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In this note we draw together some of the scattered literature dealing
with several partial orderings of affine Weyl groups. Most of the theory
was developed as a tool in the study of modular representations for groups
of Lie type, but here we focus just on an affine Weyl group Wa in its el-
ementary geometric setting while sometimes invoking also its structure as
a Coxeter group. While notation and terminology vary considerably in the
cited sources, the conventions here usually follow [6].

I’m grateful to Florian Herzig for calling my attention to problematic
references needed for applications of modular representation theory to his
current joint preprint posted at [5]. The help of a colleague in translating
Jian-pan Wang’s paper [13] into English is also appreciated.

1 Root systems and Weyl groups

The starting point for construction of an affine Weyl group is a finite Weyl
group W together with an irreducible root system Φ. Here a Weyl group is a
finite (irreducible) reflection group satisfying the crystallographic condition.
Textbook references include [2, VI, §4] and [6, Chap. 4]. We may assume
that W acts faithfully on a finite dimensional real euclidean space V with
inner product 〈λ, µ〉.

In terms of root systems, W arises as the group generated by the re-
flections sαi for some fixed choice of simple roots α1, . . . , α` of Φ; the set
S of these simple reflections generates W as a Coxeter group. For any
α ∈ Φ and λ ∈ V , the reflection sα is given by sαλ := λ− 〈λ, α∨〉α∨, where
α∨ := 2α/〈α, α〉 is the coroot of α. (Only the non-isomorphic root systems
of types B`, C` of rank ` ≥ 3 give rise to isomorphic Weyl groups.)

Fixing a set of simple roots partitions Φ into sets of positive and negative
roots. Since sα = s−α for any root α, we usually work just with α > 0. The
orthogonal hyperplane through 0 is denoted Hα. Removing the finitely many
hyperplanes Hα from V leaves an open set whose |W | connected components
are called Weyl chambers. The closure C of any such chamber C is then a
fundamental domain for the natural action of W on V . Write C+ for the
dominant Weyl chamber: λ ∈ C+ iff 〈λ, α∨〉 > 0 for all α > 0 (or just simple
roots, whose hyperplanes intersect the closure of C+ in its walls).

2 Affine Weyl groups

Now the coroots α∨ generate a lattice in V on which W acts naturally, and
the resulting semidirect product is by definition the affine Weyl group Wa.
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Sources (with varying notation and terminology) include the definitive trea-
tise by Bourbaki [2, Chap. IV], the older paper by Iwahori and Matsumoto
[7, § 1], and my more recent textbook [6, Chap. 4]. Caution: There is a
Langlands dual version which instead uses the root lattice, as in Verma [12]
and many other papers or in the book by Jantzen [10]; this version arises
naturally in modular representation theory but won’t concern us here. This
duality interchanges the affine Weyl groups of types B` and C`, which are
non-isomorphic for ` ≥ 3.

While the semidirect product description of Wa is adequate for some
purposes, the viewpoint of groups generated by reflections is often more
useful. Affine geometry ignores the origin, so we can get infinitely many
translates of Hα by associating to each n ∈ Z a parallel hyperplane Hα,n.
The convention that α > 0 associates to the hyperplane H := Hα,n upper
and lower open half-spaces denoted H+ and H−; these are divided by H.
For example, H+ is obtained by translating the half-space for Hα which
contains α > 0. Denote by H the collection of all these affine hyperplanes.

Now associate to each H ∈ H an affine reflection sH having H as fixed
hyperplane. Since H is uniquely determined by a root α > 0 along with
n ∈ Z, we may write H = Hα,n and sH = sα,n. Explicitly,

sα,n(λ) := sαλ+ nα∨ = λ− (〈λ, α∨〉 − n)α∨.

From the definitions we see that wsα,n = sβ,nw whenever w ∈ W , where
β := wα (which by our convention should then be replaced by −β if β <
0). It turns out that Wa is generated by these affine reflections and is
a Coxeter group relative to the finite generating set Sa consisting of the
simple reflections in S along with one extra reflection s0 := sα̃,1 where α̃ is
the unique highest root.

