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Here we summarize some features of minimal and minimal special nilpotent
orbits, especially their dimensions and component groups. An open question
is how much can be proved without case-by-case methods.

1 Notation and background

Let G be a simple algebraic group, say of adjoint type, over an algebraically
closed field of good characteristic: either 0 or a prime p not dividing any
coefficient of the highest root. While the adjoint type restriction sometimes
affects the structure of the Lie algebra g of G, this is not very serious in
good characteristic: see [5, 0.12–0.13] and references there. (The “bad”
prime characteristics are 2 in all types except A`, while 3 is bad for the five
exceptional types and 5 is bad only for E8, cf. [5, 3.9].)

The main advantage of the good characteristic assumption is that we
can invoke a G-equivariant Springer isomorphism to pass back and forth
between the variety U of unipotent elements in G and the variety N of
nilpotent elements in g (cf. [5, 6.20]). Either variety has dimension equal to
the number 2N of roots.

This variety involves just finitely many unipotent classes or nilpotent
orbits (all having even dimension), parametrized in the usual way by Dynkin
diagrams or Bala–Carter method (or for classical types A`−D` by partitions).
In good prime characteristic, all of this agrees with the classical Dynkin–
Kostant theory in characteristic 0 as developed in [2, 3]. We use throughout
the language of nilpotent orbits. The orbits are partially ordered in a natural
way by the closure ordering, which for partitions in type A` is the usual partial
ordering for partitions of ` + 1.

Just below the regular orbit (which is dense in N ) there lies a unique
subregular orbit having dimension 2(N − 1). At the opposite extreme is the
zero orbit, above which lies a unique minimal nonzero orbit: this consists
of all long root vectors in g relative to various choices of Cartan subalgebra
(see §2 below). In simply-laced cases, all roots are regarded by convention as
long. When there are two root lengths, the short root vectors form another
orbit; this orbit turns out to be the minimal nonzero “special” one except in
type G2 (see §5).

2 Minimal nilpotent orbit

Proposition. There exists a nonzero nilpotent orbit Om of minimal dimen-
sion, which is contained in the closure of every nonzero nilpotent orbit. In
particular, Om is the unique nilpotent orbit of its dimension.



This result (see [3, Thm. 4.3.3]) is proved in characteristic 0, but like
other such facts it carries over to any good prime characteristic. The idea
of the proof is to show that a nonzero orbit of minimum dimension contains
elements arbitarily close to a root vector for the highest root relative to some
fixed Cartan subalgebra and simple system of roots. (Standard conjugacy
theorems show that the latter choices do not matter.) As a consequence, Om

is seen to consist of all possible root vectors for long roots.

3 Dimension of the minimal nilpotent orbit

To express the dimension of the minimal or minimal special nilpotent orbit in
g most efficiently, one starts with the Coxeter number h of the Weyl group.
This originated in the study of finite reflection groups by Coxeter, where it
is the order of the product of any generating set of simple reflections (taken
in any order). Thus h agrees for Lie types B`, C`.

As Kostant explained in a classic 1959 paper, it is helpful in the study
of g to interpret h as 1 plus the sum of coeficients of the highest root
when it is written as a Z+-linear combination of simple roots. In par-
ticular, h is easily computed case-by-case for the simple Lie types: for
types A`, B`, C`, D`, E6, E7, E8, F4, G2, the value of h is (respectively) equal
to ` + 1, 2`, 2`, 2(`− 1), 12, 18, 30, 12, 6.

One also needs the dual Coxeter number h∨ introduced by Kac in the
study of affine Lie algebras. This can be defined in the usual setting of finite
root systems to be 1 plus the sum of coefficients of the highest short root
of the dual root system (involving interchange of types B`, C`) when written
as a Z+-linear combination of the simple roots. (The original definition by
Kac involves affine Lie algebras and extended Dynkin diagrams.) Unlike
h, this number depends on the root system, not just on the Weyl group.
Explicitly, h = h∨ for the simply-laced root systems (types A`, D`, E`), while
h∨ = 2`− 1, ` + 1, 9, 4 for the respective root systems B`, C`, F4, G2.

In a short note [12, Thm. 1] Weiqiang Wang gives a case-free proof of the
following general dimension formula:

Proposition. The dimension of the minimal nilpotent orbit in g is 2h∨− 2.

For the proof, he starts with the standard fact that the orbit dimension
is the codimension of the isotropy of a typical element e in the orbit (such as
a highest root vector): the centralizer of e in G or the fixed points of ad e in



g. Here the dimension is characterized as 1 plus the number of positive roots
not orthogonal to the highest root [3, 4.3.5]. Wang then transforms this into
the more readily computable number here.

4 Special nilpotent orbits and LS duality

In his study of Weyl group representations in the late 1970s, Lusztig discov-
ered a type of unipotent class in G which he came to call “special”. These
classes or corresponding nilpotent orbits have arisen also in other sorts of
representation theory, for example in the work of Barbasch and Vogan on
unitary representations of complex semisimple Lie groups. There is no easy
way to identify the special nilpotent orbits intrinsically within N , but the
work of Lusztig and Spaltenstein revealed a new type of duality on the set of
special classes or orbits (we call it for short LS duality): see [10, Chap. III].
For example, this duality interchanges the zero orbit with the (dense) orbit
of regular elements in N .

