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1 Introduction

Fix a simply connected, simple algebraic group G over an algebraically closed
field K of characteristic p > 0, with Lie algebra g. Then fix a maximal torus
T and a Borel subgroup B containing it. We denote the group of characters
(or integral weights) of T by X = X(T ) and the subset of dominant weights
by X+ (relative to B).

Following Kempf’s vanishing theorem in 1976 (see Jantzen’s book [26,
II.4] and his extensive references), there has been substantial but sporadic
progress in the study of the naturally occurring G-modules usually written
as H i(λ): these are finite dimensional sheaf cohomology (or derived functor)
modules for an arbitrary weight λ ∈ X, relative to induced line bundles on
the flag variety G/B− (see also the notes [21]). Here B− is the opposite
Borel subgroup, used for convenience to avoid sign problems. The Serre
dual of H i is HN−i for suitably chosen weights; here N = dimG/B− =
number of positive roots.

Problem: Determine for any p > 0 and any λ ∈ X which H i(λ) are nonzero.

This problem has a well-known solution in characteristic 0, obtained by
adding to the results of Borel–Weil for dominant weights those of Bott for
arbitrary weights. While it is far from being solved in prime characteristic,
much has been accomplished since the mid-1970s. First Kempf showed for
dominant weights λ ∈ X+ that H0(λ) is the only nonvanishing cohomology
(just as in characteristic 0); thus H0 exhibits what may be called “standard
vanishing behavior”. This together with Serre duality settles the SL2 case
completely. Kempf’s proof was geometric and somewhat complicated, but
soon Andersen and Haboush found streamlined methods, explained in [26].

Then Mumford (starting with p = 2) and his student Larry Griffith (al-
lowing odd p) worked out systematically the next case SL3 (of type A2).
Here there is sometimes “nonstandard” vanishing of both H1 and H2 for
weights near Weyl chamber walls. The 1977 MIT thesis of H.H. Andersen
and his subsequent papers have identified many patterns in arbitrary rank
but without settling matters in general.

There have been a number of surveys over the years, such as [10, 11, 20].
Here our aim is to provide some further background and updates, noting
for example the more recent work by Andersen and Kaneda [12], while also



filling in some of the historical details. Along the way we raise some natu-
ral questions, starting with the (meta)-question as to what a more detailed
knowledge of the H i(λ) might contribute to the overall study of modular
representations of G? There is for example still an open question as to how
best to organize the internal structure of a Weyl module when the coefficients
of λ relative to the fundamental weights are large compared to p.

For many exchanges over the years, I am grateful especially to Henning
Haahr Andersen and Jens Carsten Jantzen as well as Masaharu Kaneda.
More recently, correspondence with Will Hardesty has also been valuable.
Besides listing some references especially relevant here, I have added other
work such as [13, 14, 15].

2 Generic decomposition patterns

First we make a brief digression, whose relevance to the modules H i(λ) will
soon become clear.

The notion of ”generic decomposition” for a Weyl module V (λ) with
λ ∈ X+ originates in Jantzen’s 1977 paper [23]. While his treatment does
not make explicit how large p has to be for such a decomposition to exist,
the context makes it clear that p should be at least h, the Coxeter number of
the root system Φ or Weyl group W . But in most cases p needs to be taken
much larger in order for the generic pattern of composition factors of V (λ)
(with multiplicities counted) to fit into the lowest p2-alcove of the dominant
Weyl chamber. Even in type G2 such a pattern requires 84 p-alcoves and a
total of 119 composition factors.

Rank 1 and 2 examples have by now been well-studied, but it remains
a difficult open question to find all composition factor multiplicities. And
of course we have to assume that p ≥ h. (For smaller p there is not yet a
comprehensive conjecture about such multipicities, although computer cal-
culations can be done up to a point.)

To make the problem manageable for large p-powers, the idea is to trans-
late a generic pattern for a p-regular weight within the lowest pr-alcove while
preserving all the multiplicity data. For example, in rank 1 there are typi-
cally 2 composition factors (each with multiplicity 1) for a Weyl module in
the lowest p2-alcove and in general 2m in the lowest pm+1-alcove. Similarly,
in rank 2 there are respectively 9, 20, and 119 composition factors in the
lowest p2-alcove for types A2, B2, G2 (all multiplicities being 1 until type G2,



where some multiplicities are 2, 3, 4). In the lowest pm+1-alcove, we typically
find 9m etc.

