S516 HW#3  Solution  (Due on Friday, 2/27/ 2015)

9.1  Refer to Ex. 8.8 where the variances of the four estimators were calculated.  Thus,
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9.3  a. E(
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, θ ≤ y ≤ θ + 1.  From this, it is easily shown that E(
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Thus, eff(
[image: image16.wmf]1

ˆ

q

,
[image: image17.wmf]2

ˆ

q

) = 
[image: image18.wmf]2

2

)

1

)(

2

(

12

+

+

n

n

n

.
9.19  Given f (y), we have that E(Y) = 
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 (Y has a beta distribution with parameters α = θ and β = 1.  Thus, E(
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.  Thus, the conditions are satisfied for 
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 to be a consistent estimator.

9.20  Since E(Y) = np and V(Y) = npq, we have that E(Y/n) = p and V(Y/n) = pq/n.  Thus, Y/n is consistent since it is unbiased and its variance goes to 0 with n.

9.30  Note that Y is beta with μ = 3/4 and σ2 = 3/5 – (3/4)2  = 3/80  Thus, E(
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 converges in probability to 3/4.

9.37  The likelihood function is L(p) = 
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9.41  The likelihood is 
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9.71 Since E(Y) = 
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9.72  Here, we have that 
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9.74  a. First, calculate 
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 = θ/3.  Thus, the MOM estimator of θ is 
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b. The likelihood is 
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.  Clearly, the likelihood can’t be factored into a function that only depends on 
[image: image50.wmf]Y
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9.80  a. The MLE is easily found to be 
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c. Since 
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 is unbiased and has a variance that goes to 0 with increasing n, it is consistent.

d. By the invariance property, the MLE for P(Y = 0) is exp(–
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9.82 The likelihood function is 
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a. By Theorem 9.4, a sufficient statistic for θ is 
[image: image57.wmf]å

=

n

i

r

i

Y

1

.

b. The log–likelihood is
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By taking a derivative w.r.t. θ and equating to 0, we find 
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9.84  This exercise is a special case of Ex. 9.85, so we will refer to those results.

a. The MLE is 
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b. E(
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c. The bound on the error of estimation is 
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d. Note that V(Y) = 2θ2 = 2(130)2.  Thus, the MLE for V(Y) = 
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9.97  a. Since 
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b. The likelihood function is 
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Differentiating, we have
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Equating this to 0 and solving for p, we obtain the MLE 
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 which is the same as the MOM estimator found in part a.
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