Handout 3. Numerical descriptive measures (chapter 3)

Graphs provide a global/qualitative description of a sample, but they are imprecise for use in statistical inferences.

We use numerical measures which can be calculated for either a sample (these measures are called statistics) or a population (parameters).

- Measures of location

- Measures of variability

Measures of central tendency (ungrouped data)

- The <u>mode</u>: is the sample value that occurs most frequently.
- The <u>median</u>: is the value that falls in the middle position when the sample values are ordered from the smallest to the largest.
- The mean: is the average value, the balance point.
 - The mode can be computed for both qualitative and quantitative variables.
 - The median and the mean we compute for quantitative variables.

Mode

- A major shortcoming of the mode is that a data set may have none or may have more than one mode, whereas it will have only one mean and only one median.
 - Unimodal: A data set with only one mode.
 - Bimodal: A data set with two modes.
 - Multimodal: A data set with more than two modes.
 When all categories occur with the same frequency, the mode is not defined.

Median: Computations

- The median: is the value in the middle position when the sample values are ordered from smallest to largest.
 - Order the sample values from smallest to largest.
 - Identify the sample size n.
 - Find the value in the position
 - (n+1)/2 if <u>n is odd;</u>
 - Average the values in the position n/2 and n/2 +1 when <u>n is even.</u>
- Exercise 1. Compute the median for the data sets :

Data 1: 2 9 11 5 6 27 Data 2: 7 10 34 6 8

MeanThe mean for ungrouped databy dividing the sum of all values by the
number of values in the data set. Thus,Mean for population data:
Mean for sample data: $\mu = \frac{\sum x}{N}$

 $\frac{1}{x} = \frac{\sum x}{x}$

Population Parameters and Sample Statistics

- A numerical measure such as the mean, median, mode, range, variance, or standard deviation calculated for a population data set is called a population parameter, or simply a **parameter**.
- A summary measure calculated for a sample data set is called a sample statistic, or simply a **statistic**.

Exercise 3

Table 1 lists the total philanthropic givings (in million dollars) by six companies . Find the mean contributions of the six companies

Corporation	Money Given in 2007 (millions of dollars)		
CVS	22.4		
Best Buy	31.8		
Staples	19.8		
Walgreen	9.0		
Lowe's	27.5		
Wal-Mart	337.9		

 $Mean = \frac{22.4 + 31.8 + 19.8 + 9.0 + 27.5 + 337.9}{6} = $74.73 million$ Notice that the charitable contributions made by Wal-Mart are very large compared to those of other companies. Hence, it is an outlier.

If we do not include the charitable givings of Wal-Mart (the outlier), the mean of the charitable contributions of the five companies is :

 $Mean = \frac{22.4 + 31.8 + 19.8 + 9.0 + 27.5}{5} = \22.1 million

Properties

- When a distribution is symmetric, then the mode, the mean, and the median are the same.
- The mode is a meaningful measure of location when you are looking for the sample value with the largest frequency.
- The median gives an idea of the center of the distribution and, compared to the mean, it is less sensitive to unusually large or unusually small values (outliers).
- With very skewed distributions, the median is a better measure of location than the mean.

MEASURES OF DISPERSION FOR UNGROUPED DATA

- Range
- Variance and Standard Deviation

Range = Largest value – Smallest Value

• Disadvantages:

The range, like the mean has the disadvantage of being influenced by outliers. Consequently, the range is not a good measure of dispersion to use for a data set that contains outliers.

Its calculation is based on two values only: the largest and the smallest. All other values in a data set are ignored when calculating the range.

USE OF STANDARD DEVIATION

- Chebyshev's Theorem
- Empirical Rule

Chebyshev's Theorem:

For any number *k* greater than 1, at least $(1 - 1/k^2)$ of the data values lie within *k* standard deviations of the mean.

	k	±ks x	Interval	Proportion in Interval		Tchebysheff	Empirical Rule	
	1	44.9 ±10.73	34.17 to 55.63	31/50 (.62)		At least 0	≈ .68	
	2	44.9 ±21.46	23.44 to 66.36	49/50 (.98)		At least .75	≈ .95	
	3	44.9 ±32.19	12.71 to 77.09	5 ('	0/50 1.00) ↓	At least .89 •Yes. Tch – Theorem	≈ .997 ebysheff's must be	
•Do the actual proportions in the three intervals agree with those given by Tchebysheff's Theorem?							ıy data	
•Do they agree with the Empirical Rule? •Why or why not? •No. Not very well. •The data distribution is not very mound-shaped, but								
skewed right.								

Exercise 6

The length of time for a worker to complete a specified operation averages 12.8 minutes with a standard deviation of 1.7 minutes. If the distribution of times is approximately mound-shaped, what proportion of workers will take longer than 16.2 minutes to complete the task?

95% between 9.4 and 16.2

- 47.5% between 12.8 and 16.2

Approximating s • From Tchebysheff's Theorem and the Empirical Rule, we know that $R \approx 4.6 \text{ s}$ • To approximate the standard deviation of a set of measurements, we can use: $s \approx R/4$ or $s \approx R/6$ for a large data set. R = 70 - 26 = 44 $s \approx R/4 = 44 / 4 = 11$