The connected components of the open set obtained by removing all
hyperplanes in H from V are called alcoves; write A for the set of all these.
Each Weyl chamber is a union of alcoves. A basic fact is that the closure
A of any fixed alcove A is a fundamental domain for the action of Wa on
V . Nonempty intersections of hyperplanes with A are called the walls of A;
there are `+ 1 of these. Call an alcove dominant if it lies in C+. There is a
unique dominant alcove whose closure contains 0, which we denote by A◦.
Its walls are determined by the ` + 1 hyperplanes indexed by Sa. Another
basic fact is that Wa permutes the alcoves in A simply transitively, so alcoves
may be labelled unambiguously as wA◦ for w ∈Wa.
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3 The functions ` and d

In any Coxeter group, such as Wa, the choice of a canonical generating set
of involutions (here Sa) determines a length function ` with `(1) = 0. As in
the case of W , there is a natural geometric interpretation of ` for Wa (which
was developed already by Iwahori–Matsumoto in [7]). First use the simple
transitivity of Wa on A to assign to each alcove A a length `(A) := `(w)
when A = wA◦. Then: For any alcove A ∈ A, `(A) is the number of affine
hyperplanes separating A from A◦. (For an exposition which takes advantage
of Deodhar’s treatment of “root systems” see [6, 4.5].)

A signed version of the length function has also been used extensively
in the literature, for example in Jantzen’s early paper [8, § 6] (see also [10,
II.6.6]). For each α > 0, an alcove A ∈ A lies between two hyperplanes
Hα,nα and Hα,nα+1. Define d(A) :=

∑
α>0 nα ∈ Z. It follows from the

geometric characterization of the length function that −`(A) ≤ d(A) ≤ `(A)
and that d(A) ≡ `(A) (mod 2).

4 Partial orderings of Wa

The ideas special to Wa go back at least as far as Verma’s paper [12, §1].
As before we denote typical alcoves in A by letters such as A,B, sometimes
with added primes or subscripts. (Jantzen originally used the letter C, which
suggests chamber or in German Kammer, but we reserve that term for the
Weyl chambers in V relative to W .)

(1) Every Coxeter group has a natural partial ordering relative to the
length function, called the Bruhat ordering (more accurately, the Chevalley–
Bruhat ordering, since it first arose in Weyl groups relative to Chevalley’s
study of a geometric ordering for Schubert varieties in the flag variety). Any
element of the Coxeter group conjugate to a canonical generator is called a
reflection. In W or Wa this agrees with the respective geometric notion of
orthogonal reflection relative to a root or affine reflection across a hyperplane
H ∈ H.

Initially one writes x ≤ w if x = w or else w = tx for some reflection
t satisfying `(x) < `(w). This generates a partial ordering. The definition
agrees with that obtained by using right multiples by reflections and was
explored in detail by Verma, Deodhar, and others (see for example [6, 5.9]).
It turns out that every (upward) path in the partial ordering from x to w
can be refined to one in which lengths increase by 1 at each step (though
the reflections involved need not have length 1.)
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In the special case of Wa, the bijection between group elements w and
alcoves wA◦ allows one to view the Bruhat ordering as a partial ordering of

A. For this Verma [12] introduces the special notation w′
B
≤ w if B = w′A◦

and A = wA◦, while Wang [13] writes w′ ≤b w.
(2) A more geometric ordering is natural for Wa, as Verma observed. He

defines an affine ordering, starting with the relation B = sA when s = sH
is a reflection (with H ∈ H) for which B ⊂ H− and A ⊂ H+. This defines
an upward reflection from B to A. (Elementwise, for λ ∈ A the definition
translates into the condition that 〈λ, α∨〉 > n if s = sα,n.) In general he

writes B
A
≤ A if B = A or else there is an upward path using affine reflections

from B to A. (Wang also calls this the affine ordering but writes B ≤a A,
while Lusztig just uses the notation B ≤ A in [11, 1/5].)

In his 1977 paper Jantzen [8] (cf. [10, II.6.4–6.5]) introduced a similar
partial ordering of weights (applicable to the alcoves for Wa) as a tool in
modular representation theory, mimicking an earlier “strong linkage” or-
dering of W suggested by representation theory in characteristic 0 (Verma,
BGG, Jantzen). His notation translates as B ↑A, which we also write. Out-
side C+ this differs substantially from the Bruhat ordering on Wa (or A)
relative to the function `: as Verma remarks, if H = Hα,n and B = sHA↑A,
then `(B) < `(A) if n > 0 but `(B) > `(A) otherwise. We distinguish these
two cases by referring to Hα,n as a good hyperplane if n > 0, bad otherwise.
In other words, H is good if it intersects C+ nontrivially, bad otherwise. In
particular, the walls of this Weyl chamber are bad; then the corresponding
reflections sα = sα,0 need to be handled with some care below.

