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0. Prelude

This is an ongoing notes project to capture the essence of the subject of vector calculus by
providing a variety of examples and visualizations, but also to present the main ideas of vector
calculus in conceptual a framework that is adequate for the needs of mathematics, physics, and
engineering majors.

The essential prerequisites are

• comfort with college level algebra, analytic geometry and trigonometry,
• calculus knowledge including exposure to multivariable functions, partial derivatives and

multiple integrals,
• the material of my notes on Vector Algebra, and the Equations of Lines and Planes in

3-Space or equivalent, and
• the material related to polar, cylindrical and spherical frames in my notes on Curvature,

Natural Frames, and Acceleration for Plane and Space Curves, particularly for the optional
sections.

Definitions and results are sometimes stated in terms of functions of n variables for an arbitrary
number n ≥ 2, but examples focus on n = 2 and n = 3. Since it is hard to really see what is
happening for n ≥ 4, pictures often show up for examples using n = 2 or 3, and the hope is that
you internalize some intuition from these pictures and examples. If you have trouble understanding
a statement that uses arbitrary n, just read it with n = 2 or n = 3 and try to understand the
underlying geometry in these cases.

A warning: my notational conventions sometimes differ from other common sources, so use cau-
tion when comparing to other resources on vector calculus. In particular, my spherical coordinate
system is not the one in most common use, but is an intuitive convention nonetheless, as explained
in Curvature, Natural Frames, and Acceleration for Plane and Space Curves, where they are con-
structed so as to adapt geographers’ conventions for latitude and longitude.

These notes exist primarily to prop up the problems; the exposition and ideas herein are foremost
to introduce enough language for the reader to then approach and tackle the various problems
provided. Some of the problems are quite standard and are meant to drive home a particular
concept, while others encourage you to fill in details omitted in examples, and a few problems are
meant to give a flavor of a more advanced but mathematical subject, such as the study of differential
equations, or topology. There’s also a handful of computational problems meant to satisfy those
who merely enjoy the meditative art of symbol pushing, but the bulk of the questions ought to
provoke some serious thought about how the objects of vector calculus interact with each other and
with mathematical models of the real world.

In addition to clarifying notations and terminology, footnotes are often used to exposit on more
advanced directions, and hint at how the subject matter broadens and connects to contemporary
mathematical thinking and research.

Finally, please forgive any typos and the clunkiness of formatting; these and the compan-
ion/prerequisite notes are work in progress that were primarily hastily assembled in the midst of
my terminal years teaching at University of Massachusetts Amherst as a PhD student. I welcome
suggestions as I work to improve these.
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1. Directional Derivatives, the Gradient and the Del Operator

§ 1.1. Conceptual Review: Directional Derivatives and the Gradient

Recall that partial derivatives are defined by computing a difference quotient in which only one
variable is perturbed. This has a geometric interpretation as slicing the graph of the function along
a plane parallel to the directions of the coordinate of concern xi and the coordinate of the dependent
variable whose value is f(x1, . . . , xi, . . . , xn) (so this plane is thus normal to the coordinate directions
of the variables held constant), and then measuring the rate of change of the function along the
curve of intersection, as a function of the variable xi. In two variables, the slicing for the two partial
derivatives corresponds to a picture like that of figure 1.

Figure 1. Curves C1 and C2 on the graph of a function along planes of constant y
and x respectively.

This geometric picture suggests that we need not be confined to only know the rate of change of
the function along coordinate directions, for we could slice the graph along any plane containing the
direction of the dependent variable. This gives rise to the notion of a directional derivative, defined
so as to allow us to measure the rate of change of a function f in any of the possible directions we
might choose as we leave a point of the function’s domain.

Fix a connected domain D ⊂ Rn, and let f : D → R be a multivariate function of n variables,
and r = 〈x1, . . . xn〉 an arbitrary position vector for a point P of D. We’ll often conflate the idea of
D as a set of points with the conception of it as a set of positions, and thus will unapologetically
write things such as r ∈ D to mean that the point (x1, . . . , xn) with position r is an element of D.
Definitions will often be stated in the general context of arbitrary n, but examples and pictures
will be specialized to low dimensions.

Observe that a “direction” at a point r ∈ D may be specified by giving a unit vector, i.e. a vector
û of length 1. In two dimensions, the set of unit vectors, and thus, of directions, is a circle, while in
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three dimensions it is the surface of a sphere. The set of unit vectors in Rn geometrically describes
the origin centered (n− 1)-dimensional sphere in Rn:

Sn−1 = {r ∈ Rn : ‖r‖ = 1} .

Definition. Given a unit vector û ∈ Sn−1 and a function f : D → R of n variables, the directional
derivative of f in the direction of û at a point r0 ∈ D is

Dûf(r0) = lim
h→0

f(r0 + hû)− f(r0)

h
.

Again, in two dimensions we can actually see and interpret this limit in terms of the familiar
notion of a slope of a tangent line. This, together with our discussion of the gradient in two
dimensions, will set the stage for understanding tangent space objects later.

Figure 2. The directional derivative computes a slope to a curve of intersection of
a vertical plane slicing the graph surface in the direction specified by a unit vector.

Recall that the graph Gf of a two-variable function f(x, y) is the locus of points (x, y, z) ∈ R3

satisfying z = f(x, y). For f continuously differentiable, this is a smooth1 surface over D. Fix a point
r0 ∈ D at which we are interested in the directional derivative in the direction of a given û ∈ S1.
Note that û and k̂ determine a plane Πû,r0 containing the point r0 + f(r0)k̂ = 〈x0, y0, f(x0, y0)〉,
and this plane slices the surface Gf along some curve. In the plane Πû,r0 , the variation of the curve
as one displaces from r0 in the direction of ±û is purely in the z direction, and so it is natural to
try to study the rate of change of z as one moves along the û direction by a small displacement hû.
One sees easily that the directional derivative formula above is precisely the appropriate limit of a
difference quotient to capture this rate of change. Observe also that the usual partial derivatives are
just directional derivatives along the coordinate directions, e.g. for R3 with standard rectangular
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coordinates (x, y, z), one has:

Dı̂ =
∂

∂x
, D̂ =

∂

∂y
, Dk̂ =

∂

∂z
.

Proposition 1.1. The directional derivative of f in the direction of û at a point r0 ∈ D may be
calculated as

Dûf(r0) =
n∑
i=1

ui
∂f

∂xi
(r0) ,

where ui are the components of û in rectangular coordinates on Rn and xi are the n variables of f
giving the rectangular coordinates of a general vector argument r.

Proof. This is a straightforward consequence of the multivariate chain rule – see (1). �

Several natural questions arise immediately:

• For a fixed point r0 ∈ D, can one readily determine for what û ∈ Sn−1 the directional
derivative Dûf(r0) is largest? That is, how do we determine the direction leaving r0 that
maximizes the rate of change of the function f?
• What can be said about directions in which the directional derivative vanishes?
• Is there a coordinate free and geometric way to understand the directional derivative oper-

ator, other than its defining limit formula? That is, as the formula above to calculate it is
not coordinate independent, can we instead describe the directional derivative operator in a
geometric way that doesn’t invoke rectangular coordinates, or some other arbitrary choice?
After all, the directional derivative “frees us” from considering only the way f changes
along coordinate directions, and its limit definition suggests that it lives independently of
coordinates.

Observe that the expression in the theorem is reminiscent of the formula for a dot product in
terms of the components of two vectors in rectangular coordinates. Indeed, we shall realize it as
such–we will momentarily define the gradient of f at r0 to be a vector which fulfills the necessary role
to allow us to view this computation as being a dot product. But then we are left to ponder whether
the expression would be so nice in another coordinate system. How should one compute a directional
derivative of a two-variable function given in terms of polar variables, or a three variable function
expressed in spherical coordinates? This amounts to asking about coordinate transformations of
the gradient of f . As we shall see, there is a “coordinate-free” story, but the computations one does
most often occur in a particular coordinate system, and thus we must understand the coordinate
dependence of our methods as well.

Definition (The gradient at a point). For f : D → R a multivariate function differentiable at the
point P (x1, . . . , xn), the gradient of f at P is the unique vector ∇f(P ) such that for any û ∈ Sn−1,
the directional derivative of f at P satisfies

Dûf(P ) = û · ∇f(P ) = compû∇f(P ) .

In rectangular coordinates P (x1, . . . , xn), the gradient can be expressed as

∇f(P ) =

≠
∂f

∂x1
(P ), . . . ,

∂f

∂xn
(P )

∑
=

n∑
i=1

∂f

∂xi
(P )êi ,

where (ê1, . . . , ên) is the usual rectangular orthonormal basis for Rn.

1Smooth has a technical definition which involves grades; the smoothness of the graph surface Gf = {(x, y, z) ∈
R3 | z = f(x, y)} for continuously differentiable f is called 1-smoothness, and the function f is said to be of class
C1(D,R). If f has continuous partials of all orders less than or equal to k for some natural number k, then we say f
is of class Ck(D,R) and its graph is a k-smooth surface. In differential topology, “smooth” without a specified integer
usually means k-smooth for all k, in which case the function f would be said to be of class C∞(D,R).

3
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Note that the way we defined ∇f(P ), we did not need the coordinates (as the directional de-
rivative is defined using limits and vector addition, without reference to coordinates), however we
immediately have a convenient and memorable expression for the gradient at a point in terms of
the partial derivatives with respect to the rectangular coordinate variables. But, if we exploit the
geometry of the dot product, we can arrive at a second definition of the gradient at a point, in
terms of giving an optimal answer to the question of how to choose a direction leaving the point P
to change f most rapidly.

Let ϕ be the angle between ∇f(P ) and û. Then we can rewrite the directional derivative as

Dûf(P ) = ‖∇f(P )‖ cosϕ ,

since ‖û‖ = 1 by definition. We see from this formula that the directional derivative is maximized
by choosing û in the same direction as ∇f(P ), and for this choice, the directional derivative has
value ‖∇f(P )‖. Thus we have the alternative definition:

Definition (The gradient as the vector of steepest ascent). For f : D → R a multivariate function
differentiable at the point P (x1, . . . , xn), the gradient of f at P is the unique vector ∇f(P ) such
that Dûf(P ) is maximized by choosing û = ∇f(P )/‖∇f(P )‖, and

Dûf(P ) = ‖∇f(P )‖

gives the maximum rate of change of f at P . Observe that the minimum value of Dûf(P ) occurs
for û = −∇f(P )/‖∇f(P )‖, and the minimum rate of change is −‖∇f(P )‖.

This gives a fruitful geometric intuition for the directional derivative in the direction of û ∈ Sn−1:
given that ∇f(P ) represents the optimal direction and rate of increase of f at P , Dûf(P ) is just
the scalar projection of this steepest ascent vector onto the direction û. That is, the rate of change
of the function f in any direction û is just the scalar projection of a single vector, the gradient at
P , which encodes the maximum rate of change at P and the direction in which it occurs, onto the
direction û.

Continuing from this observation, we can now give a subtly different coordinate-free interpreta-
tion of the directional derivative operator. Initially, we considered a fixed direction specified by a
vector û ∈ Sn−1, and a fixed point P ∈ D, from which we obtained a quantity Dûf(P ) measuring
the rate of change of f in the direction of û. We now change perspectives, by fixing f and P but
allowing û ∈ Sn−1 to vary over the whole sphere. That is, we now study the directional derivative
operator on f at P as a map from the sphere Sn−1 to R.

Fix f : D → R and P ∈ D a point where at least one directional derivative of f is nonzero
(and thus, P is non-critical). Imagine Sn−1 as the unit sphere centered at P , capturing all of the
directions, called escape vectors, that we might choose to leave from P . Then we have a map

D•f(P ) : Sn−1 → R ,
û 7→ Dûf(P ) = û · ∇f(P ) ,

which captures the rate at which f changes for a choice of escape vector. Since Sn−1 is a compact
space, a version of the extreme value theorem applies: this function must have an absolute maximum,
and the gradient direction û = ∇f(P )/‖∇f(P )‖ is the escape vector which gives us this maximum.
One might worry that there could be multiple escape vectors û giving the same absolute maximum
value for Dûf(P ), but since P is noncritical, the formula Dûf(P ) = û · ∇f(P ) = ‖∇f(P )‖ cosϕ
guarantees that there are in fact only two critical points for this map. Indeed, this map is in a
strict sense a minimal Morse function for a sphere, that is, it is a function on the sphere with each
critical point non-degenerate (the Hessian determinants are nonzero) and the minimal number of
critical points2 (one maximum and one minimum); as a map of Sn−1, the directional derivative
gives a “height function” (up to a constant factor of ‖∇f(P )‖) relative to an axis in the direction
of the gradient ∇f(P ). We can regard ∇f(P )/‖∇f(P )‖ as the “north pole” of this sphere, and the
equator of this sphere relative to this induced height function is precisely the set of unit tangent

4
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directions to the level set containing P , as will be understood from the discussion below in section
1.2.

