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These notes should be viewed as background for the immediately preced-
ing unpublished notes (and later notes on support varieties), which involve
more open-ended questions. Our main purpose here is to sketch briefly some
of the basic ideas about how to define “unipotent” or “nilpotent” (as well
as “semisimple”) elements in arbitrary linear algebraic groups and their Lie
algebras. Special emphasis is placed on prime characteristic.

1 Jordan–Chevalley decomposition: G and g

The key idea behind this decomposition is that any (always meaning affine)
algebraic group and its Lie algebra have intrinsically defined semisimple
and unipotent (or nilpotent) elements which propagate naturally under mor-
phisms.

We begin with an algebraic group G over an algebraically closed field K
of characteristic p ≥ 0, together with its Lie algebra g. But the ideas mostly
adapt to smaller fields of definition and also to the setting of group schemes
over a commutative ring. The main complications here arise when p > 0. [In
practice G may usually be assumed to be connected, which does not affect
g. For example, when G is just a finite group, one has the usual type of
unique decomposition of x ∈ G as a commuting product of an element of
order prime to p with an element of order a power of p when p > 0; both
factors are powers of x. Here of course g = 0.]

In his 1951 book, Chevalley found the first way to approach such a de-
composition: in fact the semisimple and unipotent (or nilpotent) parts are
obtained as polynomials in the given element x. Thus in a given matrix real-
ization of G (hence of g) these parts commute with every matrix commuting
with x. Moreover, they are uniquely defined by x. For a slightly later account
in the more modern setting he adopted after the 1951 treatment, see [6, 4.4].
(Much more recently, a careful exploration has been made by D. Couty et
al., with emphasis on history and pedagogy: see [7, 8].)

At first such intrinsic notions appear unexpected and hard to explain
directly just by the fact that the groups are defined by polynomial conditions.
Indeed, the semisimple and unipotent parts of an arbitrary square matrix
over K certainly need not lie in a given matrix group containing it. This
special property of algebraic groups becomes more transparent when viewed
indirectly in terms of how such a group (or its Lie algebra) acts on the infinite



dimensional algebra K[G] of regular functions on G. The point is that the
left (or right) translation action of G and the associated convolution action
of g are locally finite dimensional. For a systematic treatment along this line,
see [2, §4], [9, 15.3], [17, 2.4.8, 4.4].

Remark: By way of contrast, in general there is no such unique decomposi-
tion in a Lie group or its Lie algebra. For example, the additive group and the
multiplicative group have the same 1-dimensional Lie algebra, which over a
field such as C fails to distinguish the two groups. In the algebraic group set-
ting, the first group consists of unipotent elements (so its Lie algebra consists
of nilpotent elements), whereas the other group or its Lie algebra consists
of semisimple elements. (However, for a semisimple Lie group over C, the
algebraic theory does turn out to apply thanks to Chevalley’s classification.
This is seen even more directly in the Lie algebra using non-degeneracy of
the Killing form.)

2 Algebraic group definitions of “semisimple”,

“unipotent”, “nilpotent”

The cited treatments of Jordan–Chevalley decomposition leave the intrinsic
meaning of terms such as “semisimple” and “unipotent” somewhat implicit.
A two-part paper by Borel and Springer [3, 4] makes this much more explicit
in the context of an algebraic group G and its Lie algebra g. (See also [16,
§5].) Without loss of generality, G can always be assumed to be connected.
Their main objective was a better understanding of what happens over an
arbitrary field of definition, which we leave aside here.

By definition, an element x ∈ G is called semisimple if it lies in a maximal
torus of G or unipotent if it lies in a connected unipotent subgroup of G.
Similarly, an element x ∈ g is called semisimple (resp. nilpotent) if it lies in
the Lie algebra of such a closed subgroup of G. (The treatment is similar in
the textbooks [2, 9, 17]; for example, in Borel’s book see 4.8–4.9 and 14.26.)

These notions are then seen to agree with those occurring in the Jordan–
Chevalley decomposition, by working in a fixed linear realization and using
the relevant uniqueness property. The direct definitions are applied along
with the Borel–Chevalley structure theory of G as well as the important
early observation of Grothendieck that g is always the union of its “Borel
subalgebras” (Lie algebras of Borel subgroups): proofs can be found in [2,



14.25], Exp. 14 of SGA3, or the 1965 IHES Borel–Tits paper on reductive
groups.

It is well known that semisimple elements of G behave similarly in all
characteristics; moreover, their centralizers and conjugacy classes have been
worked out rather uniformly. However, unipotent elements other than 1 differ
considerably in characteristics 0 and p > 0: they have infinite order in G in
the former case, but are characterized in the latter case as the elements of G
having order equal to some power of p.

