = 0 (no use) 168 16 143 17

1 (use) 12 21 22 29

180 37 165 46

For controls (Y = 0) estimated specificity and sensitivity are .933 and .568

For cases (Y = 1), .867 and .630.

Suggests misclassification may be differential.
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Accident Example. Partial data from Hochberg (1977). Look at seat

belt use and injury, accidents in North Carolina in 1974-1975 with high damage

to the car and involving male drivers.

Error prone measures (from police report):

D (1 = injured, 0 = not ) and W ( 0 = no seat belt use, 1 = use).

True values (based on more intensive inquiry):

Y (injury) and X (seat-belt use).

MAIN STUDY (error-prone values)

D

No injury(0) Injured(1) Prop. inj.

W No Seat Belt (0) 17476 6746 2422 .278

Seat Belt (1) 2155 583 2738 .213

VALIDATION DATA

D = 0 D = 1

Y X W= 0 W= 1 W = 0 W = 1

0 0 299 4 11 1

0 1 20 30 2 2

1 0 59 1 118 0

1 1 9 6 5 9
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Common ecological settings.

X = habitat type or category (may be different types or categories formed

from a categorizing a quantitative measure; e.g., low, medium or high level of

vegetation cover) or different geographic regions.

Y = outcome; presence or absence of one or many “species”, nesting success,

categorized population abundance, etc.
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3.1 Models for True values

There are three formulations:

• joint model for X and Y

γxy = P (X = x, Y = y).

Y

0 1

X 0 γ00 γ01 γ0.

1 γ10 γ11 γ1.

γ.0 γ.1 1

• The conditional model for Y given X , which is specified by

πx = P (Y = 1|X = x),

Y

0 1

x 0 1 − π0 π0

1 1 − π1 π1

• The conditional model for X given Y , specified by

αy = P (X = 1|Y = y)

y

0 1

X 0 1 − α0 1 − α1

1 α0 α1
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Three types of study.

• Random Sample.

• “Prospective” or ”cohort” study, pre-stratified on X .

Can only estimate π’s and functions of them

• “Case-Control” study, pre-stratified on Y

Can only estimate α’s and functions of them

Relative Risk =
π1

π0

Odds Ratio = Ψ =
π1/(1 − π1)

π0/(1 − π0)
=

π1(1 − π0)

π0(1 − π1)
.

OR ≈ R.R. if π0 and π1 are small. (These can be defined in terms of γ’s if

have a random sample.

π1(1 − π0)

π0(1 − π1)
=

α1(1 − α0)

α0(1 − α1)
=

γ11γ00

γ01γ10
.

Can estimate the odds ratio from a case-control study.

X is independent of Y ⇔ π0 = π1 ⇔ α0 = α1 ⇔ OR = 1.

Tested via Pearson chi-square, likelihood ratio or Fisher’s exact test.
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Observed main study data

D

0 1

W 0 n00 n01 n0.

1 n10 n11 n1.

n.0 n.1 n

Observed Proportions from naive 2 × 2 table.

Proportion Quantity Naive Estimate of:

Overall pwd = nwd/n γwd

Row pw = nw1/nw. πw

Column ad = n1d/n.d αd

The naive estimator of the odds ratio

Ψ̂naive =
a1(1 − a0)

a0(1 − a1)
=

n11n00

n10n01
=

p1(1 − p0)

p0(1 − p1)

Other naive estimators are similarly defined.

There are a huge number of cases based on combining

• Sampling design

• Whether one or both of the variables are misclassified

• Whether validation data is internal or external

• If internal, is a random sample or a two-phase design used.
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3.2 Models and biases

Error in one variable (X) with other perfectly measured. With change in

notation this handles error in Y only (e.g., replaces αj with πj). This will

illustrate the main points.

Observe W instead of X . General misclassification probabilities are given by

θw|xy = P (W = w|X = x, Y = y).

Differential M. Error: θw|xy depends on y.

Nondifferential M. Error: θw|xy = θw|x (doesn’t depend on y.)

θ1|1y = sensitivity at y. θ0|0y = specificity at y.

Biases of naive estimators: RS or stratified on y.

ay (proportion of data with Y = y at W = 1): naive estimator of αy =

P (X = 1|Y = y). E(ay) = µy, where

µ0 = θ1|00 + α0(θ1|10 + θ0|00 − 1) and µ1 = θ1|01 + α1(θ1|11 + θ0|01 − 1).

With nondifferential misclassification

µ0 = θ1|0 + α0(θ1|1 + θ0|0 − 1) and µ1 = θ1|0 + α1(θ1|1 + θ0|0 − 1)

µ1 − µ0 = (α1 − α0)(θ1|1 + θ0|0 − 1).

µ1 = µ0 is equivalent to α0 = α1 (independence) under non-differential

misclassification.
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• Naive estimator of α1 − α0 estimates µ1 − µ0.

• With nondifferential misclassification in one variable and no misclassi-

fication in the other, naive tests of independence are valid in that they

have the correct size (approximately). With differential misclassifica-

tion these tests are not valid.

Bias in naive estimators of odd-ratio.

The naive estimator of the odd ratio, Ψ̂naive = a1(1 − a0)/a0(1 − a1), is a

consistent estimator of

Ψnaive =
µ1(1 − µ0)

µ0(1 − µ1)
.

• The bias is difficult to characterize. It may go in either direction, either over

or under estimating the odds-ratio (on average), when the misclassification

is differential.

• With nondifferential misclassification as long as θ1|1 + θ0|0 − 1 > 0 (which

will almost always hold) the naive estimator is biased towards the value of

1 in that either 1 ≤ Ψnaive ≤ Ψ or Ψ ≤ Ψnaive ≤ 1.( Gustafson (2004,

Section 3.3))

• Bias results are asymptotic/approximate. May not work for small samples.

No guarantee of direction in a specific sample (see Jurek et al. (2005)).
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Plot of limiting value of naive estimator.

• odds ratio Ψ = .5, 1, 1.5 or 2.

• α1 = .05 to .95 by .3 ( α0 to yield the desired Ψ).

• Sensitivity and specificity ranged from .8 to 1 by .5. Taken equal for non-

differential cases.
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Error in both variables.

The general misclassification model is

θwd|xy = P (W = w, D = d|X = x, Y = y).

If misclassification is both nondifferential and independent, P (W = w, D =

d|x, y) = θwd|xy = θw|xθ
∗
d|y, with

θw|x = P (W = w|X = x) and θ∗d|y = P (D = d|Y = y).

For a random sample, it is relatively easy to address bias in the naive

estimators. The naive estimate of γwv is pwd with

E(pwd) = µwd =
∑

x

∑

y
θwd|xyγxy. (7)

This yields the bias in pwd as an estimator of γwd and can be used to determine

biases (sometimes exact, often approximate) for other quantities in the same

manner as in the previous sections.

For example, the approximate bias in the naive estimate of π1 − π0 is

µ11

µ1.
−

µ01

µ0.
− (π1 − π0)

and for the odd-ratio is
µ11µ00

µ01µ10
−

γ11γ00

γ01γ10
.