§ 1.2. The Gradient as a Vector Field

Having defined the gradient of a function at a point, we now study the gradient as a map of the
domain of the function. If f : D → R is differentiable at all points of D, then we can define ∇f(P )
for each P ∈ D. Thus, we have a map

∇f : D → Rn

P 7→ ∇f(P )

sending points in D to vectors in Rn. Such a map, assigning vectors to points of a geometric set, is
called a vector field on that set. So in our case, we can view the operation of taking the gradient of
f as giving a vector field on the domain D of f . If f is not everywhere differentiable, then we can
define the vector field ∇f only on the subset of the domain where the partials of f exist.

Note that if we regard D as a set of vectors, we may think of vector fields as maps from vectors
to vectors, though the domain vectors have a life as position vectors, while the image vectors may
have different interpretations depending on context (e.g., we may consider force fields, where the
vectors assigned describe force on a point mass or charge, or we may have a velocity field for wind,
so the image vectors are velocities of particles at a point and a given moment of time). In this
sense, vector fields generalize the idea of vector-valued functions, to allow vectors as inputs as well
as outputs. Let us now define vector fields on domains in Rn formally:

Definition. Given a set D ⊆ Rn and a vector space V , a vector field on D is a map F : D → V
assigning to each point r ∈ D a vector F(r) ∈ V . In the context of classical vector calculus3, V is
taken to be Rn.

Before we study many other examples of vector fields, let us return to our study of gradient
vector fields, as we will use it to arrive at other constructions eventually. Note that the preceding
definitions of the gradient of f at a point tell us that there is a geometric interpretation of the
gradient vector field ∇f : it is the vector field whose vectors at any point P specify the direction in
which f most rapidly increases, and with the vector lengths giving the maximum rates of change
at the points of D. There are some nice geometric consequences of this interpretation, in particular
involving level sets, tangent spaces, and local extrema of functions.

Recall that a level set of a function f : D → R is a set of all points of D on which f has a given
constant value. Letting t = f(r), we can define, for any constant t = t0, a level set

f−1(t0) = {r ∈ D : f(r) = t0} .
Note that f−1 here does not mean “inverse” but rather, “pre-image”. That is, a level set of f is the
subset of its domain D which is the pre-image of a constant value. If f is continuously differentiable

2Morse functions are a formal analogue of height functions for surfaces, and in some sense are generic among
smooth functions. They are of great use to differential topologists, who study spaces called smooth manifolds up
to diffeomorphisms, which are smooth bijective maps that are smoothly invertible. Put differently, a differential
topologist is interested in classifying the types of smooth manifolds up to smooth and reversible deformations. One
of the powerful results of Morse theory is that any compact manifold which admits a Morse function with just two
critical points must be topologically a sphere. More generally, the kinds of critical points of a Morse function, as
classified by the signs of the eigenvalues of their Hessians, encode a lot of topological information about a space, and
lead to Big Ideas like handle decompositions and Morse Homology.

3In modern differential geometry, vector fields are often given as global differential operators, called tangent vector
fields on D: instead of assigning vectors from a fixed vector space V , one would look at spaces TPRn of differential
operators at P , for each P ∈ D ⊆ Rn. The spaces TPRn are called tangent spaces to Rn at P , and can be interpreted
as being spaces of generalized directional derivative operators, with coordinate form a1(P ) ∂

∂x1

∣∣
P

+ · · ·+an(P ) ∂
∂xn

∣∣
P

.

The tangent spaces TPRn are each isomorphic to Rn, and one can give a classical version of these modern fields for
domains D ⊆ Rn. The modern approach has the advantage that it generalizes to spaces more general than Rn, called
differentiable manifolds, where there is not an immediately clear notion of what “attaching an arrow” would mean.
Nevertheless, a differentiable manifold M admits tangent spaces TpM of differentiable operators for points p ∈ M ,
and one can define vector fields and a suite of other calculus objects associated to M .

5
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and D is an n-dimensional subspace of Rn, then the level sets have dimension at most n− 1 (this is
the difference of the dimension of the domain and the dimension of the codomain). For example, a
differentiable two-variable function has level sets which are generally curves, while a differentiable
three variable function has level sets which are generally surfaces.

Example 1.1. Let f(r) = r · r. The value of f at a point r ∈ Rn is the square of the distance
of r from the origin 0 ∈ Rn. The level sets are spheres; in 2D the level sets are the “1-sphere”
S1, i.e., the circle, while in R3 they are the familiar “2-sphere” S2, which is the surface of what
non-mathematicians think of when they hear the word sphere. A quick calculation shows that the
gradient of f is 2r, which is a radial vector field, pointing away from the level sets outwards (towards
more distant level sets). This is depicted for 2 and 3 dimensions below in figure (3).

Figure 3. The level sets and gradients of the square distance function f(r) = r · r
in 2 and 3 dimensions.

Note that the gradient in the above examples is in a sense perpendicular to the level sets them-
selves (namely, it is perpendicular to the tangent spaces at any point of a level set). It turns out
this is not merely because the level sets of the previous example were circles and spheres, while the
gradients in the previous examples were radial. More generally, we should expect the directional
derivative to vanish along directions tangent to level sets, since the value of the function doesn’t
change along a level set. Another intuition is that since the gradient tells us how to move away from
P to most steeply ascend through values of f , we expect that the gradient should “point as much
as possible away from level sets”. One can show explicitly using the chain rule that in fact, the
gradient is always orthogonal to the level sets (in the sense that it is perpendicular to any tangent
vector):

Proposition 1.2. For a given level set S = f−1(k) of a differentiable function f : D → R, and
any point P ∈ S, let r0 be the position of P and

TPS = {v ∈ Rn : v = γ̇(t0) for γ : I → S a curve in S with γ(t0) = r0}
be the tangent vector space to S at P , i.e. the set of tangent vectors at the point P to curves in S
through P . Then

∇f(P ) · v = 0 for all v ∈ TPS .

Thus the gradient of f along a level set S is a normal vector field to S. We’ll explore tangent
and normal vectors in greater detail below in section 2.4.

6
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Example 1.2. The following example goes through the solution to Exercise 3.3 from the notes on
partial derivatives.

While exploring an exoplanet (alone and un-armed–what were you thinking‽) you’ve slid part
way down a strangely smooth, deep hole. The alien terrain you are on is modeled locally (in a
neighborhood around you spanning several dozen square kilometers) by the height function

z = f(x, y) = ln
»

16x2 + 9y2 ,

where the height z is given in kilometers. Let ı̂ point eastward and ̂ point northward. Your current
position is one eighth kilometers east, and one sixth kilometers south, relative to the origin of the
(x, y) coordinate system given. You want to climb out of this strange crater to get away from the
rumbling in the darkness below you.

Figure 4. The graph of the surface z = ln
√

16x2 + 9y2.

(a) Find your current height relative to the z = 0 plane.

(b) Show that the level curves z = k for constants k are ellipses, and explicitly determine the
semi-major and semi-minor axis lengths in terms of the level constant k.

(c) In what direction(s) should you initially travel if you wish to stay at the current altitude?

(d) What happens if you travel in the direction of the vector −(1/8)̂ı + (1/6)̂? Should you try
this?

(e) In what direction should you travel if you wish to climb up (and hopefully out) as quickly
as possible? Justify your choice mathematically.

(f) For each of the directions described in parts (c), (d), and (e), explicitly calculate the rate
of change of your altitude along those directions.

Solutions:

(a) From z = f(x, y) = ln
√

16x2 + 9y2, your current height relative to the plane z = 0 is

z = f(1/8,−1/6) = ln

…
16
Ä
1
8

ä2
+ 9
Ä
−1

6

ä2
= ln

»
16
64 + 9

36 = −1
2 ln 2 ≈ −0.3466 .

Thus you are about 35 meters (a bit shy of 115 feet) below the plane z = 0.

7
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(b) Rewrite f as f(x, y) = 1
2 ln(16x2 + 9y2). Then if z = f(x, y) = k for a constant k, we have

k =
1

2
ln(16x2 + 9y2) =⇒ 2k = ln(16x2 + 9y2)

=⇒ e2k = 16x2 + 9y2

=⇒ 1 =
x2

e2k/16
+

y2

e2k/9
=

Ç
x

ek/4

å2

+

Ç
y

ek/3

å2

Thus the level curves are ellipses with semi-major axis length 1
3e
k and semi-minor axis

length 1
4e
k. See figure 5 for a visualization of the contours.

(c) To stay at the current altitude, you should initially choose a direction tangent to the level
curve through your position. To calculate such directions, you can exploit that the gradient
at a position r is perpendicular to the level curve through r. The gradient of f is

∇f(x, y) =

Å
16x

16x2 + 9y2

ã
ı̂ +

Å
9y

16x2 + 9y2

ã
̂ ,

which gives a gradient at the starting position of (1/8,−1/6) as

∇f(1/8, 1/6) = 4̂ı− 3̂ .

The perpendicular directions in which you could initially head to stay at the current altitude
are

±3̂ı± 4̂ .

(d) You can compute the directional derivative in the direction of the vector −(1/8)̂ı + (1/6)̂
to see what is happening to your altitude. Let

û =
−(1/8)̂ı + (1/6)̂

‖ − (1/8)̂ı + (1/6)̂‖
= −3

5
ı̂ +

4

5
̂ .

Then

Dûf(1/8,−1/6) = ∇f(1/8,−1/6) · û

= (4̂ı− 3̂) ·
Å
−3

5
ı̂ +

4

5
̂

ã
=
−12− 12

5
= −24

5
.

Thus, if you head in this direction, you are descending at an initial rate of nearly 5
meters downward per meter forward. Indeed noting that this vector is in the exact opposite
direction as your initial position, it heads straight for the origin, which is where the hole is
indefinitely deep. So you should not head this way if you hope to live very long.

(e) To climb out as quickly as possible, assuming you can maintain stamina, you should seek
the route of steepest ascent, which is a route along the gradient direction. Starting from
(1/8,−1/6), you should then initially travel in the direction of∇f(1/8,−1/6)/‖∇f(1/8,−1/6)‖ =
4
5 ı̂− 3

5 ̂. Note that this direction is not the radial direction as one might initially suspect; this
discrepancy of directions is sensible given that the level curves are not circles, but ellipses.
In fact, we can calculate the cosine angle between the direction of steepest ascent and the
radial direction easily: just dot the corresponding unit vectors:

ûr(1/8,−1/6) · ∇f(1/8,−1/6)

‖∇f(1/8,−1/6)‖
=

Å
3

5
ı̂− 4

5
̂

ã
·
Å

4

5
ı̂− 3

5
̂

ã
= 24/25 ,

whence these directions make an angle of arccos(24/25) ≈ 0.2838 radians, or 16.26◦.
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Figure 5. A color map of the altitude z = ln
√

16x2 + 9y2, showing also the el-
liptical contours for z, and the gradient vector field (with vectors scaled down for
clarity).

(f) For (c) the rate of change in the altitude is 0, as is easily verified by computing a directional
derivative. It better be zero of course– if you wish to remain at the current altitude, then
height function should not change initially in the direction chosen. For part (d) the rate
of change was computed above as −24/5. For part (e), the rate of change in the gradient
direction is ‖∇f(1/8,−1/6)‖ = ‖4̂ı − 3̂‖ = 5. Note these rates represent (kilo)meters of
incline or decline relative to a horizontal (kilo)meter displacement along a vector û ∈ S1 ⊂
R2.

In the preceding example, we used that the gradient of a bivariate function determines the
direction of steepest ascent on the graph surface and that the gradient is perpendicular to level
curves. Pushing this idea further, we can use that the gradient is normal to level sets S to determine
an equation of the affine tangent space to a hypersurface S ⊂ D ⊂ Rn given as the level set of some
function f : D → R. Without loss of generality, we can assume such a hypersurface is given as the
level zero set of an appropriate function. First, we define the affine tangent space:

Definition. Let S be a hypersurface given as the zero set f−1(0) of a differentiable function
f : D → R. Let r0 be the position of a point P ∈ S. Then the affine tangent space to S at P is
the set ATPS of all points of Rn that can be reached by displacing from r0 by a vector v ∈ TPS.

9
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Equivalently, it is the set of points swept out by all possible velocity vectors v = γ̇(t0) to curves
γ : I → S that pass through P when t = t0 ∈ I, when these velocity vectors are placed at P :

ATPS = {r ∈ Rn : r = r0 + v for v ∈ TPS} .

Since the gradient is normal to tangent vectors to the hypersurface, and any point r of ATPS
is displaced from r0 by a tangent vector v, we know that ∇f(r0) is perpendicular to v = r − r0.
Thus, we have the following proposition giving the equation of ATPS:

Proposition 1.3. The affine tangent space ATPS to S at P is given as the locus of points r ∈ Rn
satisfying the equation

∇f(r0) · (r− r0) = 0 .