We remark that another definition of nilpotent elememts in g is used in the
introduction of lectures by Jantzen [13]: here an element is called nilpotent
if the operator corresponding to it in the derived Lie algebra version of any
faithful finite dimensional (algebraic group) representation of G is nilpotent
in the usual sense. As he points out, such an element is ad-nilpotent (but
not always conversely). We leave it to the reader to compare his definition
with that of Borel–Springer recalled above.

3 Unipotent and nilpotent varieties

The collection of all unipotent elements in G may be denoted U . Similarly,
the collection of all nilpotent elements in g may be denoted N . Both of these
are closed irreducible subsets in the respective Zariski topologies, having
the same dimension (which is the total number of roots if G is reductive).
Moreover, both turn out (by difficult arguments) to be unions of finitely
many conjugacy classes or Ad G-orbits, though the numbers can differ when
the characteristic of K is a “bad” prime. But neither variety is non-singular,
which leads to subtle problems involving singularities, normality, and the like.
These varieties were studied initially by Springer and Steinberg; many details
are given for example in [19, 5, 10, 13]. Further important contributions have
been made by Richardson, Slodowy, Lusztig, Spaltenstein, and others.

In contrast, the collection of all semisimple elements in G (or g) is sel-
dom closed, for example when G is semisimple: in that case the semisimple
elements instead form a Zariski-dense proper subset.



4 Scheme-theoretic approach

What we have so far discussed is the traditional setting adopted by Borel
(and Tits), in which an algebraic group G over K can usually be identified
with its group of rational points G(K). When a smaller field of definition
is involved, or even a commutative ring such as Z, the language of schemes
normally works much better. Here G is viewed (as in part I of the book [12])
as a special type of functor from groups to commutative rings.

The notions involving U and N are often studied instead in the context
of an adjoint quotient map, as in Steinberg’s Tata lecture notes [19] and
Slodowy’s monograph [15, 3.9, 3.14]. For example, there is a canonical map
g → h/W when G is reductive, sending an arbitrary element of g to the
W -orbit of its semisimple part. The fiber over 0 is essentially N (now often
referred to as the nullcone). (One advantage of this viewpoint is that it often
generalizes to other spaces on which G acts.)

5 Restricted Lie algebras

Finally, we point out a rather different approach taken (in characteristic
p > 0 only) to a larger class of finite dimensional Lie algebras which leads to
decompositions of Jordan–Chevalley type.

In his 1967 book Seligman [14, §7] emphasizes restricted Lie algebras
(also known as p-restricted Lie algebras or Lie p-algebras). Here one works
over a field of characteristic p > 0 and imposes on an abstract finite dimen-
sional Lie algebra g an extra [p]-operation satisfying certain axioms which
are satisfied when g is a matrix Lie algebra with [p]-opeation given by the
ordinary pth power. The notion was introduced by Jacobson, who had ob-
served for example that in a restricted Lie algebra one has the nice identity:
ad x[p] = (ad x)p for all x ∈ g. Obviously the [p]-operation can be iterated,
for which we write x[p]2 , etc. There are many accounts, sometimes using
variants of the definition (as in Jantzen’s lectures [11, §2]).

An easy standard fact is that each Lie G is restricted. But in the other
direction, it is known that not every restricted Lie algebra (even a simple
one) is of this type. One can still introduce intrinsic notions of “semisimple”
and “nilpotent” element in any restricted g. Call x ∈ g semisimple if it lies
in the restricted subalgebra of g generated by x[p], or nilpotent if some power
of the [p]-operation applied to x yields 0. Using these definitions, Seligman



[14, V.7.2] derives a general version of the Jordan–Chevalley decomposition.
When g is of the form Lie G, it is easy to see that these notions agree with

those discussed earlier: take a faithful embedding of G as a closed subgroup
of some general linear group, and use the fact that g has p-operation given
by the restriction of the usual associative pth power in the general linear
algebra.

References

1. A. Borel, Linear Algebraic Groups, notes by H. Bass, W.A. Benjamin,
1969.

2. ——-, Linear Algebraic Groups, 2nd ed., Springer, 1991.

3. A. Borel and T.A. Springe, Rationality properties of linear algebraic
groups, pp. 26–32 in Algebraic groups and discontinuous subgroups, Proc.
Symp. Pure Math. 9, Amer. Math. Soc., 1966.

4. ——-, Rationality properties of linear algebraic groups, II, Tôhoku Math.
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