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Here we draw together some well-known properties of the (unique) longest
element w◦ in a finite Coxeter group W , with reference to theorems and
exercises in several older books [1, 2, 3]. For the most part these properties
can be proved without case-by-case use of the well-known classification of the
groups W , but we also point out a few examples based on the classification.
The longest element plays an important role in many contexts, including
for example the determination of conjugacy classes of involutions in Coxeter
groups by Richardson and Springer.

Historically, Weyl groups gave rise to a number of the properties and
their applications, independently of the somewhat more general geometric
treatment due especially to Coxeter. We mention Lie-theoretic connections
at the end of the note. On the other hand, the history of the subject is quite
hard to disentangle.

Fix a finite irreducible Coxeter group W relative to a set S of n involutive
generators. Here n is called the rank ; it is often denoted by symbols such as
r, l, `. To avoid trivialities here, we assume n > 1. There is an associated
“root system” (in Deodhar’s sense) which we denote by Φ, along with a
choice of “simple reflections” s1, . . . , sn in W in natural bijection with S.
Here the roots are ± unit vectors orthogonal to the reflecting hyperplanes
for all reflections in W , in a suitable real euclidean space V on which W acts
faithfully. (The length convention here is contrary to the refined notion of
root system used in Lie theory.) To this data there corresponds a linearly
independent set of n simple roots ∆ as well as sets of positive and negative
roots Φ+,Φ−. Set N := |Φ+|.

As Coxeter showed, the abstract groups W arising in this way are (up to
isomorphism) precisely the finite irreducible reflection groups acting on real
euclidean spaces. They have a well-known classification as crystallographic
types An, Bn = Cn, Dn, E6, E7, E8, F4, G2 (for which any product of two dis-
tinct reflections has order 2, 3, 4 or 6) along with non-crystallographic types
H3, H4, I2(m). For example, the groups W of type An are just the symmetric
groups Sn+1 (acting faithfully by permutation of coordinates on the hyper-
plane of euclidean (n+ 1)-space where coordinates sum to 0) and the groups
of type I2(m) are the dihedral groups of order 2m. Overlap is avoided by re-
stricting the rank n: for example, the label Dn is used just when n ≥ 4, while
the groups I2(m) are non-crystallographic just when m 6= 1, 2, 3, 4, 6. The
crystallographic reflection groups W coincide with the Weyl groups attached
to simple complex Lie algebras as in [2]; cf. [1, VI, 2.5] and [3, 2.9].



Here we mainly follow the notation in [3], which differs somewhat from
that in [1]. These two sources differ much more substantially in their logical
arrangement, since the treatise [1] begins with the general theory of Coxeter
groups whereas the textbook [3] emphasizes first the concrete study of finite
and affine real reflection groups.

1 The longest element of W

Early in the general development, one can prove (using the finiteness of W )
the existence of a unique element w◦ ∈ W sending Φ+ to the set of negative
roots. Then w◦ has order 2 and has length `(w◦) = N . Here the length
`(w) of any w ∈ W is defined as usual to be the least number of simple
reflections si occurring in any expression for w (then the expression is called
reduced). Moreover, any reduced expression for w◦ must involve all of the
simple reflections s1, . . . , sn. These facts are developed somewhat differently
in [1, V, §4, Exer. 2b), VI, 1.6, Cor. 3 of Prop. 17] and [3, 1.8]; both use
essentially the fact that W is simply transitive on positive systems of roots.

2 Coxeter elements of W

To get more insight into w◦ one needs to invoke the notion of Coxeter element
in W . This is one of the deeper aspects of Coxeter’s geometric study of finite
reflection groups but has only limited impact on the general study of Coxeter
systems in [1]. Initially the idea is fairly simple: enumerate the elements of
S in some order as s1, . . . , sn and define w := s1 · · · sn. At this stage one
appeals to the elementary fact that the Coxeter graph associated to the pair
(W,S) has no circuits: an easy first step in the direction of a full classification
of finite Coxeter groups (or Weyl groups). From this fact it follows readily
that all orderings of S define conjugate elements in W , so any one of these
can be taken to be a Coxeter element. Now define the Coxeter number h of
W to be the order of any Coxeter element. (For example, when W = Sn+1,
its rank is n and its Coxeter elements are the (n+ 1)-cycles, so h = n+ 1.)