In rectangular coordinates, this yields a scalar equation

n∑
i=1

aixi = d ,

where ai = ∂f
∂xi

(r0) and d = ∇f(r0) · r0.

Thus, ATPS is genuinely a hyperplane tangent to the hypersurface S at P .

Example 1.3. Let S be the radius R sphere centered at 0 in R3. Find the tangent plane equation
at the point with position r0 = 〈x0, y0, z0〉.

Solution: Let f(r) = r · r = x2 + y2 + z2. Then the sphere S is just the level set f−1{R2} =
{r ∈ R3 : ‖r‖2 = R2} = {r ∈ R3 : ‖r‖ = R}. Let P (x0, y0, z0) be the given point on S, and r0 its
position. Observe that ∇f(r0) = 2r0. Then by the above proposition:

ATPS = {r ∈ R3 : ∇f(r0) · (r− r0) = 0}
= {r ∈ R3 : 2r0 · (r− r0) = 0}
= {r ∈ R3 : r0 · r = ‖r0‖2 = R2}
= {(x, y, z) : x0x+ y0y + z0z = R2} .

Thus an affine tangent plane to the sphere at P is a plane through P whose normal is given in
coordinates by the position vector r0 of P itself! This is what one should expect; it is a result of
classical geometry that the tangent plane to a sphere at a point is orthogonal to the radial line
segment from the sphere’s center to the point of tangency.

§ 1.3. The Gradient Flow and Critical Points

We can now discuss the relation of the gradient vector field of a differentiable function f : D → R
to the local extrema of such functions. Let us first consider two-variable functions, as the picture
we wish to paint is both simple and clear when there are only two variables.

If f : D → R is a differentiable two-variable function with graph a surface

S = {(x, y, f(x, y)) ∈ R3 : (x, y) ∈ D} ,

then at each point P of its domain, we have a vector ∇f(P ) which points us in the direction in
which the graph’s slope is steepest. Imagining the graph as a mountain, the gradient ∇f(P ) is
pointing a hiker in the direction that allows her to climb away from her current location most
efficiently. So, suppose (x, y) is moved a little distance ∆r along this direction (and so our hiker
climbs up the mountain a little, initially parallel to a tangent vector whose xy-plane projection is
the gradient). The hiker arrives at a new point, where there is a (potentially) new gradient direction
pointing her in the direction of steepest ascent. We can imagine her repeatedly traveling along little
displacements, with the (x, y) position displaced parallel to the gradient at each step. The smaller
the steps, the more closely her motion follows the directions of the gradient vector field. One can
take a limit, and find that there is some curve γ(t) ⊂ D leaving P and traveling some ways in R2

10
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such that the tangent vectors to γ(t) are always in the gradient direction. In fact, we can choose a
parametrization

γ : [a, b]→ D
such that γ(a) = r0 is the position of P , and γ̇(t) = ∇f

Ä
γ(t)
ä

for any t ∈ [a, b].
Of course, one can try to extend this curve as far as possible by taking as many steps as possible

along gradient directions, until one finds a point where the gradient gives no direction (that is,
the gradient either vanishes or doesn’t exist). One can also try to travel down the mountain, and
so one can talk about extending this curve backwards. By extending as far as one can in either
direction, one obtains a maximal path in D through P which is always tangent to the gradient
vector field. Such a path is called a field-line or integral curve for the gradient vector field. Since
f was presumed differentiable throughout D, there is such a field-line through every point P ∈ D
except those where ∇f(P ) = 0. At these points, multiple field-lines converge. Observe that the
field-lines are necessarily perpendicular to the level curves.

Figure 6. Three integral curves of the gradient for some bivariate function are
illustrated along with a heat map, contours, and the gradient vector field itself
(rescaled for clarity). Note that although these curves all originate near each other
in a region near a local minimum, they each tend towards different local maxima. To
reach a summit, just follow the gradient vectors from where-ever you stand! But be
careful: note one curve narrowly misses a saddle point (look for the sharp rightward
bend)–at a saddle critical point, it is ambiguous how to best proceed upwards.

Returning to our hiker’s journey, we let her (x, y) position follow a field-line, leading her up the
mountain. If her journey comes to an end, it is because her field-line has terminated in a point P
with ∇f(P ) = 0. Such a point will be called a critical point of f . Note that at such a point, the
tangent plane is necessarily parallel to the xy-plane, i.e. it is horizontal. If she is lucky, she has
found a summit, though it is possible she has instead found a mountain pass (also called a saddle).

11
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Note that if she wants to find her way to one of the lowest points of terrain, she can follow the
field-lines backwards until she hits a critical point, hoping again it is not a saddle.

We can now formalize this idea for general multivariable functions. We will define critical points,
and a map called the gradient flow which is defined on D and allows us to imagine pushing or
flowing the domain towards certain critical points, and away from the local minima.

Definition. Let f : D → R be an n-variable function. The critical points of f are the points of D
where the partial derivatives all vanish, or where any partial derivative fails to exist:

crit(f) = {r ∈ D : ∇f(r) = 0 or ∇f(r) does not exist} .
The numbers f(r0) for r0 ∈ crit(f) are called the critical values of the function f . A critical value

f(r0) is a local maximum value if there exists a neighborhood N ∈ D of r0 such that f(r0) ≥ f(r)
for all r ∈ N . A critical value is a local minimum if there exists a neighborhood N ∈ D of r0 such
that f(r0) ≤ f(r) for all r ∈ N .

A point r where ∇f(r) exists and is nonzero is called a regular point.

Definition. The gradient flow of a function f : D → R of n variables is the map given by

Φ(t, r) = γr(t) ,

where γr(t) is the field-line through r such that γr(0) = r and γ̇r(t) = ∇f(γr(t)) for all t for which
γr(t) is defined.

Observe that Φ(0, r) = r. As t increases, Φ maps the domain D onto itself such that any point r
is moved along its field-line by a time step of t. If r is non-critical and the field-line γr(t) terminates
in a critical point, then r will move towards this critical point for t large enough.

One can define field-lines/integral curves for more general vector fields, which we will briefly
discuss in section 2.5. For now, we offer a brief discussion of the field-lines of ∇f for f a function
of two variables. From the definition we can extract a differential condition to be satisfied for the
trajectory of a point (x, y) under the gradient flow. Writing γ(t) = x(t)̂ı + y(t)̂, and ẋ(t) = dx/dt,
ẏ(t) = dy/dt, the velocity vector for the gradient field-line γ(t) is γ̇(t) = ẋ(t)̂ı+ ẏ(t)̂, and imposing
the condition γ̇(t) = ∇f(γ(t)), we arrive at the autonomous system of differential equations4:Ç

ẋ(t)
ẏ(t)

å
=

Ç
∂x(f)(x(t), y(t))
∂y(f)(x(t), y(t))

å
,

where5 ∂x(f) = ∂f/∂x and ∂y(f) = ∂f/∂y.
These are often nonlinear differential equations and generally difficult or impossible to solve

explicitly. Nevertheless, one can still use the idea of gradient flow to prove things, or gather a useful
understanding of the behavior of functions and the geometry of their graphs. One observation we
can make in this two-dimensional setting is that while it may be quite difficult to explicitly describe
the flow with equations, there is occasionally some hope of understanding the field-lines as curves
described implicitly. Since the gradient ∇f(P ) of a two-variable function at the point P is a vector
in R2, it specifies a slope for a tangent line to any curve through P that is tangent to the gradient
field at P . Thus, we deduce that when y is implicitly a function of x along a field-line of ∇f through
P , it must satisfy the differential equation

dy

dx
=

̂ · ∇f(x, y)

ı̂ · ∇f(x, y)
=
∂y(f)

∂x(f)

∣∣∣∣
(x,y)

.

Similarly, one can describe the derivative dx
dy . Though these first order differential equations may

be solvable in some instances where the system approach is fruitless, it is still often the case that

4A first order system of differential equations is a set of equations relating variables to their first derivatives with
respect to some common parameter t, and to each other. These can often be given in the form ṙ = F(r, t) where F is
a vector-valued function dependent on position and the variable t, usually thought of as time. One can think of F as
a time-dependent vector field. If F is time-independent, meaning ∂F/∂t = 0, then the system is called autonomous.

5In this and future sections, we will frequently abbreviate partial derivative operators like ∂
∂x

as ∂x, except in

certain definitions and propositions, or in any context in which it might impact the clarity of the notation.
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one cannot obtain closed form analytic solutions. We’ll explore some qualitative ways one can still
grasp at the gradient flow through examples.

Finding the equations of the gradient field-lines for a two-variable function thus amounts to
solving first order differential equations involving x and y, either as a system or to obtain implicit
equations. Similarly, finding integral curves of general vector fields (in any number of dimensions)
amounts to solving differential equations. This connection will be explored briefly again in §2.2.

Example 1.4. Consider the function f(x, y) =
√

36− x2 − y2. It should be easily recognized that
the graph of z = f(x, y) will be the “northern” hemisphere of a sphere of radius 6 placed with
center at 0 ∈ R3. The gradient is

∇f(x, y) = − x√
36− x2 − y2

ı̂− y√
36− x2 − y2

.

This is a radial vector field pointing inwards, and the magnitude decreases as one approaches the
origin. Indeed, we can rewrite this vector field as

∇f(x, y) = −1

z
(x̂ı + ŷ) = − r√

36− r · r
, r = x̂ı + ŷ .

Note that there is exactly one isolated critical point, which is at the origin, corresponding to the
maximum value f(0, 0) = 6 (the “north pole”). The gradient is also undefined at the boundary,
where the tangent planes to the surface are all vertical.

From the above gradient calculation, the gradient field-lines satisfy the differential equation

ṙ = − r√
36− r · r

.

Since the right-hand side is in the opposite direction of r, we know that ṙ and r are parallel, and
thus the gradient field-lines are line segments heading toward the origin–the gradient flow instructs
a hiker on this dome to head for the north pole along a direct trajectory, which on the sphere is an
arc of a great circle, the shadow of which on the xy-plane is the line segment connecting the hiker’s
position to the origin. Note also that since the gradient is undefined at the equator, the differential
equation is singular there.

Dotting both sides of the equation with r and doubling, we obtain

2r · ṙ =
d

dt
(‖r‖2) = − 2r · r√

36− r · r
= − 2‖r‖2»

36− ‖r‖2
.

This gives us a differential equation for the square of the distance of the point r from 0, but from
it we can also get an equation for the distance itself:

d

dt
‖r‖ = − ‖r‖»

36− ‖r‖2
.

From either equation, we see that the rate of change of the the distance from 0 is negative, and
approaches 0 from below as r → 0. We can actually solve either equation by separation and
integration to get t as a function of ‖r‖2 or ‖r‖. Since the derivatives are non-positive, we know
that the position function is monotonic decreasing, and we can in principle invert to get position
as a function of t. Unfortunately, inverting the resulting functions explicitly is not feasible, but it
is interesting to note that you can still understand the flow: from our above analysis we know that
points flow towards the origin, and if we know the initial distance from 0, and we know how far we
want a point to travel towards 0 along the field-line carrying it to the origin, we can determine how
long it will take for the flow to take it there. This will be explored in (11) in the problems below.

Example 1.5. Let

f(x, y) =
2x

x2 + y2 + 1
.

13
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(a) (b)

Figure 7. (A) – A view of the surface of the graph of z = f(x, y) from just above
the negative y-axis. (B) – A view of the surface of the graph of z = f(x, y) from
above, showing the contours as a family of circles

We’ll describe the level sets and the extrema, and then we’ll study the gradient flow.
Let z = f(x, y). The level set corresponding to z = z0 a constant is the set of points (x, y)

satisfying

z0 = f(x, y) =
2x

x2 + y2 + 1
=⇒ (x2 + y2 + 1)z0 = 2x .

If z0 = 0, then x = 0, and the y-axis is the level set. Let’s consider when z0 6= 0. By rearranging
and completing the square, one getsÅ

x− 1

z0

ã2
+ y2 =

1

z20
− 1 .

From this, it is apparent that the level sets for z− 0 6= 0 are circles with centers (1/z0, 0) and radii
1/z20 − 1, and −1 ≤ z0 ≤ 1. Observe that our description of the level curves implies that the range
of f is [−1, 1], with extrema at (±1, 0).

The gradient of f is

∇f(x, y) =

Ç
2

x2 + y2 + 1
− 4x2

(x2 + y2 + 1)2

å
ı̂− 4xy

(x2 + y2 + 1)2
̂ .

The trajectories γ(t) = x(t)̂ı + y(t)̂ under the gradient flow satisfy the system

d

dt

Ç
x(t)
y(t)

å
=

[
2

x2+y2+1
− 4x2

(x2+y2+1)2

− 4xy
(x2+y2+1)2

]
.

