Parabolic subgroups of affine Weyl groups: cells and Kazhdan–Lusztig polynomials

July 11, 2012 (expanded September 22, 2016)

1 Some recollections

As background we first recall some of the standard relationships between a general Coxeter group W (with canonical generating set S) and its proper parabolic subgroups W_I for $I \subset S$. These are drawn mainly from the original paper by Kazhdan–Lusztig [KL], as exposed in Chapters 5 and 7 of the textbook [H90]:

- (1) The length function ℓ on W relative to S agrees on W_I with its length function relative to I [H, Thm. 5.5].
- (2) The (Chevalley–)Bruhat ordering on W_I is the restriction of the corresponding ordering on W [H, Cor. 5.10].
- (3) The Iwahori–Hecke algebra \mathcal{H}_I of the Coxeter group W_I embeds naturally into the corresponding algebra \mathcal{H} , in such a way that the standard basis $\{T_w\}$ of \mathcal{H}_I lies in the corresponding subset of \mathcal{H} . (This and the following observations result immediately from the constructions in [KL], cf. [H, Chap. 7]. taking into account (1) and (2) above; cf. the proof of Lemma 6.3(e) in [L85].)
- (4) The inverse of T_w in \mathcal{H}_I for $w \in W_I$ agrees with the inverse of $T_w \in \mathcal{H}$.
- (5) The Kazhdan–Lusztig involution in \mathcal{H}_I is the restriction of the corresponding involution in \mathcal{H} .
- (6) The Kazhdan–Lusztig basis $\{C_w\}$ of \mathcal{H}_I (with $w \in W_I$) embeds naturally in the corresponding basis of \mathcal{H} . In particular, the Kazhdan-Lusztig polynomials $P_{x,w}$ for $x \leq w$ in W_I coincide with the corresponding polynomials relative to \mathcal{H} .

2 Affine Weyl groups

From now on, fix an irreducible affine Weyl group (W, S). Its proper parabolic subgroups W_I are finite and are in natural bijection with subsets $I \subsetneq S$.

From Lusztig's series of papers (see [L83], [L85], [L89] and their references), one gets a lot of specific information about the finitely many 2-sided cells Ω in W and the finitely many left cells Γ contained in each of them. (However, his conjecture in [L83, 3.6] on the number of left cells in a given 2-sided cell remains open in general.) Here we summarize a few connections between cells in W and cells in the finite Coxeter groups W_I . (A) W is a disjoint union of finitely many 2-sided cells ' Ω , each with an ainvariant taking constant value a(w) on its elements. Here a(w) varies between 0 (when Ω has the identity element $1 \in W$ as sole element) and N, the number of positive roots in the ambient root system. In general, there is an inequality

$$(*) \quad a(w) \le \ell(w) - 2\delta(w),$$

where $\delta(w) = \deg P_{1,w}(q)$.

- (B) By Thm. 4.8(d) in [L89], each 2-sided cell Ω in W intersects some finite parabolic subgroup W_I nontrivially. This intersection is then a 2-sided cell Ω_I in W_I having the same *a*-invariant as Ω .
- (C) Each 2-sided cell Ω in W is a disjoint finite union of left cells Γ (whose inverses form a corresponding right cell). Each left cell contains a unique distinguished involution (DI) w characterized by equality in (*) above. When Ω_I is defined and Γ intersects W_I nontrivially, the intersection Γ_I is a left cell of W_I and contains the DI of Γ .

3 Inverse Kazhdan–Lusztig polynomials

Here we discuss briefly the important special case where the parabolic subgroup of W is the underlying Weyl group W_0 . Its standard Coxeter generators comprise a subset $I := S_0$ of S consisting of simple reflections relative to a fixed basis of the underlying root system. [When one starts with a finite Weyl group, it is more common to denote it by W and to denote the resulting affine Weyl group by W_a . Note too that in the Bourbaki set-up, W_a is a semidirect product of the coroot translation lattice and the group W; but in modular representation theory, it is more natural to work with the Langlands dual, which interchanges types B_ℓ and C_{ℓ} .]