Bias expressions are complicated. No general characterizations of the bias.

More complicated expressions and derivations if stratify on a one of the mis-

classified variables.
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3.3 Correcting using external validation data.

The general approach using external data.

• p = vector of proportions from main study (either cell proportions or con-

ditional proportions.)

• φφφ = parameters of interest (what p naively estimates.)

E.g., p′ = (p00, p01, p10, p11) and φφφ′ = (γ00, γ01, γ10, γ11).

• Find E(p) = b + Bφφφ, where b and B are functions of the misclassification

rates. In some cases b is 0.

• Estimate misclassification rates, and hence, b and B, using external valida-

tion data.

• Get corrected estimate

φ̂φφ = B̂−1(p− b̂).

This feeds into other estimates (e.g., odds ratios.)

• Getting an expressions for Cov(φ̂φφ) is “straightforward” in principle, but can

be tedious. There are exact expression are available for some special cases.

• Bootstrapping: Resample main study data and external validation (similar

to with one proportion).
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Back to misclassification in X only.

External Validation data at Y = y.

W

0 1

X = 0 nV 00(y) nV 01(y) nV 0.(y)

1 nV 10(y) nV 11(y) nV 1.(y)

nV.0(y) nV.1(y) nV (y)

θ̂1|1y = nV 11(y)/nV 1.(y) (estimated sensitivity atY = y)

θ̂0|0y = nV 00(y)/nV 0.(y) (estimated specificity atY = y),

θ̂0|1y = 1 − θ̂1|1y and θ̂1|0y = 1 − θ̂0|0y

With non-differential misclassification, have θ̂1|1y = θ̂1|1, etc.

Suppose the design is either a random sample or case-control with α’s or the

odds-ratio of primary interest.

Recall: With a change of notation this covers the case of misclassification of

a response over perfectly measured categories (for RS or prospective study).

α̂0 = (a0 − θ̂1|00)/(θ̂1|10 − θ̂1|00) and α̂1 = (a1 − θ̂1|01)/(θ̂1|11 − θ̂1|01)

For nondifferential misclassification, replace θ̂1|10 with θ̂1|1, etc.



3 MISCLASSIFICATION IN TWO-WAY TABLES 34

• Differential misclassification:

cov(α̂0, α̂1) = 0

V (α̂0) ≈
1

∆2
0

[
V (a0) + (1 − α0)

2V (θ̂1|00) + α2
0V (θ̂1|10)

]

V (α̂1) ≈
1

∆2
1

[
V (a1) + (1 − α1)

2V (θ̂1|01) + α2
1V (θ̂1|11)

]

where V (ay) = µy(1 − µy)/n.y, V (θ̂1|xy) = θ1|xy(1 − θ1|xy)/nV x.(y),

∆0 = θ1|10 − θ1|00, and ∆1 = θ1|11 − θ1|01.

• Non-differential

∆0 = ∆1 = ∆ = θ1|1 − θ1|0, while nV x.(y) is replaced by nV x..

cov(α̂0, α̂1)) ≈
1

∆2

[
(1 − α0)(1 − α1)V (θ̂1|0) + α0α1V (θ̂1|1)

]
.

V (α̂0 − α̂1)) = V (α̂0) + V (α̂1) − 2cov(α̂0, α̂1).

The estimate of L = log(OR) is

L̂ = log(α̂1) + log(1 − α̂0) − log(α̂0) − log(1 − α̂1).

(Common to first get a confidence interval for L and then exponentiate to get

CI for odds ratio.)

V (L̂) ≈
V (α̂0)

α2
0(1 − α0)2

+
V (α̂1)

α2
1(1 − α1)2

− 2
cov(α̂0, α̂1)

α0(1 − α0)α1(1 − α1)
. (8)
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SIDS/Antibiotic Example. Case/control study.

θ̂0|00 = .933 = estimated specificity at y = 0,

θ̂1|10 = .568 = estimated sensitivity at y = 0,

θ̂0|01 = .867 = estimated specificity at y = 1, and

θ̂1|11 = .630 = estimated sensitivity at y = 1.

Differential Misclassification

Quantity Naive Corrected SE Wald CI Boot SE Boot CI

α0 .174 .215

α1 .216 .167

Odds ratio 1.309 .7335 .403 (.25,2.15) .532 (.167,2.17)

nondifferential Misclassification

Quantity Naive Corrected SE Wald CI Boot SE Boot CI

α0 .174 .150

α1 .216 .234

Odds ratio 1.309 1.73 .555 (.92,3.24) .222 (.963, 4.00)

• The assumption of nondifferential misclassification is questionable.

• As Greenland (1988) illustrated and discussed, allowing differential misclas-

sification produces very different results.

• Under differential misclassification the bootstrap mean is .8260 leading to

a bootstrap estimate of bias in the corrected estimator of .8260 - .7335 =

.0925.

• The calculations for the example were calculated using SAS-IML. Certain

aspects of the analysis can also be carried out using the GLLAMM procedure

in STATA; see Skrondal and Rabe-Hesketh (2004).



3 MISCLASSIFICATION IN TWO-WAY TABLES 36

External data with both Misclassified.

3.4 Error in X and Y both

E




p00

p01

p10

p11




=




θ00|00 θ00|01 θ00|10 θ00|11

θ01|00 θ01|01 θ01|10 θ01|11

θ10|00 θ10|01 θ10|10 θ10|11

θ11|00 θ11|01 θ11|10 θ11|11







γ00

γ01

γ10

γ11




.

In the most general case there are 12 distinct misclassification rates involved,

since each column of B sums to 1.

γ̂γγ = B̂−1p. (9)

Cov(θ̂θθ) and Cov(p) can be obtained using multinomial results. These can be

used along with multivariate delta method to obtain an approximate expression

for Cov(γ̂γγ) and to obtain approximate variances for the estimated π’s, their

difference, the odds ratio, etc. Example below only utilizes the bootstrap for

obtaining standard errors and confidence intervals.
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Accident Example. Treat validation data as external, with both variables

measured with error.

For bootstrapping, first a vector of main sample counts is generated using

a multinomial with sample size nI = 26960 and a vector of probabilities

p = (0.6482, .2502, .0799, .0216) based on the observe cell proportions. The

validation data is generated by generating a set of counts for each (x, y) com-

bination using a multinomial with sample size equal to nV xy, the number of

observations in validation data with X = x and Y = y, and probabilities given

by the estimated reclassification rates associated with that (x, y) combination.

π0 and π1 are probability of injury without and with seat belts, respectively.