This is both highly nonlinear and algebraically intimidating to solve, so we’ll instead look to un-
derstand the trajectories as implicit curves.

The ı̂-component of ∇f(x, y) can be rewritten as z/x−z2, and the ̂-component can be rewritten
as −yz2/x. Thus the gradient field-lines satisfy the differential equation

dy

dx
=

yz2

xz2 − z
=

2xy

x2 − y2 − 1
.

Rather than explicitly and forcefully solving this differential equation, we will first look back to the
level curves, and then study the geometry of the surface z = f(x, y) to better understand the flow.
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Figure 8. The gradient vector field together with some field-lines.

As shown in figure (7 B), the level curves are circles emanating from the minimum, growing in
radius with centers moving outwards along the negative x axis, until we reach a limiting case which
is a line (the y-axis), after which they are circles with centers on the positive x-axis, moving inwards,
radii decreasing, enclosing the maximum at (1, 0). The gradient field-lines are perpendicular to the
level curves, and they too form a family of circles. These circles comprise the two kinds of families
of Apollonian circles, pictured in figure (9), which are named after the Greek geometer Apollonius
of Perga who discovered them. Note that each family also contains a “degenerate” circle, which is a
line; in the case of the gradient flow, it will be the x axis, which contains three different field-lines.

To see that the field-lines and level curves really are this pair of Appolonian circle families, we
need to understand the geometry of the level curve family, and see that a curve which is orthogonal
to all of the level curves it meets must in fact be itself an arc of a circle with center on the y axis,
and passing through both critical points. This is developed in (12) of the problems below.

The primary result of problem 12 is that z(r) is an algebraic transformation of the ratio of the
distances from r = x̂ı + ŷ to the two critical points:

z = tanh ln
‖r + ı̂‖
‖r− ı̂‖

=
‖r + ı̂‖2 − ‖r− ı̂‖2

‖r + ı̂‖2 + ‖r− ı̂‖2
.

The level sets are thus the circles where this ratio is constant. Let τ be the inverse hyperbolic
tangent of the corresponding level, i.e., τ satisfies

eτ =
‖r + ı̂‖
‖r− ı̂‖

.

The other family of circles is the sets of r such that the angle between the displacement vectors
r− ı̂ and r + ı̂ is a constant σ, and so along any gradient field-line the angle σ is constant. The flow
is given by letting τ act as the time parameter:

Φτ (r(τ0, σ0)) = r(τ0 + τ, σ0) ,

where r(τ, σ) is given by

r(τ, σ) =
sinh τ

cosh τ − cosσ
ı̂ +

sinσ

cosh τ − cosσ
̂ .

Problem (12) guides you through the details of showing this.
The field-lines come in several families: there are circular arcs arching from (−1, 0), where τ =

−∞, to (1, 0), where τ =∞, both above and below the x-axis. These fill out most of the plane, in
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Figure 9. The two families of Apollonian circles constituting the families of level
curves and gradient field-lines. The red circles are the level curves (x− 1/z0)

2+y2 =
1/z20 − 1, and the green circles are pairs of gradient field-lines; each green circle
decomposes into two arcs, one above the x-axis, and one below, which are both
field-lines, with the flow carrying points away from the minimum at (−1, 0) and
eventually towards the maximum at (1, 0).

the family of circles given by setting σ = a constant. i.e., circles centered on the y-axis and passing
through (±1, 0). Thus, the true circles within this Apollonian family each split into two field-lines,
one above the x-axis, and one below. The degenerate case is the x-axis itself (σ = 0), which splits
into three field-lines. There is the straight line segment from (−1, 0) to (1, 0) which behaves much
like the other field-lines, in the limit as τ →∞ it reaches the critical point at (1, 0) that gives the
maximum, and in ancient time as τ → −∞ it flows back to the critical point (−1, 0) which gives
the minimum. Then there are the two rays {r ∈ R2 : 1 ≤ r · ı̂ <∞} and {r ∈ R2 : −∞ < r · ı̂ ≤ −1}.
The former approaches the critical point at (1, 0), while the latter flows away from the critical point
at (−1, 0), as if to “wander off to infinity”.

The pair of numbers (τ, σ) defines an orthogonal curvilinear coordinate system called bipolar
coordinates, in this case, with its two focal points at (±1, 0). In the next section, we’ll explore how
to express gradients in terms of other coordinate systems, though we leave bipolar coordinates to
the exercises.
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§ 1.4. The Del Operator and the Gradient in Other Coordinates*

(Note: this is an optional section concerned with constructing formulae for the gradient and the
del operator in polar and spherical coordinates, and outlining a general procedure to recover the
operator in other coordinates using only differential calculus and linear algebra. This is not part
of the current curriculum, but is a useful skill, especially if the reader plans to explore the later
optional sections, and any examples using spherical coordinates.)

We’ve now seen that from a differentiable function of multiple variables f : D → Rn we can
produce a vector field on D via the gradient, and moreover, when restricted to level sets S ⊂ D,
we obtain a normal vector field. We have a way of concretely describing the gradient vector field in
components when working in rectangular coordinates, using the partial derivatives ∂x1f, . . . , ∂xnf .
We are interested in two objectives: understanding the assignment of vector fields to functions
via an operator, and understanding how to express this in other coordinates. We can think of the
first objective as a step towards a coordinate free understanding of multiple constructions involving
vector-valued derivatives as well as derivatives of vector fields. These perspectives will be developed
in later sections.

To meet our objectives, we once again subtly adapt our perspective. Whereas in the last section
we fixed f and examined the idea of the gradient as a vector field, sending points P to vectors
∇f(P ), we now consider the idea of a map from the space of differentiable functions on D ⊆ Rn
to vector fields on D. Let C1(D,R) be the space of continuously differentiable functions6 on D, and
let V(D,Rn) be the space of Rn-valued vector fields on D. Then we have a map

∇ : C1(D,R)→ V(D,Rn)

f 7→ ∇f .

Writing vectors in rectangular coordinates, we know this map can be expressed as

f 7→ ∇f =
n∑
i=1

(∂xif)ei .

This motivates the following definition:

Definition. The operator ∇, called the “del operator,” “nabla”, or the “gradient operator” is the
partial differential operator that sends a function f ∈ C1(D,R) to its gradient ∇f ∈ V(D,Rn).

The rectangular coordinate expression of the del operator is

∇ =
n∑
i=1

ei∂xi =

Æ
∂

∂x1
, . . . ,

∂

∂xn

∏
.

The second part of the definition is really a notational convention, albeit one of great convenience.
The map sending a function to its gradient then can be interpreted as “multiplying” ∇ on the right
by the scalar function f , thus distributing f to the components, where the partials then act on f .
This of course is a coordinate dependent expression for this operator, and so one might wonder
what happens when we try to change coordinates. It will not suffice to merely replace the basis
vectors ei, for we must also pair them with the appropriate partial differential operators, which can
have a general form of a function of the new coordinates, times partial derivatives with respect to
the new coordinates.

Perhaps the first natural choice of example is to express the two-dimensional del operator in the
polar frame (ûr, ûθ). Recall that the polar frame is given by

ûr =
x̂ı + ŷ√
x2 + y2

= cos(θ) ı̂ + sin(θ) ̂ ûθ = ∂θûr = − sin(θ) ı̂ + cos(θ) ̂ =
−ŷı + x̂√
x2 + y2

.

6Strictly speaking, we can define the del operator on a larger class of merely differentiable functions, as there exist
functions which are differentiable but not necessarily continuously differentiable. But a function having continuous
first partials guarantees that it is differentiable, so this is a safe and large class of functions to use as the domain of
our operator for the purposes of this class.
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Proposition 1.4. The 2-dimensional del operator expressed in the polar frame is

∇ = ûr
∂

∂r
+ ûθ

1

r

∂

∂θ
.

The actual calculation to show this is left as an exercise (see problem 20 of the notes Curva-
ture, Natural Frames, and Acceleration for Plane and Space Curves). We will however describe a
procedure to convert del into a general curvilinear coordinate system, and apply this procedure to
demonstrate del in a three-dimensional spherical coordinate system.

The general procedure to convert del to curvilinear coordinate frames has three steps:

(i) Express the standard basis of rectangular coordinates in the curvilinear coordinate frame7.
That is, if the standard basis of rectangular coordinates is (e1, . . . en), and the new coordi-
nates (y1, . . . yn) give rise to a frame (û1, . . . ûn) where in general ûj = ûj(y1, . . . , yn) are
functions of the new variables, you want to find functions aij(y1, . . . yn) for each ei, such
that

ei =
n∑
j=1

aji(y1, . . . yn)ûj(y1, . . . yn) .

Note that since ei is constant, the partial derivative of ei with respect to any yk is 0, whence
for each i = 1, . . . , n and any k = 1, . . . , n

∂ykei =
n∑
j=1

Ä
∂yk(aji)ûj + aji∂yk(ûj)

ä
= 0 .

This gives a differential criteria one can use to check if the linear algebra was done correctly.

(ii) Apply the chain rule to express ∂xi in terms of the new coordinate functions and the partial
differential operators with respect to them:

∂xi =
n∑
k=1

bik(y1, . . . , yn)∂yk ,

where bik = ∂xi(yk) is expressed as a function of the variables y1, . . . , yn.
(iii) Assembling steps (i) and (ii), the del operator can be written as

∇ =
n∑
i=1

ei∂xi =
n∑
i=1

Ä n∑
j=1

ajiuj
äÄ n∑

k=1

∂xi(yk)∂yk
ä

=
n∑
i=1

n∑
j=1

n∑
k=1

aij∂xi(yk)uj∂yk .

Note that we can regroup the sums:
n∑
i=1

n∑
j=1

n∑
k=1

aij∂xi(yk)uj∂yk =
n∑
i=1

n∑
j=1

n∑
k=1

ajibikûj∂yk =
n∑
j=1

n∑
k=1

(
n∑
i=1

ajibik

)
ûj∂yk =

n∑
j=1

n∑
k=1

cjkûj∂yk ,

where cjk =
∑n
i=1 ajibik. Letting A = (aji) be the matrix for the change of frame (û1, . . . ûn) →

(e1, . . . en) and B = (bik) the matrix for the change of derivatives, we see that the coefficients cjk
form a matrix C = AB. Thus, the whole change can be computed using a product of matrices with
entries given as functions of the variables (y1, . . . yn), and the (j, k)-th entry of the result is the scale
factor for the term of del involving the j-th frame vector ûj and the partial derivative operator ∂yk .

Do not be intimidated! In practice many of the terms above might be zero or might cancel
with other terms, and in low dimensions there are fewer terms to work with. We next partially

7A coordinate frame can be thought of as a collection of vector fields adapted to the coordinates. At each point
of space, a frame element gives the tangent direction to the curve created by continuously changing a corresponding
coordinate variable. The perspective of frames as vector fields is described in greater detail in section 2.5. Frames for
polar, cylindrical, and spherical coordinates are described in the notes Curvature, Natural Frames, and Acceleration
for Plane and Space Curves.
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demonstrate this process by calculating the del operator in the spherical coordinate system defined
in Curvature, Natural Frames, and Acceleration for Plane and Space Curves (see pages 11-14),
leaving the details of the calculations to the exercises.

The transformation from the rectangular coordinates (x, y, z)R on R3 to these spherical coordi-
nates (%, θ, ϕ)S is given as

x = % cos θ cosϕ , y = % sin θ cosϕ , z = % sinϕ ,

where % ∈ [0,∞), θ ∈ (−π, π], and ϕ ∈ [−π/2, π/2]. The transformation of the spherical frame

(û%, ûθ, ûϕ) back to the rectangular frame (̂ı, ̂, k̂) is given by the equations

û% = cos(θ) cos(ϕ) ı̂ + sin(θ) cos(ϕ) ̂ + sin(ϕ) k̂ ,

ûθ = − sin(θ) ı̂ + cos(θ) ̂ ,

ûϕ =− cos(θ) sin(ϕ) ı̂ − sin(θ) sin(ϕ) ̂ + cos(ϕ) k̂ .

Figure 10. A form of spherical coordinates modeled loosely on geographic coordi-
nates by longitude and latitude - note that these coordinates define ϕ as an elevation
angle measured from the projection of û% into the equatorial plane, rather than the
common mathematical convention, in which that angle is defined instead as an polar
or inclination angle measured between k̂ and û%. Since these competing angles are
complementary, to recover the more common coordinate convention, merely swap
sinϕ and cosϕ in the coordinate expressions.

