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1 Some recollections

As background we first recall some of the standard relationships between a
general Coxeter group W (with canonical generating set S) and its proper
parabolic subgroups WI for I ⊂ S. These are drawn mainly from the original
paper by Kazhdan–Lusztig [KL], as exposed in Chapters 5 and 7 of the
textbook [H90]:

(1) The length function ` on W relative to S agrees on WI with its length
function relative to I [H, Thm. 5.5].

(2) The (Chevalley–)Bruhat ordering on WI is the restriction of the cor-
responding ordering on W [H, Cor. 5.10].

(3) The Iwahori–Hecke algebra HI of the Coxeter group WI embeds natu-
rally into the corresponding algebraH, in such a way that the standard
basis {Tw} of HI lies in the corresponding subset of H. (This and the
following observations result immediately from the constructions in
[KL], cf. [H, Chap. 7]. taking into account (1) and (2) above; cf. the
proof of Lemma 6.3(e) in [L85].)

(4) The inverse of Tw in HI for w ∈WI agrees with the inverse of Tw ∈ H.

(5) The Kazhdan–Lusztig involution in HI is the restriction of the corre-
sponding involution in H.

(6) The Kazhdan–Lusztig basis {Cw} of HI (with w ∈ WI) embeds nat-
urally in the corresponding basis of H. In particular, the Kazhdan-
Lusztig polynomials Px,w for x ≤ w in WI coincide with the corre-
sponding polynomials relative to H.

2 Affine Weyl groups

From now on, fix an irreducible affine Weyl group (W,S). Its proper parabolic
subgroups WI are finite and are in natural bijection with subsets I ( S.

From Lusztig’s series of papers (see [L83], [L85], [L89] and their refer-
ences), one gets a lot of specific information about the finitely many 2-sided
cells Ω in W and the finitely many left cells Γ contained in each of them.
(However, his conjecture in [L83, 3.6] on the number of left cells in a given
2-sided cell remains open in general.) Here we summarize a few connections
between cells in W and cells in the finite Coxeter groups WI .



(A) W is a disjoint union of finitely many 2-sided cells ‘Ω, each with an a-
invariant taking constant value a(w) on its elements. Here a(w) varies
between 0 (when Ω has the identity element 1 ∈ W as sole element)
and N , the number of positive roots in the ambient root system. In
general, there is an inequality

(∗) a(w) ≤ `(w)− 2δ(w),

where δ(w) = degP1,w(q).

(B) By Thm. 4.8(d) in [L89], each 2-sided cell Ω in W intersects some
finite parabolic subgroup WI nontrivially. This intersection is then a
2-sided cell ΩI in WI having the same a-invariant as Ω.

(C) Each 2-sided cell Ω in W is a disjoint finite union of left cells Γ (whose
inverses form a corresponding right cell). Each left cell contains a
unique distinguished involution (DI) w characterized by equality in
(∗) above. When ΩI is defined and Γ intersects WI nontrivially, the
intersection ΓI is a left cell of WI and contains the DI of Γ.

3 Inverse Kazhdan–Lusztig polynomials

Here we discuss briefly the important special case where the parabolic sub-
group of W is the underlying Weyl group W0. Its standard Coxeter gener-
ators comprise a subset I := S0 of S consisting of simple reflections relative
to a fixed basis of the underlying root system. [When one starts with a
finite Weyl group, it is more common to denote it by W and to denote the
resulting affine Weyl group by Wa. Note too that in the Bourbaki set-up,
Wa is a semidirect product of the coroot translation lattice and the group
W ; but in modular representation theory, it is more natural to work with
the Langlands dual, which interchanges types B` and C`.]

In any Coxeter group one has a unipotent matrix with Px,w as the (x,w)-
entry whenever x ≤ w in the Bruhat ordering of W , or 0 elsewhere. Here
the rows and columns are labelled relative to some total ordering of W
compatible with the length function and beginning with w = 1. Such a
matrix is infinite when W is. Even so, it is upper triangular unipotent with
all but finitely many elements in each column equal to 0. Thus it has in
principle a recursively defined “inverse” matrix. To keep the signs under
control, we write εw := (−1)`(w) and then seek polynomials Qz,w for all
z ≤ w satisfying: ∑

x≤z≤w

εwεzPx,zQz,w = δx,w.



HereQw,w = 1; other inverse Kazhdan–Lusztig polynomials are more elusive.
Only for finite Coxeter groups such as W0 can the inverse polynomials

Qz,w be conveniently described: here Qz,w = Pw◦w,w◦z, where w◦ is the
unique longest element of W0. (The basic ideas originate in [KL], §3; cf.
[H90], 7.13, [H08], 8.4.)

Algorithmic approaches to the inverse polynomials for an affine Weyl
group have been developed especially by Andersen [A] and Kaneda [K],
following the work of Lusztig in [L80]. (Note that Andersen’s paper was
actually written and accepted several years before it appeared.)

4 Comparing characteristic 0 and characteristic p
representations

Much of the Coxeter group machinery sketched above has been developed in
response to questions in representation theory. It is sometimes useful to com-
pare the well-developed characteristic 0 theory (as in the Kazhdan–Lusztig
conjecture [KL], now a theorem) with the much less complete modular the-
ory in characteristic p (sometimes required to be “sufficiently large”).

Roughly speaking, many of the key results in characteristic 0 involve in-
finite dimesnional representations such as Verma modules, having arbitrary
integral weights, but turn out to depend just on data for the Weyl group W0.
In the modular theory the key representations tend to be finite dimensional
but involve only dominant highest weights (relative to a fixed choice of S0);
here the results and conjectures emphasize an associated affine Weyl group
W . One adapts the general theory by working with p times the translation
lattice of roots used to define W0, whereas in the abstract Bourbaki the-
ory treated in [H90] the coroot lattice is more natural. These modifications
along with the ρ-shift have essentially no effect on the Coxeter group theory
apart from sometimes interchanging types B` and C`.

The emphasis on dominant rather than arbitary weights often makes the
origin −ρ for W0 less useful than a special point inside the dominant Weyl
chamber (one lying on affine hyperplanes for all positive roots), e.g., the first
Steinberg weight (p − 1)ρ. In this context it is still possible to carry over
some information from characteristic 0 to characteristic p, as illustrated by
the appendix to Jantzen’s Habilitationsschrift (see [J], Anhang). (His work
preceded the statement of the Kazhdan–Lusztig conjecture in [KL].) Such
comparisons are limited but still valuable in some situations.
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