Estimates Bootstrap Analysis

Parameter Naive Cor. Mean Median SE 90% CI

γ00 .648 .508 0.505 0.507 0.0278 ( 0.460,0.547)

γ01 .250 .331 0.329 0.329 0.027 (0.289,0.369)

γ10 .080 .110 0.108 0.108 0.025 (0.071, 0.148)

γ11 .022 .051 0.060 0.053 0.063 (0.026,0.104)

π0 .279 .395 0.394 0.392 0.031 (0.350, 0.445)

π1 .213 .319 0.344 0.333 0.135 (0.160, 0.571)

π1 − π0 -.066 -.076 -0.050 -0.070 0.147 (-0.252, 0.198)

NAIVE: π̂0 = .2785, π̂1 = .2129, estimated difference = -.0656,

SE = .0083, 90% confidence interval of (−0.0793,−0.0518).
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3.5 Correcting using internal validation data.

General Strategies

• Use the validation data to estimate the misclassification rates then correct

the naive estimators as above for external data. Sometimes referred to as

the matrix method.

• Weighted average approach (assuming a random subsample). Use true val-

ues from validation data to get estimates in usual fashion and to estimate

misclassification rates. Then correct estimates from part of main study that

is not validated (as above using external validation) and use a weighted av-

erage.

• Correct using estimated reclassification rates. This usually produces the

MLEs and is more efficient. Can be used with designed two-phase studies.

Sometimes called the inverse matrix method (ironically).

Illustrate last approach here with overall random sample. (Same develop-

ments work for other cases with redefinition of γγγ, ΛΛΛ, µµµ and p)

Error in X only: P (X = x|W = w, Y = y) = λx|wy

γxy = P (X = x, Y = y) =
∑

w
λx|wyµwy, µwy = P (W = w, Y = y).
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γγγ =




γ00

γ10

γ01

γ11




=




λ0|00 λ0|10 0 0

λ1|00 λ1|10 0 0

0 0 λ0|01 λ0|11

0 0 λ1|01 λ1|11







µ00

µ10

µ01

µ11




= ΛΛΛµµµ.

Error in X and Y both: P (X = x, Y = y|W = w, D = d) = λxy|wd

γγγ =




γ00

γ01

γ10

γ11




=




λ00|00 λ00|01 λ00|10 λ00|11

λ01|00 λ01|01 λ01|10 λ01|11

λ10|00 λ10|01 λ10|10 λ10|11

λ11|00 λ11|01 λ11|10 λ11|11







µ00

µ01

µ10

µ11




= ΛΛΛµµµ.

µwd = P (W = w, D = d) and λwd|xy = P (X = x, Y = y|W = w, D = d).

E(p) = µµµ (p contains cell proportions.)

γ̂γγ = Λ̂ΛΛp.

• Cov(γ̂) obtained using the delta method in combination with Cov(p) and

the variance-covariance structure of the γ̂’s (from binomial and multinomial

results.)

Cov(γ̂γγ) = ΣΣΣγ̂ ≈ A + ΛΛΛCov(p)ΛΛΛ′

A is a 4 × 4 matrix with (j, k)th element equal to µµµ′Cjkµµµ, with Cjk =

cov(Zj,Zk), Z′
j =e jth row of Λ̂ΛΛ.
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Accident Example with internal validation data. Treated as overall

random sample with both variables misclassified.

nI = 26969 cases with W and D only.

nV = 576 validated cases.

Λ̂ΛΛ =




0.7726098 0.0808824 0.097561 0.0833333

0.1524548 0.8676471 0.0243902 0

0.0516796 0.0147059 0.7317073 0.1666667

0.0232558 0.0367647 0.1463415 0.75




Naive analysis: p = (0.6487, .249, .0796, .0216), π̂0 = .2781, π̂1 = .2132,

estimated difference of -.0649 (SE = .0083)

Corrected estimate and bootstrap analysis of accident data with internal

validation and both variables misclassified.

Bootstrap

Variable Estimate Mean SE 90% CI

γ00 .5310 .5310 0.5819 (0.5049,0.5573)

γ01 .3177 .3175 0.3682 (0.2949, 0.3411)

γ10 .0994 .0994 0.1303 (0.0836, 0.1148)

γ11 .0520 .0520 0.0799 (0.0395, 0.0651)

π0 .3743 .3742 0.4267 (0.3481, 0.4001)

π1 .3447 .3433 0.4883 (0.2712, 0.4181)

π1 − π0 -.0297 -.0309 0.1121 (-0.1070, 0.0489)
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4 Simple Linear Regression with additive error

Look at simple linear case first to get main ideas across in simple fashion. Then

move to multiple regression.

Yi|xi = β0 + β1xi + ǫi

E(ǫi) = 0, V (ǫi) = σ2.

The ǫi (referred to as error in the equation) are uncorrelated,

With random Xi there may be interest in the correlation

ρ = σXY /σXσY = β1(σX/σY ).

D = observed value of Y (this is equal to Y if no error in response)

W = measured value of X .

Examples

• Soil nitrogen/corn yield example from Fuller (1987).

Nitrogen content (X) estimated through sampling. Measurement error vari-

ance treated as known. Y treated as measured without error.
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• Gypsy moth egg mass concentrations and defoliation.

Model is defined in terms of values on sixty hectare units. Very costly to get

exact values. Subsample m subplots that are .01 hectare in size.

w = estimated gypsy moth egg mass (w)

d = estimated defoliation (percent)
FOREST mi di σ̂qi wi σ̂ui σ̂uqi

GW 20 45.50 6.13 69.50 12.47 13.20

GW 20 100.00 0.00 116.30 28.28 0.00

GW 20 25.00 2.67 13.85 3.64 1.64

GW 20 97.50 1.23 104.95 19.54 0.76

GW 20 48.00 2.77 39.45 7.95 -2.74

GW 20 83.50 4.66 29.60 6.47 12.23

MD 15 42.00 8.12 29.47 7.16 -5.07

MD 15 80.67 7.27 41.07 9.57 18.66

MD 15 35.33 7.92 18.20 3.88 18.07

MD 15 14.67 1.65 15.80 4.32 -2.07

MD 15 16.00 1.90 54.99 26.28 25.67

MD 15 18.67 1.92 54.20 12.98 -1.31

MD 15 13.33 2.32 21.13 5.40 -3.17

MM 10 30.50 5.65 72.00 26.53 18.22

MM 10 6.00 0.67 24.00 8.84 1.78

MM 10 7.00 0.82 56.00 14.85 -5.78

MM 10 14.00 4.46 12.00 6.11 12.44

MM 10 11.50 2.48 44.00 28.25 8.22
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• Functional case: xi’s treated as fixed values

• Structural case: Xi’s are random and xi = realized value.

Usually assume X1, . . . , Xn independent with E(Xi) = µX , V (Xi) = σ2
X

but can be relaxed.

Naive estimators

β̂1naive = SWD/SWW , β̂0naive = D̄ − β̂1naiveW̄ ,

σ̂2
naive =

∑

i
(Di − (β̂0naive + β̂1naiveWi))

2/(n − 2),

W =
∑

i Wi/n, D =
∑

i Di/n,

SWD =
∑

i(Wi − W̄ )(Di − D)

n − 1
and SWW =

∑
i(Wi − W̄ )2

n − 1
.

4.1 The additive Berkson model and consequences

The “error-prone value”, wi, is fixed value while the true value, Xi, is random.