The ordering B ↑A is geometrically natural and behaves well with respect
to the function d, as Jantzen proves in [8, Lemma 4] (cf. [10, II.6.6]):

Lemma. (Jantzen) Given any two distinct alcoves A,B ∈ A with B = sA
for some reflection s, we have B ↑A iff d(B) < d(A).

(3) There is a third useful partial ordering of A, a more restrictive version
of ↑, for which one requires that all reflections involved are relative to good
hyperplanes H. For this relation we write B ↑↑ A, a notation apparently
first used by Ye in [14]. However, Wang [13] calls ↑↑ the strong linkage
ordering and uses the notation ↑ for it, following the usage of Andersen
[1] in the setting of modular representation theory. Later papers quoting
Andersen such as [14, 4] contribute to the notational ambiguity. (We discuss
Andersen’s Proposition 1 in detail below.)
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5 Comparison theorem

As Verma asserted (with some details omitted) in [12], the affine and Bruhat
orderings turn out to coincide on pairs of dominant alcoves. In fact, the
↑↑ ordering also agrees with both of these orderings on dominant alcoves.
(Easy examples show that the three orderings can differ from each other
on some pairs of alcoves.) Apparently the proof of these equivalences was
first completed by Ye [15] (in a paper published only in Chinese), relying
to some extent on case-by-case study of root systems. But a more unified
and thorough treatment was soon given by Wang [13, Thm. 4.3] (also in
Chinese).

Theorem 1. Let A,B ⊂ C+, where A = wA◦ and B = w′A◦ for w,w′ ∈

Wa. Then the three relations B ↑A, B ↑↑A, and w′
B
≤ w are equivalent.

The main issue we focus on here is the subtle implication: B ↑A implies
B ↑↑A whenever A,B are dominant alcoves. (Of course, the reverse implica-
tion follows immediately from the definition of the orderings.) One special
case is easy to analyze directly. Say B ↑A, where both alcoves A,B ⊂ C+

and moreover B = sHA. Since C+ (like any Weyl chamber) is a convex
set in the real topology, a line segment joining a point in A to the reflected
point in B must meet H in another point of C+. In particular, H meets
C+ nontrivially, which by Verma’s characterization ensures that H is good.
Thus B ↑↑A.

Example. If A,B ⊂ C+ and a path involving more than one affine reflection
leads from B up to A, there is no reason why the intermediate alcoves should
be dominant (or the reflecting hyperplanes be good). It is easy to illustrate
this when Wa arises from the Weyl group of type G2. Take α = α1 to be
short and β = α2 to be long. Dominant alcoves other than A◦ can then be
labelled by strings of integers 0, 1, 2 to abbreviate products of the elements
in Sa. Let the alcove B correspond to 10 and reflect it first upward across the
hyperplane Hα,1 to reach the non-dominant alcove labelled 12120 (which has
`-value 5 but d-value just 3). Next reflect upward across the bad hyperplane
Hβ,0 (which defines a wall of C+) to reach the dominant alcove B labelled
by 1210. Notice that the d-values increase by 1 at each step.

In this case we can find an alternate path of the same length within C+,
by reflecting A to the alcove labelled 210 and then to B. But in general the
existence of such a dominant path is far from obvious.
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6 Dominant paths

A second theorem, often discussed in tandem with Theorem 1, deals with the
possible upward paths in one of these orderings between a pair of dominant
alcoves A,B ⊂ C+. The unavoidable problem (as we just saw) is that
some such paths, even those of minimal length, might involve non-dominant
alcoves. However, it turns out that this can always be avoided. Wang
discusses versions of the following theorem, here stated for the affine ordering
[13, Thm. 3.5]:

Theorem 2. Let A,B ⊂ C+, with B ↑A. Then there exist dominant alcoves
Ai satisfying B = A0 ↑A1 ↑ . . .↑Ar = A along with d(A)− d(Ai) = d(A)− i
for all i.