It is convenient to make a special choice of w, as follows. The fact that
the Coxeter graph of W has no cycles implies that the vertices (simple reflec-
tions) can be divided into two nonempty disjoint subsets S ′ := {s1, . . . , sr}
and S ′′ := {sr+1, . . . , sn} so that in each subset the reflections all commute.



The respective products y and z over S ′, S ′′ are therefore involutions, whose
product is taken to be w. (If W = Sn+1 we can take S ′, S ′′ to be the respective
sets of transpositions (1, 2), (3, 4), . . . , and (2, 3), (4, 5), . . . )

Even after the classification is in hand, it remains a challenging problem
to compute the Coxeter numbers h explicitly. For this, Coxeter’s more subtle
analysis comes into play. This is developed in similar ways (but with different
notation) in [1, Chap. V] and in [3, Chap. 3]. The main idea is to locate a
special plane P in the n-dimensional space where w acts, so that P meets
both the fundamental chamber C and the opposite one w◦C: their walls lie
in the hyperplanes corresponding to S. The action of w on this plane is just
a rotation of order h. In more detail the two specially chosen lines which
span P define naturally a dihedral subgroup of W of order 2h, with y and
z acting as reflections in the respective lines and their product w generating
the rotation subgroup. Then C ∩ P consists of all linear combinations of
y, z with strictly positive coefficients. Moreover, each reflecting hyperplane
for W intersects P in one of the w-rotated lines. (It then follows that every
Weyl chamber in V meets P nontrivially. This is not so easy to visualize; for
this it would be instructive to study types A3, B3, H3.)

In the references cited, the Coxeter number is treated (partly for reasons
which are made explicit below) in the context of the action of W on poly-
nomials arising from the given euclidean space. Here Chevalley showed that
the algebra of W -invariants is itself a polynomial algebra in the same num-
ber of indeterminates (a generalization of the usual theorem on symmetric
functions for the case W = Sn+1 acting on euclidean n-space). Moreover, the
degrees di of such generators are uniquely determined by W and are called
the degrees of W , the least being 2 and the largest being h (for example,
2, . . . n+ 1 when W = Sn+1).

3 A basic relationship among some constants.

By making essential use of Coxeter’s set-up just sketched, one can deduce an
elegant relationship among three fundamental constants already defined:

Theorem. [1, V,6.2,Thm. 1], [3, 3.18] With notation as above, 2N = nh.

It follows in particular that at least one of the two numbers n and h
must be even. This is illustrated again by W = Sn+1, which has rank n.
As observed above its Coxeter elements are the (n + 1)-cycles, while h =



n + 1. The number N of positive roots always agrees with the number of
reflections in W (here corresponding to transpositions), which in this example
is n(n+ 1)/2.

Once the complete list of finite irreducible Coxeter groups has been worked
out, the basic constants already mentioned here can be found in various
sources. For example, see the planches for the crystallographic root systems
in [1], or the tables giving for all types the degrees [3, 3.7] amd the constants
h, n,N [3, 3.18]. (For Weyl groups see also [2, §12].)

4 When is −1 in W?

Viewed concretely as a finite reflection group acting faithfully on a euclidean
space V , W often (but not always) turns out to contain the orthogonal
transformation −1; this is then the default choice for w◦. Precise conditions
for −1 to lie in W are most conveniently based on the properties of canonical
degrees and Coxeter elements in W outlined above. Apart from the fact that
the Coxeter graph of W has no circuits, this is done independently of the
classification in [1, V, 6.2, Cor. 2 of Prop. 3] or [3, 3.7]:

Proposition. −1 ∈ W if and only if all di are even; then w◦ = −1.

One knows that h is the largest of the degrees d1, . . . , dn. (We will exhibit
below an easy way to produce a reduced decompositon of w◦ whenever h is
even.) When one works out the di and h for each W using the classification,
it turns out more precisely that −1 /∈ W precisely in the crystallographic
types An (for n > 1), Dn (for n ≥ 5 odd), E6 and in the non-crystallographic
types I2(m) (for m ≥ 5 odd). (Note that A3 = D3 in the classification.)

