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Consider the simple Lie algebra g of type C3 over an algebraically closed
field K of characteristic p > h = 6 (the Coxeter number). Here g is the Lie
algebra of Sp3(K). We have dim g = 21, with N = 9 positive roots, while
the Weyl group W has order 48.

As in the notes for type D4 [9], we assemble some details about three
aspects of g which are known or conjectured to be closely related: nilpotent
orbits; cells in a corresponding affine Weyl group; representations (not neces-
sary restricted) of g over K attached to nilpotent orbits. Some of the general
background in [9] is repeated here, for convenience.

First we summarize concisely in a table known data in the case of C3,
followed by remarks and references to sources. Here are some abbreviations
used in the table and elaborated in more detail below.

Oe Orbit of given e ∈ N (= nilpotent variety of g)

d Half-dimension of Oe

A(e) Component group A(e) := CG(e)/CG(e)◦ if nontrivial

Be Fiber over e in Springer’s desingularization of N , identified with the
set of Borel subalgebras containing e

a dimBe (= Lusztig’s a-invariant of cell Ωe associated to Oe)

IC Number of irreducible components of Be

R Is Oe a Richardson orbit?

S Is Oe special?

LT Is Oe of standard Levi type (e is regular in some Levi subalgebra)?

M Number of simple modules in a regular block of the reduced enveloping
algebra attached to e

LC Number of left cells in the two-sided cell Ωe of the Coxeter group of
affine type B3 (dual to C3)



orbit d A(e) a IC R S LT M LC
[6] 9 0 1 Y Y Y 1 1
[4, 2] 8 Z2 1 4 Y Y N 5 4
[4, 12] 7 2 2 N N Y 6 6
[32] 7 2 3 Y Y Y 8 8
[23] 6 3 3 Y Y Y 12 12
[22, 12] 5 Z2 4 5 Y Y Y 24 18
[2, 14] 3 6 1 N N Y 24 24
[16] 0 9 1 Y Y Y 48 48

Table 1: Data for type C3

Sources and remarks

(1) The nilpotent variety N of g comprises 8 nilpotent orbits relative to
the adjoint group G. Labels for orbits involve the partitions of 6 whose
odd parts have even multiplicity. The partial ordering of orbits by
inclusion of one orbit in the closure of another is linear except for the
two noncomparable orbits with d = 7. The table gives data about the
C3 orbits along with data on representations attached to an orbit and
on the left cells of the associated 2-sided cell of the affine Weyl group
of (dual) type B3, relative to Lusztig’s bijection recalled below.

(2) The nilpotent orbits of C3 as well as component groups A(e) have been
well-studied: see for example [3, 4, 15]. In [3] see pp. 400, 435. In [4]
see pp. 82, 96, 103.

(3) The Weyl group W of type C3 has also been well-studied, together with
its characters (in the general setting of type Cn). Here W is a semidirect
product of S3 with an elementary abelian group of order 8, the latter
being normal. Thus |W | = 48. The set Ŵ of its characters has 10
elements, of degrees 1, 1, 1, 1, 2, 2, 3, 3, 3, 3. Of these, 8 are Springer
characters having degrees 1, 1, 1, 2, 3, 3, 3, 3; in turn, two of these having
degrees 1, 2 are nonspecial in Lusztig’s sense. The characters of W are
realized by Springer theory [25, App. III]. In case the component group
A(e) is trivial, the top cohomology of the Springer fiber Be affords an
irreducible character of W having degree equal to the number IC of
irreducible components of Be. Values of IC for type C3 are found in
[26, p. 234].



(4) Lusztig conjectured and later proved (by using deep geometric meth-
ods) that there is a bijection between nilpotent orbits Oe of g (or rather
unipotent classes of G) and 2-sided cells Ωe in the (dual) affine Weyl
group: see [18] and the references there. In his bijection, the a-invariant
of Ωe agrees with the dimension of the Springer fiber Be for a typical e
in the corresponding orbit. The values range from a = 0 for the regular
orbit to a = N for the zero orbit. Here d = N −a is half the dimension
of the orbit, as seen in the table.