The easiest classical case is type A`; its nilpotent orbits are parametrized
by Jordan forms or equivalently by partitions of ` + 1. In this case all orbits
are special. Moreover, the standard transpose operation on partitions coin-
cides with LS duality. For example, the subregular orbit with partition [`, 1]
corresponds to the minimal orbit with partition [2, 1`−1].

But in all other simple Lie types, some nilpotent orbits fail to be special.
In classical type B`, the orbits are parametrized by partitions of 2` + 1 in
which all even parts (2, 4, . . . ) occur an even number (0, 2, 4, . . . ) of times.
Similarly, in type C` one gets the partitions of 2` in which all odd parts
occur an even number of times. In either case, an orbit is special if and only
if its transpose permutation meets the stated requirement. (See [3, 5.1, 6.3].)
(But simply-laced type D` requires more delicate adjustments.)

The exceptional types no longer have obvious natural representations and
require case-by-case study. See [2, 13.1, 13.4] for convenient tables of data
along with graphs showing the partial ordering of N and of its subset of
special orbits. Much of this data comes from the work of Spaltenstein, whose
partial ordering diagrams [10, Chap. IV] for E7, E8 are correct even though
Carter’s lack several bonds.

In general, it turns out that any Richardson orbit in g (such as the subreg-
ular orbit) is special. Moreover, case-by-case study shows that the minimal
nilpotent orbit is special in all simply-laced types A`, D`, E`. Although this



fails when there are two root lengths, but LS dual of the (special) subregular
orbit is always minimal among the nonzero special orbits.

5 Dimension of the minimal special nilpotent

orbit

It turns out that there is a similar dimension formula for the minimal special
nilpotent orbit, valid in all types:

Proposition. The minimal special nilpotent orbit has dimension 2h− 2.

For simply-laced types the formula is consistent with the proposition of
§3 in view of our earlier remarks: here h = h∨, while “minimal” is the same
as “minimal special”.

Though the formula is easy to check case-by-case using the data in [2],
it so far lacks a uniform conceptual proof. This was posed as a question at
http://mathoverflow.net/questions/67143/. While there is no complete
answer yet, P. Levy commented that one could get some insight from the
paper [1]. For example, the minimal special orbit in (say) F4 is obtained
indirectly from the minimal orbit in E6 via the “folding” of Dynkin diagrams
(using an involutive graph automorphism). The two root systems share the
same h and the orbits in question have the same dimension. In G2 the
minimal nonzero special orbit is subregular, not the smaller orbit involving
short root vectors; here the folding from D4 is relevant.

Among the classical types, only B` and C` need discussion; here h = 2`
in both cases. For these types, LS duality transposes the partition for each
special orbit. In type B`, [3, 5.4] gives the partition of 2`+1 for the subregular
orbit: [2` − 1, 12]. From this one gets the partition for the minimal special
orbit: [3, 12`−2]. Then an easy calculation using the dimension formula for
classical types in [3, 6.1] yields 4`− 2 = 2h− 2.

Similarly, in type C` the subregular orbit corresponds to the partition
of 2` given by [2` − 2, 2]. So the minimal special orbit has the transpose
partition [22, 12`−4]. In turn, the orbit again has dimension 2h− 2.

Remark: In his early work on the role of special unipotent classes in the
character theory of finite groups of Lie type, Lusztig [8, §3,Rem.!(b)] actually
noticed that G has a unique unipotent class of dimension 2h − 2 and that
this is the minimal unipotent class precisely in the simply-laced case. He



also developed some geometric properties along with the number of rational
points in the closures of these classes (minus the identity element) over finite
fields, extending unpublished partial results of Kostant.

6 Component groups

The component group A(e) := CG(e)/C◦G(e) is an orbit invariant and has
been computed case-by-case in all types. For classical groups, the study of
centralizers by Springer and Steinberg [11, IV, §2] leads to an explicit recipe
(cf. [3, 6.1]), while for exceptional groups Spaltenstein’s work is reflected in
Carter’s tables [2, 13.1].

Proposition. Let e ∈ g be nilpotent.
(a) If e lies in the minimal orbit of g, then A(e) = 1 in all cases.
(b) If e lies in the minimal special nilpotent orbit of g, then A(e) is trivial

if g is simply-laced, but of order 2 in types B`, C`, F4 and isomorphic to the
symmetric group S3 in type G2.

Remark: After defining “special pieces” in the unipotent variety, Lusztig [9]
considered the case when C is a special unipotent class whose special piece
involves at least one smaller non-special class. His Thm. 0.4 implies that the
component group (which he denotes AC) of such a special class is nontrivial.
(Case-by-case study of the exceptional types, using the tables cited earlier,
pins down more precisely the structure of each nontrivial component group:
see [9, Prop. 0.7].)

7 Kazhdan–Lusztig graphs

It is worth mentioning also a related problem which was posed online some
years ago: http://mathoverflow.net/questions/60627/. The notion of
Kazhdan–Lusztig graph occurs at the end of their influential 1979 paper [7].
In a follow-up paper, Dolgachev and Goldstein [4] considered the case of the
minimal nilpotent orbit. So it seems natural to ask also about the graph for
a minimal special nilpotent orbit. All of this has a strongly geometric fla-
vor, arising from Springer’s resolution of singularities of N and the resulting
Springer fibers in the flag variety. These are not necessarily irreducible vari-
eties, so the behavior of their irreducible components is well worth studying.
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