5 A reduced decomposition of w◦?

For any group such as W given by generators and relations, one might ask
for a list of all possible reduced expressions of a particular element such as
w◦ in terms of the given generators s1, . . . , sn. This may of course lead to
an unrealistically long list, but it is at least reasonable to look for a single
specific expression. When the Coxeter number h is even, this can readily be
supplied in a classification-free manner:

Proposition. If h is even and a Coxeter element w is constructed as
above, then w◦ = wh/2.



This is proved in [1, V, 6.2, Prop. 2] (under the assumption, omitted in
the first printing, that W is irreducible). It is also outlined as an exercise in
[3, Exer. 3.19] (under the implicit assumption, added in the list of revisions,
that w has the special form chosen in 3.17). The idea is to observe from the
action of w on the Coxeter plane P that wh/2 takes points of the fundamental
chamber C in P to points of the opposite chamber w◦C lying in P . In view
of the fact that C is a fundamental domain for the action of W on V , while
points of C have trivial stabilizers in W , this implies wh/2 = w◦.

In turn, it follows immediately from our expression of w◦ as a product of
(nh)/2 simple reflections that N = `(w◦) ≤ (nh)/2. But by the theorem in
§3, we have N = (nh)/2; so the expression here for w◦ is in fact reduced.

What happens when h is odd? Using the classification of finite Coxeter
groups and case-by-case determination of their Coxeter numbers, one sees
that the only cases when h is odd are types An with n even (while h = n+1)
and type I2(m) (with m = h odd but n = 2). The latter is a dihedral group
and easy to study directly. For the symmetric group Sn+1 of type An with
n even, one can see directly that a modification of the above procedure is
enough to produce a reduced decomposition: here w◦ is the product of wn/2

times the first factor y of w when w is written as a product of two involutions
(or equally well as the product of the second factor z of w times wn/2.

A general argument along this line (not using the classification) is outlined
in [1, V, 6.2, Exer. 2b].) As above, the cases when h is odd or even are
necessarily treated separately. Starting with h odd, Bourbaki suggests the
following steps. Construct w as before as a product of two involutions: w =
yz, with y = s1 · · · sr and z = sr+1 · · · sn for a suitable numbering of simple
reflections and for some r < n. Then observe that w(h−1)/2 y = z w(h−1)/2.
This is an easy exercise, grouping the alternate factors y and z in two ways
and using the fact that y, z have order 2. Finally, use the action on P of the
dihedral group generated by y, z to argue that either expression represents w◦
because it sends points of C∩P to points of w0C∩P . Again as a consequence
of the theorem in §3, it follows that at least one of the expressions is reduced;
in turn, r = n/2 (so in fact both expressions are reduced).

We remark that combinatorists including Stanley and Stembridge have
been able to work out case-by-case the reduced expressions for w◦ (or at least
count the total number of these) for many types. Much of this work grew
out of Stanley’s classical 1984 paper referenced in [3].



6 Special case: Weyl groups

The history of the subject is complicated by the fact that the theories of
Cartan–Weyl and Coxeter developed separately and only sporadically inter-
sected (due to observations of Witt, Coxeter, and others). So the basic ideas
about Weyl groups of simple Lie algebras over C (or compact simple Lie
groups) are often derived in Lie theory textbooks such as [2] independently
of the somewhat more general theory of finite Coxeter groups: in the latter
theory, Weyl groups appear as the crystallographic Coxeter groups.

The longest element w◦ of a Weyl group W occurs frequently in Lie theory,
especially in representation theory. For example, given a finite dimensional
simple module L(λ) for a simple Lie algebra having highest weight λ (a
dominant integral linear function on a Cartan subalgebra), the dual module
L(λ)∗ has highest weight −w◦λ (which is always dominant and agrees with λ
at least when −1 ∈ W ). See for example discussions of w◦ in [2, Exer. 10.9,
Exer. 12.6, Exer. 13.5, Exer. 21.6], as well as [1, VI, 1.6, Prop. 17, Cor. 3].

More recently, Lusztig’s work on quantum groups and canonical bases
has drawn attention to the need to work with a specified reduced expression
for w◦ when choosing positive (but not simple) root vectors. On the other
hand, Coxeter elements of W arise only indirectly in Lie theory but (as seen
above) they lead elegantly to some of the more subtle features of w◦.
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