This occurs when wi is a target “dose” (dose, temperature, speed). There are

numerous nitrogen intake/nitrogen balance studies used to determine nutri-

tional requirements. Target intake is w.
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Xi = wi + ei, E(ei) = 0, and V (ei) = σ2
e .

If error in y then Di = yi + qi with E(qi) = 0 and V (qi) = σ2
q .

Reasonable to assumed qi is independent of ei.

Di = β0 + β1wi + ηi,

where ηi = β1ei + ǫi + qi with

E(ηi) = 0, V (ηi) = β2
1σ

2
e + σ2 + σ2

q .

Key point: with wi fixed, ηi is uncorrelated with wi (since any random

variable is uncorrelated with a constant)

For the additive Berkson model, naive inferences for the coefficients, based

on regressing D on w, are correct. If there is no error in Y , naive predictions of

Y from w, including prediction intervals, are correct. If there is measurement

error in Y then the naive prediction intervals for Y from w are not correct.

- This result depends on both the additivity of the error and the linear model.

If Xi = λ0 + λ1wi + δi, the naive estimate of the slope estimates β1λ1 rather

than β1.
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4.1.1 Additive Error and consequences

Given xi and yi,

Di = yi + qi and Wi = xi + ui

E(ui|xi) = 0, E(qi|yi) = 0,

V (ui|xi) = σ2
ui, V (qi|yi) = σ2

qi and Cov(ui, qi|xi, yi) = σuqi.

qi = measurement error in Di as an estimate of yi

ui = measurement error in Wi as an estimate of xi.

(ui, qi) independent over i, uncorrelated with the ǫi.

• Either of the variables may be observed exactly in which case the appropriate

measurement error is set to 0, as is the corresponding variance and the

covariance.

• The most general form here allows a heteroscedastic measurement error

model in which the (conditional) measurement error variances, or covariance

if applicable, may change with i. This can arise for a number of reasons,

including unequal sampling effort on a unit or the fact that the variance

may be related to the true value.

If X is random then it may be necessary to carefully distinguish the condi-

tional behavior of u given X = x, from the behavior of the “unconditional
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measurement error” W − X . This is a subtle point that we’ll put aside

here.

• Uncorrelatedness of (ui, qi) with ǫi is weaker than independence. It is im-

plied just by the assumption that the conditional means are 0! The variances

could depend on the true values (a type of dependence.)

Constant ME variances/covariance:

σ2
ui = σ2

u, σ2
qi = σ2

q , σ2
uqi = σuq.

The behavior of naive analyses under additive measurement error.

Why should there be any trouble?

With xi fixed,

Di = β0 + β1Wi + ǫ∗i , ǫ∗i = −β1ui + ǫi + qi, (10)

ǫ∗i is correlated with Wi since Cov(Wi, ǫ
∗
i ) = σuqi − β1σ

2
ui. This violates one

of the standard regression assumptions. Can also show E(ǫ∗i |Wi = wi) is not 0

(unless β1 = 0).

The naive estimates of the regression coefficients or the error variance

are typically biased. The direction and magnitude of bias depends on a

variety of things. If there is error in both variables, the correlation in the

measurement errors plays a role.
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Approximate/Asymptotic Biases:

E(β̂0naive) ≈ γ0, E(β̂1naive) ≈ γ1 and E(σ̂2
naive) ≈ σ2

δ .

γ0 = β0 +
µX

σ2
X + σ2

u

(β1σ
2
u − σuq)

γ1 =




σ2
X

σ2
X + σ2

u


 β1 +

σuq

σ2
X + σ2

u

= β1 −




σ2
u

σ2
X + σ2

u


 β1 +

σuq

σ2
X + σ2

u

σ2
δ = σ2 + σ2

q + β2
1σ

2
x − (β1σ

2
x + σuq)

2/(σ2
x + σ2

u).

µX =
∑

i
E(Xi)/n, σ2

X = E(SXX),

SXX =
∑

i(Xi − X)2/(n − 1).

σ2
u =

n∑

i=1
σ2

ui/n, σ2
q =

n∑

i=1
σ2

qi/n and σuq =
n∑

i=1
σuqi/n.

This handles either the structural case (without the Xi necessarily being

i.i.d.) or the functional cases. In the functional case, Xi = xi fixed, so σ2
X =

∑n
i=1(xi − x)2/n and µX =

∑n
i=1 xi/n.

• If the X ’s are i.i.d. normal and the measurement errors are normal with

constant variance and covariances then the result above is exact in the sense

that Di|wi = γ0 + γ1wi + δi where δi has mean 0 and variance σ2
δ .



4 SIMPLE LINEAR REGRESSION WITH ADDITIVE ERROR 48

Special case: No error in the response or uncorrelated

measurement errors.

Important and widely studied special case, with σuq = 0.

• The naive estimate of the slope estimates

γ1 =




σ2
X

σ2
X + σ2

u


 β1 = κβ1,

where

κ =




σ2
X

σ2
X + σ2

u




is the reliability ratio. When β1 6= 0 and σ2
u > 0 then |γ1| < |β1| leading

to attenuation (slope is biased towards 0.)

• γ1 = 0 if and only if β1 = 0, so naive test of H0 : β1 = 0 is essentially

correct.

The general statements that “the effect of measurement error is to un-

derestimate the slope but the test for 0 slope are still okay” are not always

true. They do hold when there is additive error and either there is error

in X only or, if there is measurement error in both variables, the measure-

ment errors are uncorrelated.
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Numerical illustrations of bias with error in X only.

β0 = 0, β1 = 1, µX = 1,σ2
X = 1 and σ = 1.

Truth: κ = 1 (solid line)

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

x

γ 0
+

γ 1
x

1

.5

.7

.9

Shows attenuation in the slope and that a point on the regression line, β0 +

β1x0 is underestimated if x0 > µX = 0 and overestimated if x0 < µX = 0.
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4.2 Correcting For Measurement Error

Long history and a plethora of techniques available depending on what is as-

sumed known; Fuller (1987) and Cheng and Van Ness (1996).

Focus on a simple moment corrected estimator.

Let σ̂2
ui, σ̂2

qi and σ̂uqi denote estimates of measurement error variances and

covariance.

• If the measurement error variances are constant across i, drop the i subscript.

• In some cases (and in much of the traditional literature) it is assumed that

these are known in which case the “hats” would be dropped.

• there are a variety of ways these can be estimated depending on the context.

Replication.

With additive error the measurement error variances and covariances are

often estimated through replicate measurements.

Wi1, . . .Wimi (replicate values of error-prone measure of x)

Wij = xi + uij

E(uij) = 0, V (uij) = σ2
ui1 (per-replicate variance).

Wi =
mi∑

j=1
Wij/mi
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σ2
ui = σ2

ui1/mi, σ̂2
ui = S2

Wi/mi

S2
Wi = sample variance of Wi1, . . . , Wimi

.