Recalling that d = ` for dominant alcoves, this provides a shortest pos-
sible dominant path in the ↑ ordering. The approaches to a proof in the
literature, including [13], usually obtain it as a byproduct of the proof of
Theorem 1. But it remains to be seen what the most efficient strategy is.
At any rate, there are similar statements for the Bruhat ordering and (in
[1]) for the more restrictive ordering studied by Andersen (using the same
symbol ↑ as Jantzen). Below we revisit Andersen’s variant of Theorem 2,
after recalling a result of Jantzen which he invokes.

7 A key result of Jantzen

The following proposition due to Jantzen appears in his 1977 paper [8,
Satz 9] (and is reproduced in his book [10, II.6.8]):

Proposition (Jantzen) Let A be a dominant alcove. Assume that B :=
sα,nA ↑A by a single good reflection. (Thus B ↑↑A). Use the fact that the
closure of C+ is a fundamental domain for W to find w ∈ W for which
wB ⊂ C+. Then there exist dominant alcoves Ai satisfying wB = A0 ↑A1 ↑
. . .↑Ar = A as well as d(A)− d(Ai) = d(A)− i for all i.

Note that Jantzen only assumes at first that n ≥ 0, but if n = 0 he can
simply choose w = sα = sα,0 and recover wB = A. So in this case nothing
has to be proved. We remark further, based on our previous discussion, that
the ↑ arrow between each pair of dominant alcoves in the statement can be
replaced by ↑↑.
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8 Revisiting a result of Andersen

In his concise paper [1], Andersen refines (using his notion of “strong link-
age”) earlier results on the role of linkage of weights in modular represen-
tation theory, in the setting of sheaf cohomology of line bundles on a flag
variety. As in Verma’s formulation, Andersen uses the Langlands dual ver-
sion of Wa with the root lattice expanded by a prime factor p.

An important step toward the main theorem of [1] is his Proposition 1,
which relies on a partial ordering of weights (or alcoves) which he denotes
by ↑ but with the qualification n ≥ 0. This extra condition is needed in
particular for his application of Jantzen’s result quoted above. He is mainly
concerned with dominant (or almost-dominant) weights, but his use of the
symbol ↑ creates problems in further literature which quotes his result, no-
tably papers by Ye [14] and by Doty–Sullivan [4]. Apart from this, the
conclusion of Andersen’s proof is too briefly written. So we rework the steps
more carefully, in the framework of the usual affine Weyl group Wa (and
with Jantzen’s refinements using the d-function).

Proposition (Andersen) Let A,B ∈ A be dominant alcoves. Assume that
B ↑A relative to a sequence of reflections sα,n for which n ≥ 0. Then there
exist dominant alcoves Ai satisfying B = A0 ↑A1 ↑ . . . ↑Ar = A along with
d(A)− d(Ai) = d(A)− i for all i.

Recalling as before that d = ` for dominant alcoves, we see that the
conclusion connects B with A by a sequence of upward affine reflections in
C+ across the permitted hyperplanes, with the length difference at each step
being +1. As remarked earlier, the case n = 0 becomes trivial for Jantzen’s
method, so we usually ignore this possibility in what follows.

The proof of the proposition involves two basic tools: Jantzen’s proposi-
tion above, along with the following observation: Start with a pair of alcoves
B′ ↑A′ (where A′ ⊂ C+) related by a single affine reflection s = sα,n with
the extra condition n > 0. Using the fact that the closure of C+ is a fun-
damental domain for the action of W , find an element w ∈ W for which
wA′ ⊂ C+. The claim is that (∗) wB′ ↑wA′ by a single good reflection.

The claim follows easily from Andersen’s argument, using the assumption
that n > 0: Since W normalizes the translation lattice in Wa, the definitions
show that ws = sβ,nw with β = wα (hence β∨ = wα∨) while n is unchanged
(see for example [6, Prop. 4.1]). Using this notation, the W -invariance of
the inner product on V then yields the following element-wise computation
for any χ ∈ A′:

〈wχ, β∨〉 = 〈wχ,wα∨〉 = 〈χ, α∨〉 ≥ n > 0.
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Since wχ ∈ C+, this forces β > 0. Next we compute for λ = sα,nχ:

wλ = w(sαχ+ nα∨) = sβwχ+ nβ∨ = sβ,n(wχ),

which by the previous step implies wλ↑↑wχ (via the reflection sβ,n). Return-
ing to the given alcoves, this translates into alcove language as wB′ ↑↑wA′.