In any Coxeter group one has a unipotent matrix with $P_{x,w}$ as the (x, w)entry whenever $x \leq w$ in the Bruhat ordering of W, or 0 elsewhere. Here the rows and columns are labelled relative to some total ordering of Wcompatible with the length function and beginning with w = 1. Such a matrix is infinite when W is. Even so, it is upper triangular unipotent with all but finitely many elements in each column equal to 0. Thus it has in principle a recursively defined "inverse" matrix. To keep the signs under control, we write $\varepsilon_w := (-1)^{\ell(w)}$ and then seek polynomials $Q_{z,w}$ for all $z \leq w$ satisfying:

$$\sum_{x \le z \le w} \varepsilon_w \varepsilon_z P_{x,z} Q_{z,w} = \delta_{x,w}.$$

Here $Q_{w,w} = 1$; other *inverse Kazhdan–Lusztig polynomials* are more elusive.

Only for finite Coxeter groups such as W_0 can the inverse polynomials $Q_{z,w}$ be conveniently described: here $Q_{z,w} = P_{w_0w,w_0z}$, where w_0 is the unique longest element of W_0 . (The basic ideas originate in [KL], §3; cf. [H90], 7.13, [H08], 8.4.)

Algorithmic approaches to the inverse polynomials for an affine Weyl group have been developed especially by Andersen [A] and Kaneda [K], following the work of Lusztig in [L80]. (Note that Andersen's paper was actually written and accepted several years before it appeared.)

4 Comparing characteristic 0 and characteristic *p* representations

Much of the Coxeter group machinery sketched above has been developed in response to questions in representation theory. It is sometimes useful to compare the well-developed characteristic 0 theory (as in the Kazhdan–Lusztig conjecture [KL], now a theorem) with the much less complete modular theory in characteristic p (sometimes required to be "sufficiently large").

Roughly speaking, many of the key results in characteristic 0 involve infinite dimensional representations such as Verma modules, having arbitrary integral weights, but turn out to depend just on data for the Weyl group W_0 . In the modular theory the key representations tend to be finite dimensional but involve only dominant highest weights (relative to a fixed choice of S_0); here the results and conjectures emphasize an associated affine Weyl group W. One adapts the general theory by working with p times the translation lattice of roots used to define W_0 , whereas in the abstract Bourbaki theory treated in [H90] the coroot lattice is more natural. These modifications along with the ρ -shift have essentially no effect on the Coxeter group theory apart from sometimes interchanging types B_{ℓ} and C_{ℓ} .

The emphasis on dominant rather than arbitrary weights often makes the origin $-\rho$ for W_0 less useful than a *special* point inside the dominant Weyl chamber (one lying on affine hyperplanes for all positive roots), e.g., the first Steinberg weight $(p-1)\rho$. In this context it is still possible to carry over some information from characteristic 0 to characteristic p, as illustrated by the appendix to Jantzen's Habilitationsschrift (see [J], Anhang). (His work preceded the statement of the Kazhdan–Lusztig conjecture in [KL].) Such comparisons are limited but still valuable in some situations.

References

- [A] H.H. Andersen, An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. Math. 60 (1986), no. 2, 125–153.
- [H90] J.E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge Univ. Press, 1990.
- [H08] —, Representations of Semisimple Lie Algebras in the BGG Cagtegoy O, Amer. Math. Soc., 2008.
 - [J] J.C. Jantzen, Moduln mit einem höchsten Gewicht, Lect. Notes. in Math. 750, Springer, 1979.
 - [K] M. Kaneda, On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups, J. Reine Angew. Math. 381 (1987), 116–135.
- [KL] D. Kazhdan and G. Lusztig, Representations of Hecke algebras and Coxeter groups, Invent. Math. 53 (1979), no. 2, 165–184.
- [L80] G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121–164.
- [L83] —, Some examples of square-integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653.
- [L85] —, Cells in affine Weyl groups, pp. 255–287 in: Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Studies in Pure Math. 6 (1985).
- [L89] —, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 297–328.