Per step (i), we must first express (̂ı, ̂, k̂) as linear combinations of (û%, ûθ, ûϕ) with coefficients
dependent on the spherical coordinate variables (%, θ, φ). A little linear algebra gives

ı̂ = cos(θ) cos(ϕ) û% − sin(θ) ûθ − cos(θ) sin(ϕ) ûϕ ,

̂ = sin(θ) cos(ϕ) û% + cos(θ) ûθ − sin(θ) sin(ϕ) ûϕ ,

k̂ = sin(ϕ) û% + 0 ûθ + cos(ϕ) ûϕ .
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Following step (ii), we employ the chain rule and write

∂

∂x
=
∂%

∂x

∂

∂%
+
∂θ

∂x

∂

∂θ
+
∂ϕ

∂x

∂

∂ϕ
,

∂

∂y
=
∂%

∂y

∂

∂%
+
∂θ

∂y

∂

∂θ
+
∂ϕ

∂y

∂

∂ϕ
,

∂

∂z
=
∂%

∂z

∂

∂%
+
∂θ

∂z

∂

∂θ
+
∂ϕ

∂z

∂

∂ϕ
.

Using the relations %2 = x2 + y2 + z2, x tan θ = y, and z = % sinϕ, one deduces

∂

∂x
= cos(θ) cos(ϕ)

∂

∂%
− sin(θ)

% cos(ϕ)

∂

∂θ
− cos(θ)

%

∂

∂ϕ
,

∂

∂y
= sin(θ) cos(ϕ)

∂

∂%
+

cos(θ)

% cos(ϕ)

∂

∂θ
− sin(θ)

%

∂

∂ϕ
,

∂

∂z
= sin(ϕ)

∂

∂%
+

cos(ϕ)

%

∂

∂ϕ
.

And finally, we put it all together according to step (iii):

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

= û%
∂

∂%
+

1

% cos(ϕ)
ûθ

∂

∂θ
+

1

%
ûϕ

∂

∂ϕ
.

We’ve left this final calculation to problems (16) and (17); note that it can be accomplished
via matrix multiplication, by recognizing the coefficients aij and bik as matrix elements for the
corresponding linear transformations. In this instance, there are numerous cancellations and we are
left with just three terms, each consisting of a scale factor, and a partial derivative which matches
the basis vector. This is a consequence of the orthogonality of the coordinates, but need not happen
for skew coordinates.

Once one is acquainted with integrals in vector calculus, it becomes possible to give a new
definition of the gradient which is coordinate free, as described in §4.3. This integral approach
allows one to more easily obtain expressions for the gradient and related differential operators by
considering certain well adapted curves, surfaces and solids as domains of integration, and taking
limits as these domains are shrunk to a point. Until then, we have the arduous process above, which
is great practice with the chain rule and linear algebra!
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§ 1.5. Problems

(1) (a) Recall the multivariate chain rule for a composition of a differentiable n-variable func-
tion f : D → R with a curve r(t) ⊂ D:

d

dt
f
Ä
r(t)
ä

=
n∑
i=1

∂f

∂xi
ẋi(t) = ∇f(r(t)) · ṙ(t) .

Prove this chain rule directly using the limit definition of df
dt and the limit definitions

of partials ∂xif . Be sure to note how one needs the assumption of differentiability of
f .

(b) Prove the coordinate formula

Dûf(r0) =
n∑
i=1

ui
∂f

∂xi
(r0)

using the limit definition of the directional derivative and the multivariate chain rule.

(2) In the map D•f(P ) : Sn−1 → R sending û to Dûf(P ) = û · ∇f(P ) = ‖∇f(P )‖ cosϕ, what
is the interpretation of ϕ on Sn−1? That is, interpret the function sending û to ϕ as a map
on the sphere Sn−1. For a three variable function f , what are the level curves of ϕ as subsets
of S2?

(3) Prove that the gradient is normal to level sets by showing that ∇f(P ) ·v = 0 for all tangent
vectors v ∈ TPS for any point P of a level set S.

(4) For a position r = x ı̂ + y ̂ + z k̂ ∈ R3, let α be the angle between r and the x-axis, β the
angle between r and the y-axis, and γ the angle between r and the z-axis. Find a function
f : R3 − {0} → R such that Dûf(r) = (û · ı̂) cosα+ (û · ̂) cosβ + (û · k̂) cos γ.

(5) For a unit vector û = u1 ı̂+u2 ̂+u3 k̂ ∈ S2, find functions f : R3 → R such thatDûf(r) = ui,
for each of i = 1, 2, and 3.

(6) Consider the surface S given as the locus of points in R3 satisfying the equation

xy − xz + yz = 2 .

(a) Find an equation of the tangent plane ATPS at the point P (
√

2,
√

2, 1/
√

2).

(b) Exhibit a line through P (
√

2,
√

2, 1/
√

2) contained in ATPS as found above which is
also contained in the surface S, and then find another one.

(c) Show that at any point P (x, y, z) ∈ S, ATPS contains a pair of lines through P which
are both contained in S. The surface S can be “built” out of lines, called rulings, in
two different ways, and so is called a doubly ruled surface.

(d) The surface S is a quadric. Find a coordinate transformation of R3 putting it into a
standard form, and identify the quadric.

(7) Consider a function f(x, y, z) defined over a domain D ⊆ R3, and let S be the level surface
defined by f(x, y, z) = 0. Assume 0 ∈ F (D) so S is nonempty, and further assume that S is
C1-smooth and contains a point P (x0, y0, z0) with a neighborhood satisfying conditions of
the implicit function theorem:
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Theorem (Implicit function theorem for a 3-variable scalar function).

Let f(r) be a function which is defined on the ball BR(r0) = {r ∈ R3 : ‖r − r0‖ ≤ R}
centered at r0 = x̂ı+ ŷ+zk̂, and such that f(r0) = 0. Suppose that f is C1 on BR(r0), i.e.,
f is continuous throughout BR(r0) and each of ∂xf(r), ∂yf(r), and ∂zf(r) are continuous
throughout BR(r0). If ∂zf(r0) 6= 0, then f(r) = 0 implicitly defines z as a differentiable
function of x and y near r0, and the level set of f determined by f(r) = 0 on BR(r0) is the
surface of the graph of z(x, y) near (x0, y0).

Moreover, the partial derivatives of z near (x0, y0) are given by

∂xz = −∂xf
∂zf

, and ∂yz = −∂yf
∂zf

.

(a) Write down the scalar equation of ATPS for a point P (x0, y0, z0) ∈ S using that ∇f(P )
is a normal vector to S at P .

(b) Assume that near P , z is locally a function of x and y. Use implicit differentiation to
obtain an equation for ATPS and show that it is equivalent to the equation from part
(a).

(8) Let Π be a plane with unit normal vector n̂ = cos(α) ı̂+cos(β) ̂+cos(γ) k̂. Show that there

exists a point P (x0, y0, z0) on the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1 such that the tangent plane to

the ellipsoid at P is parallel to the plane Π. How many such points are there? Express the
coordinates of such P in terms of the direction cosines cos(α), cos(β) and cos(γ) giving the
components of n̂.

(9) Consider the functions below over the disk x2 + y2 ≤ 4. For each of the functions, draw
a picture illustrating together a family of level curves, the gradient vector field, and the
field-lines for the gradient flow (you do not need to explicitly describe the gradient flow).
Identify the critical points and their types.

(a) f(x, y) = x2 + y2,

(b) f(x, y) = y2 − x2,

(c) f(x, y) = 4− x2 − y2,

(d) f(x, y) =
2x

x2 + y2
.

(10) For each of the functions above in problem (9), re-express the function in polar coordinates,
and then recompute the gradient using the polar form of the del operator. (If you somehow
thought to do this first, then go back and use rectangular coordinates instead.)

(11) This problem reconsiders the function f(x, y) =
√

36− x2 − y2 and studies its gradient
flow. However you should first consider an arbitrary (i.e., unspecified) function f(x, y) for
parts (a) and (b).

(a) To warm up: write down the differential equation for the gradient field-lines giving
dy/dx in terms of the partials of f . Assuming y is given implicitly as a function of x,
show that y and x equivalently satisfy an equation in the form

M(x, y) dx+N(x, y) dy = 0

for appropriate functions M(x, y) and N(x, y). By realizing the left hand side as the
total differential dF (x, y) = ∂xF dx+∂yF dy, “integrate” to obtain F (x, y), and recover
the geometric description of the field-lines as line segments heading towards the origin.

Note that the assumptions that F (x, y) = constant implicitly determines y as a function
of x, and that M(x, y) dx+N(x, y) dy is the total differential of F impose conditions
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on the partials of M and N : if M(x, y) = ∂xF (x, y) and N(x, y) = ∂yF (x, y) and
both functions are continuously differentiable, then Clairaut’s theorem requires that
∂yM = ∂xN . This will help you choose between ways in which to rewrite the differential
equation for dy/dx in terms of possible M(x, y) and N(x, y).

(b) The above procedure is equivalent in this case (but more powerful in general; see §2.2)
to separation of variables: one can instead rearrange the equation for dy/dx to put all
terms involving y on the left side, and all terms involving x, including the differential
dx on the right hand side. To solve the differential equation, one then integrates both
sides separately, and by equating the indefinite integrals and combining constants of
integration, one then has an implicit solution. If y can be solved for as a function of x,
then one can obtain a general solution whose trajectories are curves of graphs.
Use the method of separation of variables to recover a general solution for this dif-
ferential equation. Then, under the assumption that the trajectory is initialized at a
regular point (x(0), y(0)) = (x0, y0) in the domain of f , determine the corresponding
values of any constants of integration. Separately treat the cases of x initially being 0
or y initially being 0.

(c) Recall that the distance r = ‖r‖ =
√
x2 + y2 of a point of the disk 0 < x2 + y2 < 36

from the origin undergoing gradient flow for the function f(x, y) =
√

36− r2 satisfies
the following differential equation

dr

dt
= − r√

36− r2
.

Using separation of variables, find an expression for t as a function of r, with an
appropriately determined constant of integration so that when t = 0, r = r0 ∈ (0, 6).

(d) Argue that the limit of the trajectory of a regular point of f under the gradient flow
as t → ∞ is the origin. What happens to a regular point if we consider running the
flow backwards (taking the limit as t→ −∞)?

(e) Find how long it will take for a point to flow from r0 = 3 to r = 2, and for a point to
flow from r0 = 1 to r = 1/2.

(12) This problem examines the geometry of Apollonian circles and the gradient flow of f(x, y) =
2x

x2+y2+1
, as discussed above in the example at the end of section 1.3.

(a) Using the differential equation

dy

dx
=

2xy

x2 − y2 − 1
,

show that circles of the form x2 + (y − h)2 = 1 + h2 satisfy the differential equation.
Thus, field-lines of f(x, y) are arcs of such circles.

(b) Fix a number σ ∈ [0, π]. Argue that the set of all points (x, y) such that the angle
between the vector r + ı̂ and r − ı̂ is σ determines a circle, except for the boundary
cases σ = 0 or π, which you should argue give a line. Find the equation of the circle
(or line) in terms of x, y and σ.

(c) Fix a number τ ∈ R. Argue that the set of all points (x, y) such that the ratio

‖r + ı̂‖
‖r− ı̂‖

equals eτ determines a circle, except for the case when τ = 0, which you should argue
is a line. Find the equation of the circle (or line) in terms of x, y and τ .
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(d) Show that any of the circles/lines in the family from part (b) are orthogonal to any of
the circles/lines in the family of part (c).

(e) Show that a point (x, y) is uniquely determined as an intersection of a circle or line of
constant τ and a circle or line of constant σ, and in particular show that

x =
sinh τ

cosh τ − cosσ
, y =

sinσ

cosh τ − cosσ
.

(f) Show that f(x, y) = tanh τ .

(g) By computing ∂τx as well as ∂τy and comparing with the equations for ẋ and ẏ in
terms of ∂xf and ∂yf that determine the gradient flow, show that the flow is given by

Φτ

Ä
x(τ0, σ0), y(τ0, σ0)

ä
=

sinh(τ + τ0)

cosh(τ + τ0)− cos(σ0)
ı̂ +

sin(σ0)

cosh(τ + τ0)− cos(σ0)
̂ .

(h) Compute the limits limτ→∞ f
(
Φτ

Ä
x(τ0, σ0), y(τ0, σ0)

ä)
and limτ→−∞ f

(
Φτ

Ä
x(τ0, σ0), y(τ0, σ0)

ä)
to confirm the analysis given in the example above. Pay attention to exceptional cases
of τ0 and σ0.

(13) Prove the validity of the procedure outlined in section 1.4 to convert ∇ between coordinates.
That is, prove that given coordinates (y1, . . . , yn) with associated frame (û1, . . . , ûn), the
operator

n∑
i=1

n∑
j=1

n∑
k=1

aji∂xi(yk)uj∂yk

agrees with

∇ =
n∑
i=1

ei∂xi

when acting on functions f ∈ C1(D,R), where aji(y1, . . . yn) are functions such that

ei =
n∑
j=1

aji(y1, . . . yn)ûj(y1, . . . yn) .