To simplify the discussion, we normally assume that p ≥ h and that all
weights considered lie in the lowest p2-alcove.
Remark: When λ fails to be p-regular (lies inside a p-alcove), the situation
degenerates somewhat but remains under the control of Jantzen’s translation
functors if we start with some p− regular weight and translate to a weight
µ lying in a unique wall of the given alcove. The key fact here is that a
composition factor of H i(λ) yields a composition factor of H i(µ) if µ lies in
the “upper closure” of the p-alcove in question but otherwise yields 0.

In a 1980 paper [25] and in his 1987 book (or its expanded second edition)
[26], Jantzen observed that a streamlined proof of the existence of generic
decompositions (for p suitably large but unspecified) can be drawn from his
later formalism involving the mixed group schemes GrT : here the generic
induced modules can be compared systematically with Weyl modules. See
Remark 1) following the proposition in [26, II.9.17], along with the earlier
results.

3 Two general facts and some low rank ex-

amples

How many distinct generic patterns exist in the lowest p2-alcove?

(1) The number of distinct generic decomposition patterns within the lowest
p2-alcove is the same as the number of distinct p-alcove types, namely |W |/f
where f is the index of connection for the root system: the index of the root
lattice in the weight lattice. For example, this number is 1 for type A1,
respectively 2, 4, 12 for A2, B2 = C2, G2.

Somewhat more difficult is to compare the generic decomposition patterns
arising from p-regular weights in different types of alcove. But here it turns
out that all patterns involve the same number of composition factors:
(2) All generic decomposition patterns in the lowest p2-alcove involve linked
weights in the same number of p-alcoves, with the same multiplicities.

More precisely, all such patterns may be derived systematically from a
single one. Keeping in mind that W is generated by simple reflections, one
can start with a known generic pattern and transform it into any other by
applying a sequence of affine reflections to the given highest weight. This is



explained formally by Jantzen in [23], but is quite easy to carry out infor-
mally in rank 2. Start with the relevant alcoves and multiplicities marked
by X, 2X, . . . in an alcove diagram, with X circled in the dominant alcove
containing the unique highest weight. Then select a simple root α and cut
the diagram into strips along affine hyperplanes parallel to the alpha-wall of
the dominant Weyl chamber. Keep the strip with the circled X stationary,
but move the strips on the left (resp. right) systematically to the right (resp.
left) before reassembling the picture.

It is fairly easy to carry out this procedure in each of the irreducible rank
2 cases. The result is summarized in [23, p. 457]. For A2, explicit diagrams
are given in [16, Fig. 1,2]; for B2 = C2 (noting different conventions in the
two cases about which simple root is long or short), see [23, p. 456]; for G2

(where 84 p-alcoves and 119 composition factors are involved) see [19, Fig. 2]
(but ignore for now the refined numbering of the Jantzen filtration, keeping
track only of the number of composition factors attached to each alcove).

A symmetric “inverse” method is formalized by Lusztig [27, §12], to be
explained further below.

Unfortunately, it is impossible to draw nice alcove diagrams in higher
ranks (except possibly 3); so a more “analytic” approach would be needed,
as in [2]. More seriously, one needs much information about simple modules
in order to compute even a single generic decomposition pattern. For the
moment G2 seems to be the most intricate example one can picture, say for
p ≥ 11.

4 Conjectured connection with the modules

H i(λ)

In a Canadian lecture in the summer of 1977 [16], I tried to explain my initial
insight into the nonstandard vanishing discovered by Mumford and Griffith.
My hope then was to see how a generic decomposition pattern behaved when
a dominant Weyl chamber wall was crossed. In type A2, there is a clear
“non-cancellation” possibility in just one of the two cases (the pattern with a
highest weight inside the lowest type of alcove). But no mechanism governing
such phenomena was yet apparent. Nor was the standard vanishing behavior
of all H0 (and their Serre duals HN) explained.