Similarly if error in Y ,

σ̂2
qi = s2

Di/ki and (if paired) σ̂uqi = SWDi/mi.

ki = number of replicates of D on unit i ( = mi when paired).

sWdi = sample covariance of replicate values.

REMARK: If the per-replicate measurement error variance is constant, can

use pooling across units without replicates on each individual.

More generally the manner in which estimated variances and covariance are

estimated depends on the manner in which Wi (and Di) are generated on a

unit.

Moment based correction:

β̂1 =
SWD −

∑
i σ̂uqi/n

SWW −
∑

i σ̂2
ui/n

β̂0 = D̄ − β̂1W̄ (11)

ρ̂ =
SWD −

∑
i σ̂uqi/n

(SWW −
∑

i σ̂2
ui/n)1/2(SDD −

∑
i σ̂2

di/n)1/2
.

σ̂2 =
∑

i
(r2

i /(n − 2)) −
∑

i
(σ̂2

qi + β̂2
1 σ̂

2
ui − 2β̂1σ̂uqi)/n,
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where ri = Di − (β̂0 + β̂1Wi).

NOTE: If either SWW −
∑

i σ̂
2
ui/n, which estimates σ2

X , or σ̂2 are negative,

some adjustments need to be made.

Motivation: Conditional on the x′s and y′s,

E(SWD −
∑

i σ̂uqi/n) = Sxy and E(SWW −
∑

i σ̂
2
ui/n) = Sxx.

Or can view as bias correction to naive estimators.

• The corrected estimators are not unbiased, but are they are consistent under

general conditions.

• Under the normal structural model with normal measurement errors and

constant known ME variances/covariances, these are close to the maximum

Likelihood estimators (as long as σ̂2
X = SWW −σ2

u and σ̂2 are nonnegative.)

Differ by divisors being used.

• The sampling properties and how to get standard errors, etc. are discussing

later under multiple linear regression.

• SPECIAL CASE: Uncorrelated measurement errors and constant variance.

β̂1 = β̂1naiveκ̂
−1, κ̂ =

σ̂2
X

σ̂2
X + σ̂2

u

(12)

κ̂ = estimated reliability ratio and σ̂2
X = SWW − σ̂2

u.
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• Regression Calibration Approach: No error in y.

Motivation for RC will come later. With random X and some assumptions

the best linear predictor of X given W is µX +κ(w−µX). (Under normality

and constant measurement error variance this is exactly E(X|W = w).)

If we regress Yi on X̂i = W̄ + κ̂(wi − W̄ ), the estimated coefficients are

identical to the moment corrected estimators.

Bootstrapping.

Bootstrapping needs to be approached carefully (more general discussion

later.)

Data on the ith unit is (Di, Wi, θ̂θθi) where θ̂θθi contains quantities associated

with estimating the measurement error parameters. With error in X only then

θ̂θθi = σ̂2
ui, while with correlated errors in both variables, θ̂θθ

′
i = (σ̂2

ui, σ̂2
qi, σ̂uqi).

One-stage bootstrap. Resample units; i.e., resample from {(Di, Wi, θ̂θθi)}.

Only justified if overall random sample of units and common manner of es-

timating the measurement error parameters on each unit (e.g., equal sampling

effort). Will not work for non random-samples or if sampling effort changes

and is attached to the position in the sample (rather than being attached to

the unit occurring in that position.)
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Two-stage bootstrap. Mimic the whole process (e.g., occurrence of mea-

surement error and of error in the equation.).

Consider error in x only.

x̂i = estimate of xi (could be Wi or predicted value from E(X|w))

On bth bootstrap sample the ith observation is (Ybi, Wbi, θ̂bi) where

Ybi = β̂0 + β̂1x̂i + ebi

where ebi is a generated value having mean 0 and variance σ̂2.

Wbi and θ̂bi are created by mimicking how Wi and θ̂i arose. For example with

replication we would generate replicates Wbij = x̂i + ubij where ubij has mean

0 and per-replicate variance miσ̂
2
ui (so the mean Wbi has variance σ̂2

ui.)

How to generate ebi? Easy if assume normality, but difficult to do nonpara-

metrically. With measurement error can’t just use residuals from the corrected

fit since even with known coefficients

ri = Di − (β̂0 + β̂1Wi) = ǫi + qi − β1ui.

Need to unmix/deconvolve to remove the influence of the measurement error.

4.3 Examples

Defoliation example with error in both variables

Assume a common linear regression model holds over all three forests (more

on this later).
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No bootstrap analysis not provided here. Since the 18 stands were not an

overall random sample and the sample effort is unequal an analysis based on

resampling observations could be misleading.

Method β̂0 β̂1 σ̂2 SE(β̂0) SE(β̂1) v01 CI for β1

NAIVE 10.504 .6125 696.63 11.459 .2122 -2.042 (.163,1.063)

COR-R .8545 .8252 567.25 12.133 .182 -1.918 (.469,1.181)

COR-N .8545 .8252 567.25 15.680 .338 -4.848 (.163,1.488)

Egg Density
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Naive: solid; corrected: = dots; dots = Robust CIs; dashed = normal CIs
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Nitrogen-yield example. Y = corn yield (no error).

X = nitrogen level. Measured with error with σ2
u = 57.

v01 = estimated covariance of β̂0 and β̂1.

Method β̂0 β̂1 σ̂2 SE(β̂0) SE(β̂1) v01 CI (β1)

NAIVE 73.153 .344 57.32 9.951 .137 -1.328 (.034, .654)

COR-N 67.56 .423 49.235 12.56 .176 -2.157 (.081,.766)

COR-R 67.56 .423 49.234 10.787 .146 -1.547 (.137,.710)

COR-RC 67.56 .423 57.32 12.130 .169

Using the rcal function in STATA (non-bootstrap SE’s for intercept are incor-

rect).

. mat input suu=(57) . rcal (yield=) (w:nitrogen), suuinit(suu)

----------------------------------------------------------------

yield | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------+--------------------------------------------------------

w | .4232 .1712 2.47 0.035 .0358 .8105

_cons | 67.56 9.951 6.79 0.000 45.053 90.075

----------------------------------------------------------------

rcal (yield=) (w: nitrogen), suuinit(suu) robust

----------------------------------------------------------------

| Semi-Robust

yield | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------+--------------------------------------------------------

w | .4232 .1491 2.84 0.019 .0860 .7604

_cons | 67.56 8.559 7.89 0.000 48.202 86.926

----------------------------------------------------------------

. rcal (yield = ) (w: nitrogen), suuinit(suu) bstrap brep(5000)

----------------------------------------------------------------

| Bootstrap

yield | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------+--------------------------------------------------------

w |.4232 .1927 2.20 0.056 -.01276 .8591

_cons | 67.56 14.16 4.77 0.001 35.530 99.599
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5 Multiple Linear Regression With Additive Error

5.1 Model and the performance of naive estimators.

Yi|xi = β0 +
p−1∑

j=1
βjxij + ǫi = βββ ′xi∗ + ǫi = β0 + βββ ′

1xi + ǫi

xi = (x1, . . . , xp−1)
′ and x′

i∗ = (1, x1, . . . , xp−1),

βββ′ = (β0, β1, . . . , βp−1) = (β0, βββ
′
1), βββ′

1 = (β1, . . . , βp−1).