(14) Express ı̂ and ̂ as linear combinations of ûr and ûθ with coefficients that are functions of
θ. Rewrite the linear equations to also express the coefficients as functions of x and y.

(15) Use the procedure outlined in section 1.4 to express ∇ in cylindrical coordinates, proving
the proposition giving del in polar coordinates along the way.

(16) Verify the expressions of ı̂, ̂ and k̂ in the spherical frame given in section 1.4, and rewrite
them to express the coefficients as functions of the rectangular variables x, y, and z. Apply
the differential criterion from step (i) to check that these expressions are constant with
respect to the spherical variables %, θ and ϕ.

(17) Verify the remaining details used to express del in spherical coordinates. In particular, you
should use the chain rule to verify the expressions given for ∂x, ∂y, ∂z in terms of ∂%, ∂θ,
and ∂ϕ, and do the work of step (iii) to arrive at the final expression

∇ = û%
∂

∂%
+

1

% cos(ϕ)
ûθ

∂

∂θ
+

1

%
ûϕ

∂

∂ϕ
.
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(18) Compute the gradients of the coordinate functions for spherical coordinates, i.e. compute
∇%, ∇θ and ∇ϕ. Try the calculation both using spherical del, and using rectangular del
together with the relations between %, θ, and ϕ and rectangular coordinates.

(19) Fix a number a ∈ R+. Following the ideas of problem (12) above define a coordinate system
with focal points at (±a, 0) using an angle σ and a logarithm of a ratio τ to determine the
location of any point in the plane. Then describe ∇ in this coordinate system. What are
∇τ and ∇σ?

(20) Find the gradients of the following functions, and express them in rectangular, cylindrical,
and spherical coordinates.

(a) f(x, y, z) = xyz,

(b) f(x, y, z) =
1√

x2 + y2 + z2
,

(c) f(x, y, z) =
xy − xz + yz√
x2 + y2 + z2

,

(d) f(x, y, z) = z2x− 2y + z − (x2 + y2)z.
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2. Vector Fields in Low Dimensions

§ 2.1. General Vector Fields in Domains of R2 and R3

Our introduction to vector fields was through the natural case of considering the gradient operator
as attaching vectors to each point of the domain of some scalar field. Generalizing, we will now
consider vector valued functions on domains in R2 and R3. These general vector fields are just
functions that assign vectors to every point of their domains. We work in low dimensions, where it
is easy to visualize the fields and where important and concrete examples abound.

Definition. Let D ⊆ R2 be a domain. Then a 2-dimensional vector field on D is a vector-valued
map

F : D → R2 .

Given a coordinate system on the range of F in R2, the values F can resolved into components; we
will generally also resolve the rule F into component functions, which are themselves scalar fields
defined on D with values in R. For example, using rectangular coordinates, we assume there are
two bivariate functions F1(x, y) and F2(x, y) defined on D, such that the vector field is described
by the rule

r = x̂ı + ŷ 7→ F(r) = F1(x, y)̂ı + F2(x, y)̂ .

We geometrically interpret this map as “attaching” a vector F(x, y) to the point (x, y) ∈ D ⊆ R2.
We will give a similar description for general 3D vector fields shortly. First, let us look at some
examples of 2-dimensional vector fields.

Example 2.1. Let F(x, y) = ŷı − x̂. We claim this is a “spin field”, with vectors tangent to
concentric origin-centered circles, rotating clockwise, and with magnitudes that grow with distance
to the origin.

Figure 11. The clockwise spin field F(x, y) = ŷı− x̂. The vectors are not drawn to
scale, so as to avoid collisions; warmer colors indicate increased magnitude. field-lines
shown are denser where the field is stronger.
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This is easy to show: let r = x̂ı + ŷ, which is the radial position vector. Then r · F(x, y) =
xy − yx = 0, which shows that F(x, y) is always perpendicular to the position vector of the point
(x, y). Meanwhile, the magnitude of F(x, y) is ‖F(x, y)‖ =

√
y2 + x2 = ‖r‖.

In fact, it is quite natural to express this field using the polar frame as

F(r) = F(r, θ) = −rûθ(θ) ,
which confirms that this is a clockwise spin field. Note that though ûθ is not defined at the origin,
the field F is defined there using the rectangular coordinate expression, and F(0) = 0 there, so we
should perhaps think of our polar formula as needing to be given by a limit

F(r0, θ0) = lim
(r,θ)→(r0,θ0)

−rûθ(θ)

in order to use this to define F throughout the whole of R2.

Example 2.2. A large class of simple to study but useful vector fields arise from the theory of
linear systems. Consider a vector field of the form

F(r) = Mr ,

where M ∈ R2×2 is a 2×2 real valued matrix. Recall, that a 2×2 matrix acts on a vector r = x̂ı+ ŷ
as follows: ñ

a b
c d

ô ñ
x
y

ô
=

ñ
ax+ by
cx+ dy

ô
= (ax+ by)̂ı + (cx+ dy)̂ .

The spin vector field of the preceding example is thus of this form (can you write down the matrix
for it?). Linear vector fields are classified by some simple properties of the matrices generating
them (in particular, by their eigenvalues and eigenvectors). Figures 12 and 13 below show some of
the possibilities; see (2) in the problems below to explore the classification of linear 2-dimensional
vector fields in greater detail.

(a) (b)

Figure 12. (a) – A saddle vector field, corresponding to the linear transformation
x̂ı+ ŷ 7→ x̂ı− ŷ. (b) – A spiral sink, arising from the linear transformation x̂ı+ ŷ 7→
(3y − x)̂ı + (3x+ y)̂.

In classifying linear vector fields, one is often interested in the topology of the field near the origin
(and more generally, for nonlinear vector fields, the local topology of the field as well as its global
topology8). By topology we are referring to characteristics of the vector field that are persistent
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(a) (b)

Figure 13. (a) – A stable node vector field, determined by the linear transforma-
tion x̂ı + ŷ 7→ −x̂ı − 2ŷ. (b) – An unstable degenerate node, given by the linear
transformation x̂ı + ŷ 7→ (x+ 2y)̂ı + ŷ.

after continuous deformations of the domain. We briefly discuss some example topologies of linear
fields.

In §2.2 below we will formally define flow for general vector fields, directly extending the idea of
gradient flow to the larger class of vector fields. Intuitively, imagine that a vector field represents
the velocity field of a fluid. To understand the topologies, we will discuss behavior in terms of the
motion of a particle trapped in the flow, along field-lines, or integral curves which are tangent to
the vector field.

We will use the terms stable and unstable in this context refer to the dynamics of a particle
trapped in the flow near an equilibrium point of a vector field, which is a point r∗ such that
F(r∗) = 0. If the particle is at the origin subject to the flow of a linear field, it will not move, since
linear maps send 0 to 0, and the origin thus corresponds to an equilibrium point. If under a small
perturbation displacing the particle away from the origin, the particle begins to return to the origin
under the flow, then the dynamics are stable, as in the spiral sink and the stable node depicted in
(12.b) and (13.a) respectively. However, if the particle makes an escape away from the origin after
such a perturbation, then the dynamics are said to be unstable. This is visually detectable from
the directions of arrows along trajectories leading into/out of the origin. In figure (12.a) we see
a saddle node topology,9 characterized by a pair of stable paths leading towards the origin, and a
pair of unstable paths leading out of 0, and all other paths running roughly along one of the stable
paths before turning and running along an unstable path.

There are several other “topologies” for linear fields:

• stars, which occur e.g., for maps of the form r 7→ cr for a scalar c,
• centers, such as the spin field shown in figure 11, and

8Away from zeroes of a smooth two-dimensional vector field, one can always continuously deform a small rect-
angular neighborhood of a point to make all of the vectors parallel and all of the field-lines into lines parallel to
the rectangular neighborhoods sides. Near zeroes however there may be more interesting features which distinguish
the local structure–field lines converging along some directions, diverging along others, or spiraling either inwards or
outwards–certain singular features cannot be smoothed away without fundamentally altering the field itself, beyond
just deforming the domain in some small way. Local topology captures what flavor of neighborhood one has around a
point. Global topology captures larger scale invariant information, such as whether there are field lines running from
one zero to another, orbits and closed cycles, etc.

9The term node is sometimes dropped from the description “saddle node.”
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• fields arising from singular matrices, such as the trivial map r 7→ 0, projections r 7→ projû r,
or nilpotent maps like x̂ı + ŷ 7→ ŷı.

See (2) below in the problems, where you will have a chance to study these maps along with saddles,
nodes, centers, and spirals in context of the eigen-theory classification of linear fields in the plane.

Example 2.3. We now give an essential example of a non-linear vector field, a so-called dipole
field F(x, y) = (x2 − y2) ı̂ + 2xy ̂, which is visualized in figure 14.

Figure 14. The topological dipole F(x, y) = (x2 − y2) ı̂ + 2xy ̂.

Observe however that the field strength increases away from the origin:

‖F(r)‖ =
»
r4 cos2(2θ) + r4 sin2(2θ) = r2 ,

where r = ‖r‖. This isn’t very physical; indeed, this field is really a topological dipole, while a
true physical dipole arising e.g., in electromagnetic theory, has diminishing strength away from
the dipole’s center. See (10) below in the problems to study both topological and physical dipoles.
Here, the term topological refers to the fact the the essential “dipole shape” and co-orientations10

of the field lines are preserved under well behaved (continuous and continuously invertible) maps
R2 → R2.

We now consider 3-dimensional fields.

Definition. Let D ⊆ R3 be a domain in 3-space. Then a 3-dimensional vector field on D is a
vector-valued map

F : D → R3 .

10Here, the idea of co-orientations is simple to explain: the field lines are oriented by the vector field; and two lines
in a neighborhood of a point are co-oriented around that point if they have “matching” directions near the point;
more formally, two oriented curves are co-oriented near P if there is an open neighborhood U of P containing arcs of
each curve, and a continuous bijective transformation from U to the open square (−1, 1)× (−1, 1) such that P is sent
to the square’s center, and the arcs of the curves, with orientations, are sent either to the parallel oriented open line
segments (−1, 1)×{±1/2}, or to the pair of parabolae {(x, y) ∈ (−1, 1)× (−1, 1) : y = ± 1

2
x2}, where the orientation

is left to right in the square.
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As in the two dimensional case, given a coordinate system on the range of F in R3, it can resolved
into components. In rectangular coordinates, the components are three variable functions F1(x, y, z)
F2(x, y, z) and F3(x, y, z) defined on D, such that the vector field is described by the rule

r = x̂ı + ŷ + zk̂ 7→ F(r) = F1(x, y, z)̂ı + F2(x, y, z)̂ + F3(x, y, z)k̂ .

One can define linear fields in 3 dimensions:

F(x, y, z) = (a1x+ a2y + a3z)̂ı + (b1x+ b2y + b3z)̂ + (c1x+ c2y + c3z)k̂ ,

which arise from the action of a 3× 3 matrix on 3-vectors:

F(r) =

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 r = (a · r)̂ı + (b · r)̂ + (c · r)k̂ ,

where a = a1̂ı + a2̂ + a3k̂, b = b1̂ı + b2̂ + b3k̂ + c = c1̂ı + c2̂ + c3k̂ are the constant vectors
corresponding to the rows of the matrix.

Example 2.4. Consider the linear vector field

F(r) =

 0 −1 1
1 −3 1
−1 1 −1

 r = (z − y)̂ı + (x− 3y + z)̂− (x− y + z)k̂ ,

which is shown in figure 15, together with some field-lines, which are the trajectories particles would
follow if F was their velocity field.

(a) (b)

Figure 15. (A) – The vector field F(x, y, z) = (z−y)̂ı+(x−3y+z)̂−(x−y+z)k̂.
The vectors are not drawn to scale, so as to avoid collisions; warmer colors indicate
increased magnitude. (B) – Some field-lines for this vector field.

In general, one needs the assistance of computers to efficiently visualize 3 dimensional vector
fields, except when the component functions are exceptionally simple.

Example 2.5. Consider an object with mass M and fix the origin of our coordinate system at its
center of mass, and let m < M be the mass of a smaller object at position r = x̂ı+ ŷ+zk̂. Newton’s
law of gravitation states that the magnitude of the force of gravitational attraction between these
objects is proportional to the product of their masses, and inversely proportional to the square
of the distance between them, and further, the force on each object is attractive, acting in the
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direction of displacement towards the other object. Thus, if Fg is the field describing the force
exerted by the larger mass on the smaller mass, Newton’s law of gravitation tells us that

‖Fg(r)‖ =
GMm

‖r‖2
,

where G is a constant, now known as the universal gravitational constant. Since this field is at-
tractive, the force on the smaller object acts in negative radial direction, so the actual vector field
describing the force is

Fg(r) = −‖Fg(r)‖ r

‖r‖
= −GMm

x̂ı + ŷ + zk̂

(x2 + y2 + z2)3/2
.