(5) In a 1983 paper, Lusztig [17, 3.6] conjectured that the number of left
cells in the two-sided cell Ωe is given in good characteristic by∑

i≥0

(−1)i dimH i(Be,Q`)
A(e).

This has not yet been proved in general. He formulated the conjecture
for unipotent elements and arbitrary p, but it carries over to nilpotents
in good characteristic. In that case all odd degree cohomology is known
to vanish, so the sum gives the dimension of the fixed point space of
A(e) on the total cohomology of the Springer fiber Be. (The dimension
of this total cohomology is computable in most cases using Lusztig’s
induction theorem [23] for Springer representations.)

(6) Column LC in the table specifies the number of left cells in each cor-
related 2-sided cell of the affine Weyl group of dual type B3: see Du
[5]. The results here agree with Lusztig’s conjecture just quoted. The
8 canonical left cells have been drawn in various colors by Gunnells [6].
(Note that in Du’s figure on p. 1407 of [5], the labels E and F must be
reversed, so that E corresponds to the special orbit [32] of C3 and F
to the nonspecial orbit [4, 12]. These are colored respectively blue and
green by Gunnells.)

(7) The zero orbit corresponds to restricted representations of g, coming
from representations of a simply connected group of the same type: see
[13]. For p ≥ h, Lusztig’s 1980 conjecture should provide recursively
the dimensions and formal characters of simple modules in this case.
This is not yet proved in full generality, but in any case the number of
simple modules in each regular block for g is given uniformly by |W |.



(8) For background on the non-restricted representations of g, see [7]; many
details are worked out by Jantzen [10, 11, 12, 14, 16]. Simple modules
attached by Kac–Weisfeiler to nilpotent orbits are the crucial ones to
understand. As they conjectured and Premet proved (under mild re-
strictions), all g-modules for a given orbit of dimension 2d have dimen-
sions divisible by pd.

(9) A nilpotent orbit Oe has “standard Levi form” if e is regular in some
Levi subalgebra of g, say determined by a subset I of simple reflections
in W . In this case the number M of simple modules in a regular block
is always |W |/|WI |, where WI is the subgroup of W generated by I
(Friedlander–Parshall). More detailed information predicted by Lusztig
[20] is verified by Jantzen in special cases (some unpublished).

(10) For the regular orbit (here d = 9), a regular block has only one simple
module and its dimension is p9. The subregular case (d = 8) is worked
out for C3 and most other cases by Jantzen [11]. In unpublished notes
[16] (recently expanded) on type Cn he also gives details about both
orbits with d = 7 (including explicit dimension formulas, which some-
times verify Lusztig’s conjecture in [20] but sometimes assume it).

(11) For C3 the number M can be computed by using the algebraic re-
sults just quoted. In general the work of Bezrukavnikov, Mirković, and
Rumynin [1, 2] has shown for p > h that the number M is given by the
dimension of the total cohomology of the associated Springer fiber Be.

(12) Lusztig’s proposed formalism [18, §10] for the asymptotic Hecke algebra
associated with a 2-sided cell Ωe of an affine Weyl group is expected
to be modeled by the set of simple modules in a regular block of the
corresponding reduced enveloping algebra for a simple Lie algebra (of
dual type): see [22, 8] and forthcoming joint work of Bezrukavnikov
and Mirković. Here each A(e)-orbit in the set of M simple modules in
a regular block should be assigned uniquely to a left cell. (The numbers
here make sense in view of Lusztig’s approach [17] to counting left cells,
combined with the result of [1] just quoted and the equivariance of their
category equivalences relative to A(e). This insures that A(e) acts on
the total cohomology of Be by a permutation representation, forcing
the number of orbits in the set of simple modules to agree with the
dimension of the fixed point space.) Example: for C3, the nilpotent



orbit of type [22, 12] has component group Z2 and should act on the set
of 24 simple modules with 18 orbits in all: 12 singletons and 6 pairs,
in a natural bijection with the 18 left cells.