ǫi are assumed uncorrelated with mean 0 and variance σ2.

Without an intercept, xi = xi∗ and βββ = βββ1.

In matrix form: Y = Xβββ + ǫǫǫ,

Y




Y1

.

Yn




X =




x′
1∗

.

x′
n∗



, ǫǫǫ =




ǫ1

.

ǫn)




E(ǫǫǫ) = 0 and Cov(ǫǫǫ) = σ2I .

Define

X̄ =
∑

i
Xi/n, Ȳ =

∑

i
Yi/n, S2

Y =
∑

i
(Yi − Ȳ )2/(n − 1),

SXX =
∑

i(Xi − X̄)(Xi − X̄)′

n − 1
and SXY =

∑
i(Xi − X̄)(Yi − Ȳ )

n − 1
.

SXX is a (p − 1) × (p − 1) matrix and SXY is a (p − 1) × 1 vector.
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Mimicking what was done in the simple linear case

µµµX =
n∑

i=1
E(Xi) and ΣΣΣXX = E(SXX). (13)

Accommodates any mix of random and fixed predictors.

- In the structural case with Xi i.i.d., µµµX = E(Xi) and ΣΣΣXX = Cov(Xi).

- In functional case with all fixed predictors, µµµX =
∑

i xi/n and ΣΣΣXX = Sxx =

∑
i(xi − x̄)(xi − x̄)′/(n − 1).

- With a combination of fixed and random predictors the expected value and

covariance of Xi are conditional on any fixed components.

Additive Measurement Error model:

Given yi and xi,

Di = yi + qi, Wi = xi + ui,

with E(qi|yi,xi) = 0, E(ui|yi,xi) = 0,

V (qi|yi,xi) = σ2
qi, Cov(ui|yi,xi) = ΣΣΣui, and Cov(ui, qi|yi,xi) = ΣΣΣuqi.

• Allows error in the response as well as the predictors. If there is no error in

y then σ2
qi = 0 and ΣΣΣuqi = 0.

• If parts of xi are measured without error, the appropriate components of ui

equal 0 and all of the components in ΣΣΣui and ΣΣΣuqi involving that variable

also equal 0.
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• The measurement error variances and covariances are allowed to change

with i with

ΣΣΣu =
n∑

i=1
ΣΣΣui/n, ΣΣΣuq =

n∑

i=1
ΣΣΣuqi/n and σ2

q =
n∑

i=1
σ2

qi/n.

Naive estimators.

β̂ββnaive = (W′W)−1W′D,

W is the same as X but W′
i in place of x′

i.

β̂ββ1naive = S−1
WWSWD, and β̂0naive = D̄ − β̂ββ

′

1naiveW̄,

σ̂2
naive =

∑
i(Di − D̂i)

2

n − p
=

n − 1

n − p

[
S2

D − β̂ββ
′

1naiveSWW β̂ββ1naive

]
,

where D̂i is the fitted value using the naive estimates.

Approximate/asymptotic properties of naive estimators

E(β̂ββ1naive) ≈ γγγ1 = (ΣΣΣXX + ΣΣΣu)
−1ΣΣΣXXβββ1 + (ΣΣΣXX + ΣΣΣu)

−1ΣΣΣuq

E(β̂ββ0naive) ≈ γ0 = β0 + (βββ1 − γγγ1)
′µµµX

E(σ̂2
naive) ≈ σ2 + σ2

q + βββ′
1ΣΣΣXXβββ1 − γγγ′

1(ΣΣΣXX + ΣΣΣu)γγγ1.
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Alternate expression:

E(β̂ββnaive) ≈ γγγ = (MXX + ΣΣΣu∗)
−1(MXXβββ + ΣΣΣuq∗),

MXX =
∑

i
E(Xi∗X

′
i∗)/n = ΣΣΣXX∗ + µµµX∗µµµ

′
X∗,

µµµX∗ =




1

µµµ′
X


 , ΣΣΣXX∗ =




0 0′

0 ΣΣΣXX


 , ΣΣΣu∗ =




0 0′

0 ΣΣΣu


 and ΣΣΣuq∗ =




0

ΣΣΣuq


 .

In functional case MXX = X′X/n.

• Similar to simple linear regression the expectations are exact under the nor-

mal structural model with normal measurement error and constant measure-

ment error covariance matrix. Otherwise they are only approximate/asymptotic.

• If ΣΣΣuq = 0 (i.e., no error in the response or the error in the response is

uncorrelated with any errors in the predictors) then

E(β̂ββ1naive) = γγγ1 = (ΣΣΣXX + ΣΣΣu)
−1ΣΣΣXXβββ1 = κκκβββ1 (14)

where

κκκ = (ΣΣΣXX + ΣΣΣu)
−1ΣΣΣXX (15)

is referred to as the reliability matrix.

• These same approximations work for a number of generalized linear models

(including logistic regression) with additive error in the predictors.
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• Measurement error in one of the variables often induces bias in the

estimates of all of the coefficients including those that are not measured

with error.

Ex. Two predictors x1 and x2 with regression function β0 + β1x1 + β2x2.

x1 subject to measurement error with variance σ2
u. No measurement error in

either x2 or y. Then

Xi =




Xi1

Xi2


 and ΣΣΣXX =




σ2
1 σ12

σ12 σ2
2


 ,

with the components of ΣΣΣXX interpreted accordingly.

Σui =




σ2
u 0

0 0




E(β̂1naive) ≈




σ2
2σ

2
1 − σ2

12

σ2
2(σ

2
1 + σ2

u) − σ2
12


 β1

Bias in β̂1naive ≈




−σ2
2σ

2
u

σ2
2(σ

2
1 + σ2

u) − σ2
12


 β1

Bias in β̂2naive ≈




σ12σ
2
u

σ2
2(σ

2
1 + σ2

u) − σ2
12


 β1.

REMARKS:

• If σ12 = 0, then there is no bias in the naive estimator of β2. If the two

predictors are “correlated” (σ12 6= 0) then the measurement error in x1

induces bias in the estimated coefficient for x2.
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• The bias in the naive estimator of β2 (the coefficient associated with the

variable measured without error) can be either positive or negative. It does

not depend on β2, but does depend on β1.

• If σ12 = 0, then β̂1naive estimates κ1β1, where κ1 = σ2
1/(σ2

1 + σ2
u). This

means the attenuation is the same as in simple linear regression. It is

critical to note that this requires X1 and X2 to be uncorrelated.

Illustration based on values in Armstrong et al.(1989)

x2 = caloric intake (in 100’s of grams), x1 = fiber intake ( in gms).

V (X2) = 33, V (X1) = 72.0, cov(X1, X2) = 16.4 ( correlation of .336).

Measurement error in fiber with measurement variance σ2
u = 70.1.