Note that the field is undefined at the origin, and is strongest as one approaches the origin. In the
notes on Curvature, Natural Frames, and Acceleration for Plane and Space Curves, we combine this
law with Newton’s second law of motion and elementary calculus of curves to study the two body
problem of celestial mechanics. In particular, we give a reproof of Kepler’s Laws, from Hamilton’s
theorem on velocity circles. If you skipped over that, now is a great time to go learn about why
planetary orbits are (approximately) ellipses!

§ 2.2. Flows and Integral Curves

Recall, in our discussion of gradients in §1.3, we defined field-lines as the curves of the gradient
flow which are everywhere tangent to the gradient vector field. This particular idea is not special
to gradient fields; any vector field with sufficiently well behaved component functions will possess
smooth field lines and an associated flow function. One recovers the field-line through a point r0
as the solution r(t) of the initial value problem

ṙ(t) = F
Ä
r(t)
ä
, r(0) = r0 .

This is a first order ordinary differential equation in n variables, where n is the dimension of
the space over which our vector field is defined. This equation merely specifies that the curve
parametrized by r has velocity vector given by the vector field F at the position r(t). The param-
eterized curve is called an integral curve of the vector field. One can also consider the field-line
as an abstract curve, which is often easier; one merely has to find curves everywhere tangent to
the vector field, and can ignore any worries about ensuring the particular parameterization yields
the correct velocity vectors on the nose. For planar vector fields, this reduces to solving differential
equations of the form

dy

dx
=

̂ · F(r)

ı̂ · F(r)
=
F2(x, y)

F1(x, y)
.

Example 2.6. Let F(x, y) = ŷı−x̂. Recall this is the clockwise spin-field discussed at the beginning
of section 2.1 (see figure 11). We can find an implicit description of the field-lines from the differential
equation

dy

dx
= −x

y
.

Indeed, this corresponds to the differential form

x dx+ y dy = 0 ,

which is exact, meaning it arises as the total differential df of a function f . Indeed, you may
recognize this derivative as coming from implicitly differentiating the equation of a circle. We can
write this as two separated differential one forms, equated:

y dy = −x dx .

Integrating both sides, and consolidating all constants of integration on the right:

1

2
y2 =

1

2
x2 + C =⇒ x2 + y2 = 2C .

31



11/14/19 Multivariate Calculus: Vector Calculus Havens

This is indeed the equation of a circle, of radius
√

2C. The method of solution we just used is
called separation of variables, and generally works whenever we have a differential equation that
can be written in differential form as M(x) dx+N(y) dy = 0. More generally, we can readily solve
a differential equation of the form M(x, y) dx+N(x, y) dy = 0 by partial integration whenever the
differential is exact, see the discussion of conservative fields and exact differentials at the end of
section 2.3.

If we wanted the explicit integral curves, we’d solve the system

ṙ = ẋ̂ı + ẏ̂ = ŷı− x̂ =⇒
ñ
ẋ
ẏ

ô
=

ñ
0 1
−1 0

ô ñ
x
y

ô
.

Using eigentheory of matrices and linear differential equations one can derive a solution which
agrees with one’s intuition. It’s easy to check that a solution is of the form r(t) = r0(cos(θ0 − t)̂ı +
sin(θ0 − t)̂), where r0 = x20 + y20 and x0 = r0 cos θ0, so θ0 is the angle made by (x0, y0) with ı̂. See
(2) in the problems below to learn about eigentheory and linear vector fields in greater detail.

As with gradient flow, we can define a flow function for any vector field:

Definition. The flow of n n-dimensional vector field F : D → Rn on a domain D ⊆ Rn is the map
given by

Φ(t, r) = γr(t) ,

where γr(t) is the field-line through r such that γr(0) = r and γ̇r(t) = F(γr(t)) for all t for which
γr(t) is defined.

Example 2.7. One can use our description of the integral curves of F(x, y) = ŷı−x̂ as trajectories
to give an explicit description of the associated flow. Let r = x̂ı + ŷ = r cos(θ) ı̂ + r sin(θ) ̂. Then
the flow is

Φ(t, r) = r(cos(θ − t)̂ı + sin(θ − t)̂)

=
Ä
r cos(θ) cos(t) + r sin(θ) sin(t)

ä̂
ı +
Ä
r sin(θ) cos(t)− r cos(θ) sin(t)

ä̂
)

=

ñ
cos(t) sin(t)
− sin(t) cos(t)

ô ñ
x
y

ô
.

It is not hard to show that the matrix above is a rotation matrix performing an origin-centered
rotation clockwise by an angle of t (hint: draw the vectors corresponding to the columns, and
consider what angles they make with each coordinate axis). Thus the flow in this case is as one
expects: clockwise rotation at unit angular speed.

Generally, there are analytical difficulties in explicitly describing the flow function for all but
simple classes of vector fields. But as a conceptual tool, flow functions have useful applications in
dynamics and geometry, and even aid in proving existence results in differential topology.

§ 2.3. Conservative Vector Fields and Potentials

Gradient vector fields hold a prominent role among the vector fields one studies, in particular
because of the geometry they admit due to their trajectories being orthogonal to a set of subspaces
(curves for 2D fields, surfaces for 3D fields, and (n−1)-dimensional “hypersurfaces” for dimensions
n ≥ 4) given as the level sets of a differentiable scalar function. In fact, due to their connection
with the physics of conservation of energy (as will be explained at the end of section 3.1, via the
fundamental theorem of line integrals), they have earned the special name “conservative vector
fields”:

32



11/14/19 Multivariate Calculus: Vector Calculus Havens

Definition. Suppose F is a differentiable vector field defined throughout a domain D ⊆ Rn. Then
F is called conservative in the domain D if there exists a scalar field f : D → R such that for every
point r ∈ D

F(r) = ∇f(r) .

A scalar field f whose gradient throughout D equals F is called a scalar potential for F. Note that
potentials are not unique: if f(r) is a potential for F, then so is f(r) + C for any constant C ∈ R.

We’ll later connect the scalar potential to the notion of potential energy, and justify the name
“conservative”.

The question remains, how do we identify a conservative vector field, or rule out the existence of
a potential? If F is continuously differentiable, then there is an easy criterion that must be satisfied
for it to be conservative, though it is not a sufficient criterion:

Proposition 2.1. Let F(r) be a continuously differentiable vector field defined on a domain D ⊆
Rn. Let

F(r) =
n∑
i=1

Fi(r)êi

be the decomposition of F(r) into component functions in rectangular coordinates. Then if F is
conservative, the component partial derivatives satisfy

∂Fi
∂xj

(r) =
∂Fj
∂xi

(r) ,

for all i, j = 1, . . . , n and for all r ∈ D.

Proof. If F is conservative, then for some potential f : D → R, each component function Fi(r)
satisfies

Fi(r) =
∂f

∂xi
(r)

throughout D. Since F is continuously differentiable throughout D, by Clairaut’s theorem for any
j and any r ∈ D,

∂Fi
∂xj

(r) =
∂2f

∂xj ∂xi
(r) =

∂2f

∂xi ∂xj
(r) =

∂Fj
∂xi

(r) .

�

Remark. For i = j above the conditions are trivial, so one only has to concern themselves with
the cases when the indices don’t match. For 2-dimensional vector fields, this condition gives rise to
a single equation that one can check: if F(r) = P (r)̂ı +Q(r)̂, one checks if

∂Q

∂x
=
∂P

∂y
.

Thus, if these partials do not match, one can be sure that the field is not conservative. If the
equality holds, it does not guarantee that F is conservative; this equality is a necessary but not
sufficient condition. A partial converse to this proposition is discussed in section 3.1.

For a 3-dimensional vector field F(r) = P (r)̂ı +Q(r)̂ +R(r)k̂, we have 3 equalities to check:

∂Q

∂x
=
∂P

∂y
,

∂P

∂z
=
∂R

∂x
,

∂R

∂y
=
∂Q

∂z
.

In the next section, we will look at a a differential operator on 3-dimensional vector fields F which
vanishes precisely when these equations are satisfied. But again, it is important to remember that
these conditions are necessary but not sufficient to determine if a 3-dimensional vector field is
conservative.

For higher dimensions, we have many more equations to check, as the number of possible combi-
nations of partials increases. For example, in four dimensions there are four equations relating eight
different partial derivatives, while in five dimensions there are 10 equations relating 20 different
partial derivatives.
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To find a potential for a conservative vector field, we use a process called indefinite partial
integration. The idea is that if the component functions of F in rectangular coordinates are just the
partial derivatives with respect to the corresponding coordinate variables, then by integrating any
component with respect to a corresponding coordinate variable we should recover the potential,
up to adding undetermined functions that are constant with respect to that particular coordinate
variable. Doing this for each component, and then “matching” to determine the unknown functions,
we can fully recover the potential, up to a scalar constant.

Definition. Given a scalar function g(r) integrable over its domain D, the partial integral of g
with respect to xi is ˆ

g(r) dxi = G(x1, . . . , xn) + C(x1, . . . , x̂i, . . . , xn) ,

where G is any xi antiderivative of g, i.e., ∂xiG(r) = g(r) throughout D, and C(x1, . . . , x̂i, . . . , xn)
is a function that depends only on the variables xj , j 6= i (the notation (x1, . . . , x̂i, . . . , xn) means
“omit xi”), i.e., ∂xiC(r) = 0 throughout D. The function C is undetermined, playing a role analo-
gous to the constants of integration appearing in indefinite integrals of single variable functions.

One computes a partial integral with respect to xi by integrating, assuming xj , j 6= i are all
constant. Thus, the usual rules of indefinite integration apply, and techniques such as substitution,
integration by parts, and partial fractions can be used as needed.

Example 2.8. Let us find the partial integrals for the bivariate function f(x, y) = y2exy with
respect to both x and y. ˆ

f(x, y) dx =

ˆ
y2exy dx = yexy + C(y) ,

ˆ
f(x, y) dy =

ˆ
y2exy dx =

y2

x
exy − 1

x

ˆ
2yexy dy =

Ç
y2

x
− 2

x2
+

2

x3

å
exy +D(x) .

The first integral may be accomplished by the simple substitution u(x) = xy, du = y dx. The second
integral is done via integration by parts as well as repeated use of the substitution w(y) = xy,
dw = x dy. Note that the undetermined function in the first integral depends only upon y, while
in the second depends only upon x.

Now suppose we have a vector field F(x, y) = P (x, y)̂ı +Q(x, y)̂, which is conservative and for
which we are trying to determine a potential function f(x, y). Then

f(x, y) =

ˆ
P (x, y) dx =

ˆ
Q(x, y) dy ,

and we can use the equality of these two partial integrals to determine the unknown functions C(x)
and D(y) that arise in the respective partial integrals.

Example 2.9. Let F(x, y) = (cos y − y cosx) ı̂− (sinx+ x sin y) ̂. Note that

∂

∂y
(cos y − y cosx) = − sin y − cosx =

∂

∂x
(− sinx− x sin y) ,

and so it is possible that F is conservative. Computing partial integrals:ˆ
cos y − y cosx dx = x cos y − y sinx+ C(y) ,

ˆ
− sinx− x sin y dy = −y sinx+ x cos y +D(x) .

Comparing these two, we see that C(y) = D(x) which implies that they must be a common constant,
say k. Thus

f(x, y) = x cos y − y sinx+ k ,
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for any constant k is a potential for F(x, y). It is easy to check that ∇f(x, y) = F(x, y) by differ-
entiation.

Example 2.10. Let G(x, y) = 3(x2 + y2) ı̂ + 2y(3x− e−y2) ̂. We’ll show that G is conservative by
finding a potential g(x, y) for G.

3

ˆ
x2 + y2 dx = x3 + 3xy2 + C(y) ,

ˆ
6xy − 2ye−y

2
dy = 3xy2 + e−y

2
+D(x) .

Comparing, we see that setting C(y) = e−y
2

and D(x) = x3 we can make these equations match.

Thus g(x, y) = x3 + 3xy2 + e−y
2

is a potential for G(x, y), as is any function that differs from this
g(x, y) by adding a constant.

We now connect potential theory to the theory of differentials. Recall the definition of a total
differential:

Definition. The total differential of a scalar function f(x1, . . . xn) is the differential one form

df =
n∑
i=1

∂f

∂xi
dxi .

For a two variable function f(x, y), the total differential is then a differential one-form that
encodes the same information as the gradient ∇f in xy-coordinates, and is in a particular sense
dual to the gradient.