Along with the appearance of the fundamental paper of Kazhdan–Lusztig



in 1979, dealing with Hecke algebras and Kazhdan–Lusztig polynomials, sev-
eral other developments took place. These included Jantzen’s elaboration at
the 1978 LMS Durham summer school of his ideas about filtrations and sum
formulas for Weyl modules in characteristic p > 0 [24], Lusztig’s 1979 lec-
ture at the Santa Cruz summer institute in which he formulated a tentative
conjecture on the characters of most simple G-modules along the lines of the
Kazhdan–Lusztig Conjecture in characteristic 0 but involving an affine Weyl
group relative to p, and Lusztig’s 1980 “inverse” conjecture [27] (for large
enough p) inspired by Jantzen’s generic decomposition patterns.

5 Jantzen and Andersen filtrations

By now the results (including those of Andersen for H1 in [2]), along with
his general theorems and detailed computations in rank 2, have made it clear
that at least some structural information about these modules should play
an important role in solving the vanishing problem. On the other hand, one
can’t realistically expect to work out full information about submodules in
general. Study of filtrations of Weyl modules and other sheaf cohomology
modules is therefore a reasonable middle ground.

In the late 1970s Jantzen had already perfected many of the ideas in
the somewhat parallel setting of Verma modules, including his striking Sum
Formula. In the case of Weyl modules, similar ideas are written down less
formally in the proceedings of the 1978 LMS Durham symposium [24] where
he considers a typical Weyl module V (λ) when λ ∈ X+. He writes V 0(λ) =
V (λ) and V 1(λ) = the unique maximal proper submodule. For his original
method, based on the idea of a “contravariant form”, he had to omit some
small p. But then the Sum Formula expresses the sum

∑
i>0 chV i(λ) as a

computable sum of (known) Weyl characters. From this he was able in low
ranks to obtain a lot of information about the simple modules involved in
V (λ), though naturally this soon leads to ambiguity about multiplicities of
composition factors as the rank grows.

In characteristic 0, the Kazhdan–Lusztig Conjecture of 1979 and its proof
soon afterwards was followed by the Beilinson–Bernstein proof of “Jantzen’s
conjecture”, a natural formulation of an expected hereditary property of the
Jantzen filtrations of embedded Verma modules. But the proof indicated that
this was even stronger than the Kazhdan–Lusztig Conjecture on composition
factor multiplicities of Verma modules.



Andersen [9] found an analogous implication for Weyl modules, having
already removed in [6] Jantzen’s restriction on p with a construction of the
filtrations based on homomorphisms over Z. But earlier he went further
[6, 7, 8], inspired partly by [18] which had been accepted some years before
publication and had circulated in preprint form. In my paper I had proposed
filtrations similar to Jantzen’s, keeping in mind that V (λ) = HN(µ) for
a suitable antidominant weight µ. Here the filtrations and sum formulas,
for H i(λ) with λ ∈ X, relied on the (algorithmic) computation of inverse
Kazhdan–Lusztig polynomials, as illustrated by the example of type B2 = C2.

Roughly speaking, the idea was to re-orient Lusztig’s pictures in [27]. As
shown in his rank 2 alcove diagrams in §12, there are “dual” symmetric pat-
terns which determine Jantzen’s generic decomposition patterns for weights
in dominant p-alcoves far enough from walls of the dominant Weyl chamber.
Here the distinguished alcove A is to be paired with any other fixed alcove
B in his picture. The polynomial in q (or its inverse) placed in B is used to
adjust the layer(s) on which the simple module with highest weight in the
alcove A occurs in the Jantzen filtration of the Weyl module with highest
weight in alcove B. The default layer depends just on the length difference of
the two weights, while q is interpreted as moving the filtration level 2 units,
and similarly for powers of q. (This parity condition is found throughout the
theory, with q being thought of as the square of another indeterminate.)

Andersen was able to formalize my ideas and construct a rigorous proof of
existence of such filrations in the modules H i(λ) (along with sum formulas)
using his earlier construction of homomorphisms between sheaf cohomology
modules. But this requires working first over Z and then reducing mod p,
so in locations near Weyl chamber walls some torsion is encountered. For
example, his work shows that “generically” the H i(λ) have a unique simple
submodule and a unique highest composition factor. These occur for Weyl
modules respectively on layers N, 0, with N + 1 the “generic” Loewy length
of the filtration. (One caution is that the numbering of filtrations gets turned
around, since a Weyl module is itself a cohomology module HN .) Of course,
the non-generic cases are more variable and often more interesting.