(13) In general it is reasonable to ask when a higher power of p than pd can
divide one or more dimensions of simple modules in a regular block at-
tached to a nilpotent orbit of dimension 2d. The relatively few examples
known so far from Jantzen’s work (in rank ≤ 4 or involving “small”
blocks) behave consistently: In each instance there is a special piece
of N , involving a special orbit Oe together with one or more smaller
nonspecial orbits in its closure; then A(e) 6= 1 according to Lusztig
[19, Thm. 0.4]. Two or more simple modules attached to Oe form an
A(e)-orbit, with a common dimension of the form pdm (p not dividing
m). These should “deform” (or “degenerate”) to a single module of the
same dimension attached to a nonspecial orbit; such a pattern might
be repeated (as occurs for G2) in passing to a smaller nonspecial orbit,
leading again to a higher than expected p-power in some dimension
there. So far it is precisely for nonspecial orbits that examples are
known where an unexpected p-power occurs; is this a general fact?

(14) In the case C3 there are two special pieces: one involving the subregular
orbit [4, 2] with d = 8 and A(e) = Z2 along with the nonspecial orbit
[4, 12] with d = 7 and the other involving the special orbit [22, 12]
with d = 5 and A(e) = Z2 along with the nonspecial (minimal) orbit
[2, 14] with d = 3. Jantzen [16] worked out dimensions in the case
when d = 7, confirming the expectation that one simple module has
dimension divisible by p8. It would be especially interesting to compute
the p-powers dividing dimensions when d = 3. From the cell data one
expects to find 6 simple modules in a regular block having dimension
divisible by p5 and involved in the deformations of 6 pairs of simple
modules of equal dimension for the orbit with d = 5. A feature of this
special piece not encountered in smaller examples is that d drops by 2
from the larger to the smaller orbit.

(15) The known dimension formulas all support the idea that there should be
a uniquely defined ”deformation” (or ”degeneration”) of simple mod-
ules attached to one orbit into modules of the same dimension typically
having two or more composition factors attached to a smaller orbit in
the closure of the first one. In almost all cases studied so far (with



an interesting exception already for G2 [24]), the dimension formulas
themselves allow for only one possible deformation.

(16) It is interesting to ask which features of the representation theory of
g (including the expected deformations) depend just on the relevant
Springer fibers. For example, in the subregular case the Dynkin curves
for types G2, C3, and D4 are all isomorphic: a configuration of four
projective lines with three parallel and the fourth intersecting each in
a point. The component group A(e) differs in each case, but we leave
this aspect aside. Here the total cohomology of the Springer fiber in
each case has dimen sion 5 = 1 + 4, so there are 5 simple modules for
g in a regular block for the given nilpotent orbit.

Consider types G2 and C3. In each case the subregular orbit has a
nonspecial orbit with a = 2 in its closure, and in each case a regular
block relative to that orbit involves 6 simple modules while the total
cohomology of each Springer fiber has dimension 6 = 1 + 3 + 2 (by
comparing numbers of irreducible components). It is natural to suspect
that the two surfaces here are isomorphic, though even for dimension 2
the geometry of a Springer fiber is complicated to pin down. Moreover,
the expected deformation pattern from the subregular case to this one
yields in each case the same 5× 6 matrix (with entries 0 and 1). Note
that the Dynkin diagram of G2 can be obtained from that of C3 by
“folding”.

Similarly, consider types C3 and D4 (where the diagram of C3 can be
obtained from that of D4 by “folding”). In each case the subregular
orbit has a special orbit with a = 2 in its closure, and in each case a
regular block relative to that orbit involves 8 simple modules while the
total cohomology of each Springer fiber has dimension 8 = 1 + 4 + 3.
Again it is natural to suspect that the two surfaces here are isomorphic.
And again the expected deformation pattern in each case is the same
5× 8 matrix (with entries 0 and 1).

These speculations are strongly reinforced by the observed fact that the
dimension formula for a simple module attached to the larger rank case
in each situation can be “folded” naturally to produce the dimension
formula for the smaller rank case.
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