Now we can prove the proposition. By assumption, there is a sequence
B = A′0 ↑A′1 ↑ . . .↑A′m = A, using a good reflection (or a reflection across a
Weyl chamber wall) at each step. But the intermediate alcoves A′i are not
necessarily dominant. While d(A′i) ≤ d(A′i+1) at each step, by the lemma of
Jantzen quoted earlier, the respective lengths are less predictable if some of
the alcoves lie outside C+. The idea is to work downward step-by-step (es-
sentially an induction) to get a modified sequence of alcoves, first appealing
to Jantzen’s proposition (which trivializes whenever the translation parame-
ter is 0) and then to Andersen’s observation (∗). Denoting A′m−1 by B′ and
Am = A by A′, Jantzen first provides a refined chain of dominant alcoves
with d-difference ≤ 1 from wB′ to A′ for a suitable w ∈ W . (Naturally we
take w = 1 in case A′m−1 already happens to be dominant.)

In turn, (∗) shows that wA′m−2 ↑↑ wA′m−1 for some w ∈ W . So we
can repeat the first step for this new pair of alcoves, accumulating a longer
product x ∈ W . Eventually we arrive at a product in W , say y, for which
yA′0 ↑↑yA′1 with yA′1 dominant. Along the way, the chain of further upward
reflections has been refined so that all new alcoves involved are dominant
and differ in length by ≤ 1. At the final step, we again apply Jantzen’s
proposition and finally reach a product z ∈ W for which zB = zA′0 is
dominant and zB ↑↑yA′1 by a similar refined chain. But since B was initially
assumed to be dominant, we can take z = 1 to conclude the proof.

9 Discussion of the comparison theorem

We continue to leave the comparison with Bruhat ordering in the background
and consider at first just the two orderings B ↑ A and B ↑↑ A for alcoves
A,B ⊂ C+. As we observed, the second of these implies the first. So we
start with the assumption that B ↑A: there is a sequence of alcoves Ai ∈ A
satisfying B = A0 ↑A1 ↑ . . .↑Ar = A. Here each step involves a single affine
reflection sH . Since there may be many such paths, we cannot immediately
rule out the occurrence of some bad hyperplanes H along the way. Instead,
it has to be shown indirectly that another sequence involving only good
hyperplanes must exist, thus proving that B ↑↑A. For this Wang builds a
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complicated double induction, which at the moment offers the most uniform
rigorous proof.

It is still worth asking whether a more transparent proof might exist.
One approach suggested by Jantzen’s work would be to translate the given
configuration far enough from the walls of the dominant chamber to get a
new sequence of alcoves B′ = B0 ↑B1 ↑ . . . ↑Br = A′, where now each pair
of alcoves is related by a reflection across a good hyperplane. Clearly this is
possible. In particular, we would get B′ ↑↑A′ with B′, A′ ⊂ C+. Now apply
Andersen’s proposition above to this situation. This gives an alternative
path involving only dominant alcoves with the d = ` distance increasing by
1 at each upward step.

Having replaced the translated path from B′ to A′ in this way, we now
translate the new path back to the original setting and get a possibly new
path from B up to A with the same number of steps (say t). The problem
is of course (as our G2 example in fact illustrates) that not all hyperplanes
occurring here need be good. So a more careful choice would be needed.
For this, one might use an elementary observation by Jantzen [8, p. 135]
(which follows easily from the definitions involved): d(A′)− d(B′) = d(A)−
d(B). Keeping in mind that d = ` for these four dominant alcoves, we have
`(A′)− `(B′) = `(A)− `(B) = t. But it remains a challenge to fine-tune the
choice of paths from B to A so that only good hyperplanes are involved. If
this could be done, it would yield an ↑↑ relation at every step and show that
B ↑↑A as desired. (In turn, Andersen’s proposition would recover Theorem
2.)

Remark. Wang confirms that the two partial orderings agree on dominant
alcoves, with upward increases by 1 in length. This in turn implies that

w′
B
≤ w in the Bruhat ordering if A = wA◦ and B = w′A◦. (Verma [12,

§1] states the equivalence of the↑and Bruhat orderings on C+ but discusses
briefly just the reverse implication.)
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