S516.3 HW#1 Solution
8.1 Let 
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8.2 a. 
The estimator 
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 is unbiased if E(
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) = θ.  Thus, B(
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b. 
E(
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) = θ + 5.

8.3 a. 
Using Definition 8.3, B(
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) = aθ + b – θ = (a – 1)θ + b.

b. 
Let 
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8.6       a. 
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, since it was assumed that 
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8.8         a. 
Note that 
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 are simple linear combinations of Y1, Y2, and Y3.  So, it is easily shown that all four of these estimators are unbiased.  From Ex. 6.81 it was shown that 
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 has an exponential distribution with mean θ/3, so this estimator is biased.

b. It is easily shown that V(
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) = θ2, V(
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) = θ2/3, so the estimator 
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 is unbiased and has the smallest variance.

 (One should verify that the second derivative test shows that this is indeed a minimum.)

8.13 . 
For a random variable Y with the binomial distribution, E(Y) = np and V(Y) = npq, so E(Y2) = npq + (np)2.  Thus,
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b. The unbiased estimator should have expected value npq, so consider the estimator 
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8.14       sing standard techniques, it can be shown that E(Y) = 
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.  Also, it is easily shown that Y(n) follows the power family with parameters nα and θ.  

a. From the above, 
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b. Since α is known, the unbiased estimator is 
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c. 
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8.19 From the hint, we know that E(Y(1)) = β/n so that 
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 = nY(1) is unbiased for β.   

            Then, MSE(
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8.21       Using Table 8.1, we can estimate the population mean by 
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 = 11.5 and use a   

            two–standard–error bound of 2(3.5)/
[image: image38.wmf]50

= .99.  Thus, we have 11.5 ± .99.

8.22       Similar to Ex. 8.21) The point estimate is 
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 = 7.2% and a bound on the error of estimation is 2(5.6)/
[image: image40.wmf]200

 = .79%.

8.23      a. The point estimate is 
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 = 11.3 ppm and an error bound is 2(16.6)/
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 = 1.54 ppm.

b. The point estimate is 46.4 – 45.1 = 1.3 and an error bound is 
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c. The point estimate is .78 – .61 = .17 and an error bound is 
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8.24      Note that by using a two–standard–error bound, 
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 = .0292 ≈ .03.  Constructing this as an interval, this is (.66, .72).  We can say that there is little doubt that the true (population) proportion falls in this interval.  Note that the value 50% is far from the interval, so it is clear that a majority did feel that the cost of gasoline was a problem.

8.27     a. The estimate of p is the sample proportion: 592/985 = .601, and an error bound is given by 
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b. The above can be expressed as the interval (.570, .632).  Since this represents a clear majority for the candidate, it appears certain that the republican will be elected.  Following Example 8.2, we can be reasonably confident by this statement.

c. The group o f “likely voters” is not necessarily the same as “definite voters.”

2.28 The point estimate is given by the difference of the sample proportions: 

           .70 – .54  = .16 and an error bound is 
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8.31    a. The point estimate is the difference of the sample proportions: .93 – .96 = –.03, and an error bound is 
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b. The above can be expressed as the interval (–.071, .011).  Note that the value zero is contained in the interval, so there is reason to believe that the two pain relievers offer the same relief potential.

8.38 To find an unbiased estimator of 
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             unbiased estimator of 
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.  Therefore, an unbiased estimate of V(Y) is 
                (1/2)(Y2  ​+Y) –Y = (1/2)(Y2  ​-Y) . 
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