• In a simple linear regression model with only x1 in it the naive estimator

of the coefficient for x1 is estimating κ×(true coefficient for x1), where

κ = 72/(72 + 70.1) = .507.

In a model with both x1 and x2, then naive estimate of coefficient of x1 is

estimating κ1β1 where κ1 = ((33)(72) − 16.42)/(33(72 + 70.1) − 16.42) =

.4767. In this case, if we interpret the bias (or correct the naive estimator)

by assuming the attenuation factor of .507 applies in the multiple setting,

then we don’t go too wrong. This is because the correlation between X1

and X2 is relatively low.
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• If we change ρ to .8, then κ = .507, but κ1 = .270, while with ρ = .8 and

σ2
u reduced to 10, then κ = .878, but κ1 = .722. This illustrates how it can

be misleading to try and characterize the bias in β1 using κ.

Plot of attenuation factor (κ1) in the naive estimator of the coefficient of

the mismeasured predictor in a model with two variables versus ρ = correla-

tion between the mismeasured variable and the second, perfectly measured,

predictor. The reliability on the predictor by itself is κ = σ2
1/(σ2

1 + σ2
u) =

.9 (solid line), .7 (dotted line) and .5 (dashed line).
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The above can be generalized easily to multivariate X1 and X2 with error in

X1 but not X2.
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Analysis of Covariance: Interested in comparing group means where

individuals (plants, people, etc.) are randomized to groups (e.g., treatments).

The analysis of covariance adjusts for the effect of an additional variable x, (the

covariate), which is associated with the unit.

Example 1: Randomize varieties of tomato plants over an area observe

Y = yield. Use x = measure of soil nitrogen at the location as a covariate.

Example 2: Randomize individuals with high cholesterol to different treat-

ment regimes. Look at change in cholesterol after a certain period of time.

x = person’s level of physical activity (e.g., METS/day.)

For kth individual assigned to group j, model is Yjk = τj +βxxjk +ǫjk, xjk =

covariate.

µj = population mean for group j = the expected average response if all

units in the population get treatment j.

With randomization µj = τj + βxµX , where µX is the population mean of

the covariate.

The τj are the adjusted group means; i.e., τj = µj − βxµX .
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Can show that the dummy variables indicating group membership and the

covariate are uncorrelated over the randomization. This is because the expected

value of the covariate given the group assignment is always µX .

In the standard analysis of covariance model, which involves random-

ization to treatment groups and a constant coefficient for the covariate

in each group, measurement error in the covariate does not influence in-

ferences for the τ ’s and functions of them. In particular inferences for

contrasts in the group means (e.g., testing equality of group means and

estimating difference in group means) are correct.

It is important to notice however that the naive estimators of the group means

are not unbiased since τ̂j,naive + β̂xnaivex̄ is a biased estimator of µj.
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5.2 Correcting for Measurement Error

Moment correction: Generalizes the result for simple linear regression case:

β̂ββ1 = Σ̂ΣΣ
−1
XXΣ̂ΣΣXY and β̂0 = D̄ − β̂ββ

′
1W̄,

Σ̂ΣΣXX = SWW − Σ̂ΣΣu and Σ̂ΣΣXY = SWD − Σ̂ΣΣuq (with no error in the response

Σ̂ΣΣXY = SWD).

Motivated by E(SWW ) = ΣΣΣXX + ΣΣΣu and E(SWD) = ΣΣΣXY + ΣΣΣuq.

Alternate form

β̂ββ = M̂−1
XXM̂XY

where

M̂XX =
W′W

n
− cΣ̂ΣΣu∗ and M̂XY =

W′D

n
− cΣ̂ΣΣuq∗,

Σ̂ΣΣu∗ =




0 0′

0 Σ̂ΣΣu




The constant c can be taken to be either c = 1 or c = (n−1)/n. c = (n−1)/n

yields estimators above.

σ̂2 =
∑

i(Di − (β̂0 + β̂ββ
′
1Wi))

2

n − p
− (σ̂2

q − 2β̂ββ
′

1Σ̂ΣΣuq + β̂ββ
′

1Σ̂ΣΣuβ̂ββ1).

If a divisor of n − 1 is used in the first piece above then

σ̂2 = S2
d − σ̂2

q − β̂ββ
′

1Σ̂ΣΣXX β̂ββ1.
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• These are essentially the maximum likelihood estimates under normality.

• With no error in Y this is equivalent to a regression calibration estimator

obtained by regressing Yi on x̂i = w̄ + κ̂κκ′(wi − w̄).

• Similar to simple linear regression, we need a modification if certain matrices

(e.g., M̂xx) are negative or if σ̂2 < 0.

5.3 Sampling Properties and Approximate Inferences

Small sample properties of β̂ββ difficult to ascertain. Asymptotic properties

treated in detail in Fuller (1987) and summarized in Buonaccorsi (2010).

Under some general conditions

β̂ββ ∼ AN(βββ, ΣΣΣβ)

ΣΣΣβ = M−1
XXHM−1

XX

with

H = Cov(
n∑

i=1
∆∆∆i)/n

2,

∆∆∆i = Wi∗(Di − W′
i∗βββ) − (Σ̂ΣΣuqi∗ − Σ̂ΣΣui∗βββ) = Ti − Zi,

ei = ǫi + qi − u′
iβββ1, Ti = Wi∗ei and Zi = (Σ̂ΣΣuqi∗ − Σ̂ΣΣui∗βββ).

E(∆∆∆i) = 0.

With an estimate Σ̂ΣΣβ, can use large sample normal based Wald methods
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Considerations in the form of ΣΣΣβ and how to estimate it.

• Do we have separately estimated measurement error parameters for each i?

• Are the measurement error parameters constant over i?

• Can the estimated measurement error parameters be treated as known?

• Is ǫi assumed normal?

• Are the measurement errors assumed normal?

• If the measurement error variances and covariances are estimated what can

we say about their sampling properties?

• If replication is involved are the replicates assumed normal?

• Robust estimate

Σ̂ΣΣβ,Rob = M̂−1
XXĤRM̂−1

XX ,

• Normal based with known M.E. parameters ( (3.1.23) in Fuller.)

Σ̂ΣΣβ,N = M̂−1
XXĤNM̂−1

XX ,

ĤR =
∑

i ∆̂∆∆i∆̂∆∆
′

i/n(n − p) and ĤN =
∑n

i=1(Wi∗W
′
i∗σ̂

2
ei + ẐiẐ

′
i)/n

2

∆̂i = Wi∗ri − (Σ̂uqi∗ − Σ̂ui∗β̂ββ) and Ẑi = Σ̂uqi∗ − Σ̂ui∗β̂ββ

σ̂2
ei = σ̂2 + σ̂2

qi − 2β̂ββ
′
1Σ̂ΣΣuqi + β̂ββ

′
1Σ̂ΣΣuiβ̂ββ1.
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- Without measurement error Σ̂ΣΣβ,Rob is White’s robust estimate and Σ̂ΣΣβ,N =

σ̂2(X′X)−1 (the usual covariance estimate for linear regression with constant

variances.)