From my older conjectures about existence of reasonable filtrations came
a specific “working hypothesis” about the precise condition for standard or
nonstandard vanishing to occur. Here one starts with a weight λ inside a
Weyl chamber (shifted by −ρ) where H i(λ) 6= 0 in characteristic 0. Assume
the generic filtration for λ crosses one or more chamber walls. For each alcove
in the pattern outside the chamber, find an element w ∈ W which takes the



top vertex of its “box” (in Lusztig’s sense) into the chamber; then consider
the filtration layer(s) in each outside alcove and attach the sign of w to each.
The net result of such signed cancellations is the formal character of H i(λ),
which yields the Euler character given by Weyl’s formula after combining
(with alternating signs) all Hj(λ). (See [19] for examples in G2, which are
worked out rigorously in [12].) The hypothesis (only checked so far in low
rank examples) is:

There should be nonstandard vanishing for λ as above just when the filtration
level of some linked weight in an alcove outside the given chamber fails to
cancel the level of the corresponding alcove inside the chamber.

6 Weights on walls

While many questions remain open, the fit between the filtration proposals in
[18] and the results written down so far (especially in low ranks) encourages
the hope that my ideas and Andersen’s methods will lead to more definitive
results (probably after some refinements). The test case G2 in [12] is encour-
aging, since the results achieved rigorously can be predicted formally from
my viewpoint; already these predictions led to some corrections in Andersen’s
older treatment of G2 in [5]. (Even so, the torsion obstruction he found later
is cautionary, as are the results of Williamson and others on Lusztig’s 1979
conjecture in spite of a rigorous proof of the latter by Andersen–Jantzen–
Soergel in the 1990s when p is “large enough”.)

It is instructive to look closely at what happens to weights lying in alcove
walls (and possibly in Weyl chamber walls at the same time). Recall that
the classical characteristic 0 theory developed by Bott leads to a uniform
vanishing statement about weights lying in Weyl chamber walls: here all
H i(λ) vanish. But the situation in characteristic p > 0 turns out to be much
more delicate.

Under our standing assumption that p ≥ h, there always exist p-regular
weights λ ∈ X. In this situation the main tool for studying what happens
on alcove walls is Jantzen’s translation principle [26, II.7]. For λ ∈ X+,
translating λ to a weight µ ∈ X+ in the “upper closure” of its p-alcove takes
L(λ) to the simple module L(µ); otherwise the translate is 0.

What does this imply about a non-dominant but p-regular weight λ and
the module H i(λ)? Here one gets “generically” the formal character by
passing to the dominant chamber using the dot-action of an element of the



affine Weyl group relative to p. So the question is how a weight µ in an an
adjacent alcove wall behaves under this transition to the dominant chamber.

The upshot is that some (though not all) weights on alcove walls yield
nonzero sheaf cohomology, including even some for which the alcove walls lie
in Weyl chamber walls. This is already seen in type A2, where a weight such
as for example (p,−p − 2) in standard coordinates lies in a wall separating
an H1 and an H2 chamber. What Andersen’s methods show is that both
of these cohomology groups are nonzero; indeed, both are simple modules
for G but cancel out in the Euler character. The adjacent p-alcoves yield
nonzero H1 and H2, in fact, so one can appeal to the general principle in
[12, Prop. 3.2].

7 Concluding remarks

While it’s convenient to consider the case when p ≥ h, the problem stated at
the outset makes sense for all p (and all weights λ). So it remains a challenge
to find a reasonably uniform solution.

Aside from this, there also remains the problem of accounting for the
good behavior of dominant (or antidominant) weights in Kempf’s vanishing
theorem. If the theme of “cancellation” in canonical filtrations of cohomology
modules is sensible, one must ask why the cancellation for Jantzen filtrations
of Weyl modules is always well-behaved? Aside from trying to approach the
proof of Kempf’s theorem in a new way, this kind of question seems inevitable
in its own right.
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Norm. Sup. 12 (1979), no. 1, 85–100.

2. ——-, The first cohomology of a line bundle on G/B, Invent. Math. 51
(1979), no. 3, 287–296.

3. ——-, The strong linkage principle, J. Reine Angew. Math. 315 (1980),
53–59.

4. ——-, On the structure of Weyl modules, Math. Z. 170 (1980), no. 1,
1–14.



5. ——-, On the structure of the cohomology of line bundles on G/B, J.
Algebra 71 (1981), no. 1, 245–258.

6. ——-, Filtrations of cohomology modules for Chevalley groups, Ann. Sci.
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