- There are other possibilities under various assumptions.

Bootstrapping. Same comments made for simple linear regression apply

here.

- Be careful just resampling the units. Only applicable under certain assump-

tions.

- Two stage resampling (mimicking the randomness in original model) is

difficult to do non-parametrically but parametric bootstrap is pretty straight-

forward.

There are a variety of modifications and alternate estimators that can be

considered. These include (but are not limited to)

• Maximum likelihood estimators under normality and particular restrictions

on some parameters (includes orthogonal least squares).

• Small sample modifications.

• Weighted corrected estimators.
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• Estimation using instrumental variables.

Instead of replication or estimated M.E. variances and covariances have an

r × 1 vector of instruments Ri (r ≥ p = number of elements of xi∗).

Variables measured without error are included in Ri, so they are instruments

for themselves. For Ri to be instrumental for xi∗ requires:

1. Ri is uncorrelated with ui, qi and ǫi

2. Ri is correlated with xi∗.

SAS- SYSLIN, STATA-IVREG and other programs will run this.

Some other issues.

• Residual analysis for model assessment

• Prediction
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5.4 Examples

Defoliation example revisited

Allow a different intercept for each forest.

Forest j model: τj + βxx.

Yi = βββ′xi + ǫi, x′
i = (xi1, xi2, xi3, xi), βββ′ = (τ1, τ3, τ3, βx)

xi1, xi2 and xi3 are dummy variables indicating forest membership.

Σui =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 σ2
ui




and Σuqi =




0

0

0

σuqi




.

Naive (SE) Cor SE-R CI-R SE-N CI-N

τ1 39.21 (14.65) 26.86 21.26 (-14.82,68.54) 20.66 (-13.63, 67.35)

τ2 16.78 (10.26) 10.12 11.31 (-12.05, 32.30) 13.26 (-15.86, 36.11)

τ3 -4.49 (12.37) -12.73 12.75 (-37.72, 12.25) 16.31 (-44.70, 19.24)

βx 0.44 (0.19) 0.638 0.239 ( 0.17, 1.11) 0.321 ( 0.01, 1.27)

σ2 455.24 381.87

R: robust standard error. N: “normal” based.

- Substantial correction for attenuation in the estimate of βx from .44 to a

corrected estimate of .64.

- Some relatively large changes in the estimated intercepts. Recall that naive

estimates of coefficients of perfectly measured predictors can be biased. Here

due to different estimated egg mass densities(62.3, 33.6 and 41.6) over the

three different forests, indicating ”correlation” between the dummy variables
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indicating forest stand and the egg mass density.

Hypothesis testing:

Null Hypothesis Naive (Pvalue) Robust (Pvalue) Normal (Pvalue)

βx = 0 2.32 (.036) 2.67 (.008) 1.98 (.047)

τ1 = τ2 = τ2 5.24 (.020) 12.58 (.002) 7.29 (.026)

Σ̂ΣΣβ,naive =




214.75 74.82 92.77 −2.23

74.82 105.34 49.98 −1.20

92.77 49.98 153.02 −1.49

−2.23 −1.20 −1.49 0.04




Σ̂ΣΣβ,rob =




452.17 122.02 220.91 −4.77

122.02 128.03 66.47 −1.31

220.91 66.47 162.52 −2.74

−4.77 −1.31 −2.74 0.06




Σ̂ΣΣβ,norm =




426.75 194.84 234.53 −5.99

194.84 175.77 132.19 −3.37

234.53 132.19 266.06 −4.06

−5.99 −3.37 −4.06 0.10




.
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House price example

Data from DASL (Data and Story Library) in StatLib ( “a random sample

of records of resales of homes from Feb 15 to Apr 30, 1993 from the files

maintained by the Albuquerque Board of Realtors. This type of data is

collected by multiple listing agencies in many cities and is used by realtors

as an information base.”)

Variable Mean SD Min Max

PRICE 1077 383.99 540.00000 2150

SQFT 1667 531.34 837.00000 3750

TAX 793.49 308.18 223.00000 1765

House price is in hundreds of dollars so the mean price is $10,770 (the good

old days). The correlation between recorded square footage and tax level is

.8586.

Regress sale price on square footage and the yearly tax using the 107 (out

of 117) cases that have all three variables assuming square footage is measured

with error having a constant, known measurement error variance, σ2
u.

• The bootstrap is one-stage (resampling cases). 52 out of 5000 bootstrap

samples required modification for some negative matrices.

• Fairly big difference between robust and the “normal” based estimates of

ΣΣΣβ. Probably due to heterocedasticity in the error in the equation. Use

robust or bootstrap methods.
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σu = 175; Cor-R uses robust; Cor-N normal based. Standard errors in

parentheses.

Method Intercept Tax SqFt σ2

Naive: 88.34 (55.81) .721 (.107) .250 (.062) 30314.0

Naive: RobSE 88.34 (87.70) .721 (.178) .250 (.131)

Cor-R: 1.71 (171.05) .46 (.41) .43 (.30) 27094.1

Cor-N: 1.71 (74) .46 (.18) .43 (.11) 27094.1

Bootstrap

Mean(SE) -104.15(241.84) .21 (.59) .61 (.43)

Confidence intervals

Naive: CI (-22.34, 199.01) (.508, .933) (.127,.373)

Cor-R: CI (-333.55,336.98) ( -0.34,1.26) (-0.16, 1.01)

Cor-N: CI (-143.3,146.75) (0.11, 0.81) (0.20, 0.65)

Boot: CI (-628.66, 195.33) (-1.08, 0.96) (0.09,1.56)

STATA analyses using rcal function.

----------------------------------------------------------------

price | Coef. Std. Err t P>|t| [95% Conf. Interval]

-------+--------------------------------------------------------

tax | .46 .3218453 1.43 0.156 -.1777726 1.09869

w | .43 .2236257 1.90 0.060 -.0174522 .8694642

_cons | 1.71 55.80885 0.03 0.976 -108.9563 112.3858

-----------------------------------------------------------------

| Semi-Robust

price | Coef. Std. Err t P>|t| [95% Conf. Interval]

-------+---------------------------------------------------------

tax | .46 .4149749 1.11 0.270 -.362452 1.283369

w | .43 .2979442 1.43 0.156 -.1648285 1.016841

_cons | 1.71 87.70255 0.02 0.984 -172.2027 175.6322

-----------------------------------------------------------------

| Bootstrap

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------+---------------------------------------------------------

tax | .46 .5837385 0.79 0.432 -.6971165 1.618034

w | .43 .4241468 1.00 0.318 -.415093 1.267105

_cons | 1.71 239.2451 0.01 0.994 -472.7173 476.1468

-----------------------------------------------------------------
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Illustration of impact of measurement error on estimated coefficients for tax

and square footage, their correlation and variance in error in the equation as σu

ranged from 0 to 200 in steps of 10 ( reliability ratio, for square footage alone

goes from 1 down to .876.)
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