A differential one-form α = P (x, y) dx+Q(x, y) dy is said to be exact if it is the total differential
of some function, i.e., α = df for some f . In this case, if the functions P and Q are themselves
continuously differentiable, then by Clairaut’s theorem we recover the equality Py = Qx. Conversely,
if Py = Qx on some open disk, then α is locally exact, meaning it is exact in the open disk.

Thus, there is a correspondence between exact differentials and conservative fields on sufficiently
simple domains. This relationship is deepened when we study line integrals in conservative vector
fields, and the idea of independence of path. Fields have the path independence property when the
the energy exerted by the field in transporting a particle along a path depends not on the particular
shape of the path, but only the endpoints and direction in which the particle traverses the path.

Observe also that one encounters differentials when solving differential equations, e.g., to find
the field lines of a two dimensional vector field. A field may be nonconservative, but its field lines
may still be associated to an exact differential that can be extracted from the components of the
vector field. Recall that the field lines of a two dimensional vector field satisfy

dy

dx
=

̂ · F(r)

ı̂ · F(r)
=
F2(x, y)

F1(x, y)
,

whence, the field lines are solution curves corresponding to solutions of the differential equation

F2(x, y) dx− F1(x, y) dy = 0 .

Now, if F is conservative, then the level curves of the potential are perpendicular to the integral
curves satisfying this differential equation, and the differential forms corresponding to the total
differential of the potential and the total differential of the function defining the field lines implicitly
are seen to correspond to orthogonal vector fields. If both differentials are exact, then

(∗)


∂F1

∂x
= −∂F2

∂y
∂F1

∂y
=

∂F2

∂x
.
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This is reminiscent of the famous Cauchy-Riemann equations for a complex analytic function:
if f(z) = f(x + iy) = u(x, y) + iv(x, y) is complex differentiable at z0 = x0 + iy0 (meaning

f ′(z0) = limz→z0
Ä
f(z)− f(z0)

ä
/(z − z0) exists) then

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) ,

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0) ,

except the signs of (∗) are backwards! One can show that a function f is complex analytic at z0
if and only if the vector field corresponding to its complex conjugate, F = u(x, y)̂ı − v(x, y)̂ is
conservative on a neighborhood of z0, and in this case the flow differential is also exact.

For a thorough treatment of the connections between complex functions and vector fields, see
the wonderfully illustrated Visual Complex Analysis by Tristan Needham, or check out the 1974
book of Pólya and Latta Complex Variables, where this connection was initially explored.
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§ 2.4. Vector Fields from Frames*

(Note: this is an optional section which covers coordinate systems that are of great utility, but
are not part of the curriculum for our current course–however these frames are used occasionally
in optional examples and in the optional advanced sections.)

From any coordinate system, we can obtain a family of vector fields, representing the coordinate
directions at points of the domain where the coordinates are defined. Such a collection is called
a frame for the coordinate system. For example, in rectangular coordinates (x, y, z)R on R3, we

have the constant frame (̂ı, ̂, k̂) which give the directions of positive x, y and z respectively. We’ve
also encountered the polar frame (ûr, ûθ) for polar coordinates (r, θ)P on R2, and the spherical
frame (û%, ûθ, ûϕ) for spherical coordinates (%, θ, ϕ)S on R3. We’ll now describe the general idea
of coordinate frames.

Let (x1, . . . , xn)R denote rectangular coordinates in Rn, and let êi be the usual unit vector
pointing along the positive xi axis:

êi =



0
...
1
...
0

 ith coordinate .

The ordered tuple (ê1, . . . ên) is called the standard frame for rectangular coordinates on Rn, or
the standard basis for Rn. The latter term is used when it is thought of from the linear-algebra
perspective as a set which can be used to make any vector in Rn as a linear combination of the
vectors of (ê1, . . . ên). The perspective of it as a frame is subtly different: we want to regard the
tuple as a collection of n vector fields, each assigning a vector to each point of Rn. In this case, the
vector fields are all constant.

Now let (y1, . . . , yn)Y be a new collection of coordinates, possibly only defined locally on some
subset D ⊆ Rn. On D each yj is a function of x1, . . . xn, and presumably some yj ’s are non-constant
as functions of the xi’s. If we hold all the yj ’s constant except y1, we obtain a curve parameterized
by y1. Under the assumption of regularity and smoothness of our new coordinates, we may define
û1(y1, . . . yn) to be the unit tangent vector to such a curve through the point with coordinates
(y1, . . . , yn)Y . Similarly we can define ûj for any j = 2, . . . n. Each ûj thus determines a vector
field, and the induced frame for the coordinates (y1, . . . , yn)Y is the ordered tuple (û1, . . . ûn) of
these vector fields. It may be the case that the fields are not universally defined even within D, but
are defined over some region(s) within D where the coordinates are smooth and unambiguous.

Example 2.11. In the notes Curvature, Natural Frames, and Acceleration for Plane and Space
Curves a frame for working with polar coordinates on R2 was introduced:

ûr =
r

r
= cos(θ) ı̂ + sin(θ) ̂ ûθ = ∂θûr = − sin(θ) ı̂ + cos(θ) ̂ =

−ŷı + x̂

r
.

It was then discussed again in section 1.4 above in the context of rewriting the del operator ∇ in
polar coordinates. Observe the following facts about the polar frame:

• the frame is undefined at the origin, since θ is undefined at the origin and the frame vectors
are dependent on θ,
• at a point P with polar coordinates (r0, θ0)P , the vector ûr(θ0) is the unit tangent vector

along the ray θ = θ0 from the origin through P , which is the curve of motion for varying r
while keeping θ = θ0 constant,
• similarly, at the point P with polar coordinates (r0, θ0)P , the vector ûθ(θ0) is the unit

tangent vector to origin centered circle r = r0 through P , which is the curve of motion for
varying θ while keeping r = r0 constant,
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• ∇r = ûr, and the directional derivative of a function f(r, θ) along ûr is

Dûrf(r, θ) = ûr · ∇f(r, θ) = ûr ·
Å
ûr∂rf(r, θ) + ûθ

1

r
∂θf(r, θ)

ã
=
∂f

∂r
(r, θ) ,

• ∇θ = 1
r ûθ and the directional derivative of f(r, θ) along ûθ is

Dûθf(r, θ) =
1

r

∂f

∂θ
(r, θ) .

Thus, we can see that the polar frame is indeed the pair of unit tangent vectors to the coordinate
curves of the polar coordinate system. Moreover, the directional derivatives along the frame direc-
tions are proportional to the corresponding partial derivatives with respect to the polar variables.
This will be true for any frame arising from an orthogonal coordinate system (meaning all of the
frame vectors are mutually orthogonal.)

Figure 16. The polar frame, visualized as a a pair of orthogonal vector fields. Note
that the frame is undefined at the origin, as neither ûr nor ûθ can be defined there.
The field-lines for the vector field ûr are rays from the origin, while the field-lines
for the vector field ûθ are concentric origin centered circles. Together they form a
web of orthogonal curves which define the constant sets for the polar coordinate
system; the rays and circles play the same roles as the gridlines of the rectangular
Cartesian coordinate system on R2.

Example 2.12. Let us look at the spherical frame (û%, ûθ, ûϕ) once again, this time regarding
each frame element as a vector field. The first vector field, expressed in the rectangular frame, is

û% = cos(θ) cos(ϕ) ı̂ + sin(θ) cos(ϕ) ̂ + sin(ϕ) k̂ =
x̂ı + ŷ + zk̂

%
,

where % =
√
x2 + y2 + z2. Thus û% is a radial field, defined over R3 − {0}. It is pictured in figure

(17).
The vector field ûθ, which also appears in polar/cylindrical coordinates, is well defined whenever

x and y are not both zero, i.e. it is well defined on R3−{x = 0 = y}. This field is recognizable as a
unit “spin field” with vectors tangent to the level circles of cylinders centered along the z-axis. It
is pictured in figure (18).
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Figure 17. The spherical frame element û% as a vector field on R3 − {0}.

Figure 18. The frame element ûθ of polar/cylindrical and spherical coordinates,
as a vector field on R3 − {x = 0 = y}.

Similarly, the vector field

ûϕ = − cos(θ) sin(ϕ) ı̂− sin(θ) sin(ϕ) ̂ + cos(ϕ) k̂
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is defined only on R3 minus the z-axis. These vectors are tangent to meridians of origin centered
spheres, pointing “north,” heading towards poles located on the z-axis. It is pictured in figure (19).

Figure 19. The spherical frame element ûϕ as a vector field on R3 − {x = 0 = y}.

The vector fields of a coordinate frame are often called coordinate vector fields. There is a close
connection between coordinate systems, coordinate vector fields, and partial derivatives which leads
to the modern perspective on tangent vectors. In the next section, we will consider differential oper-
ators on vector fields. In order to understand how to compute such operators in general coordinates,
we have to consider how non-constant/non-global frames change along their own integral curves.
Then in section 2.6 we will explore coordinates induced on a surface from a parametrization, and
describe the resulting coordinate vector fields when viewed extrinsically as vectors in R3 attached
to the surface, and after that we will explore the notions of tangent and normal vectors to curves
and surfaces. Central to these discussions is the idea of building a frame adapted to a coordinate
or parametric description of an object such as a curve or surface.
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§ 2.5. Divergence, Curl, Jacobians, and the Laplacian

For a scalar field depending on multiple variables, we defined various partial derivatives, as well
as a notion of directional derivative, to quantify how fast the function’s values changed locally when
the input is perturbed in a particular direction within the domain. We would now like to define
notions of derivatives for vector fields as well. For a vector field, however, there are more types
of derivative operators, corresponding to different ways to capture the types of change occurring
within a multi-dimensional image. For example, one can try measure how much a vector field is a
source or sink, how much vorticity is present at a point, how a vector field is best approximated by
a linear map/linear vector field, or how a vector field changes along another vector field. We will
explore a few differential operations on vector fields which correspond to measuring some of the
preceding forms of infinitesimal change.
The Divergence Operator. Recall, the del operator, introduced in section 1.4, is the partial dif-
ferential operator that sends a function f ∈ C1(D,R) to its gradient ∇f ∈ V(D,Rn). In rectangular
coordinates it can be expressed as

∇ =
n∑
i=1

ei∂xi =

Æ
∂

∂x1
, . . . ,

∂

∂xn

∏
.

We also explored a procedure that allows the del operator to be expressed in other coordinate
systems. Treating such an expression as a vector operator, we can define new operations on vector
fields. The first operation we will define is called the divergence:

Definition 2.1. The divergence of a differentiable vector field F : D → Rn is the scalar function

∇ · F(r) =
n∑
i=1

∂Fi
∂xi

(r) =
∂F1

∂x1
(r) + . . .+

∂Fn
∂xn

(r) .

One geometric interpretation of the divergence at a point r ∈ D is as a measure of how much the
point (r) ∈ D is a source or sink for the vector field. By source, we mean that the vector field has a
positive net flow away from the point locally, whereas by sink, we mean it has a negative net flow.
To better quantify this and properly define these ideas, we need the notion of flux, which is defined
in terms of integration. Intuitively, flux is the limiting (infinitesimal) measure of the amount of flow
out of a small volume, minus the amount of flow into that volume. Though we will not yet discuss
the formal definition with integrals, we nevertheless can consider a few examples to illustrate this
intuition.

Example 2.13. Consider the vector fields

F(x, y) = ŷı + x̂ .

G(x, y) = (y − x)̂ı− (x+ y)̂ .

H(x, y) = ı̂ + xŷ .

K(x, y) =
x̂ı + ŷ√

1 + x2 + y2
.

We’ll examine the divergence for each.
For F(x, y), the divergence is zero, since the ı̂-component is independent of x, and the ̂-

component is independent of y. If this were a steady state fluid flow, it would be a fluid of constant
density, as any parcel of fluid that enters a region is balanced by an equal parcel leaving that region.

For G(x, y), the divergence is −2. This vector field is a spiral sink, but note that the divergence
is constantly equal to negative 2, so even away from the origin, the field behaves like a sink. In
physical terms, if we place any small permeable spherical membrane into the flow, more fluid flows
in than out of the spherical membrane. In this sense, every point is a sink in this field. The fluid
density then must change, as more fluid is compressed into tighter spaces. If it were a charge
field, we’d deduce that there was a uniform charge density of negative charges, such as electrons,
distributed throughout the plane (though the rotation of the field would imply the charges are not
static, perhaps due to the influence of a magnetic field.)
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H(x, y) has divergence equal to x. Thus, the strength of the infinitesimal field flux is given by
the x coordinate itself. See figure 20 for a visualization of this field.

Figure 20. The vector field H(x, y) = ı̂ + xŷ has divergence ∇ ·H(x, y) = x. The
background color indicates the magnitude of the scalar field ∇ ·H(x, y) = x, with
warmer colors corresponding to larger values. Note that for x < 0, the field tends to
have more net flow “inwards” in any given neighborhood, while for x > 0 the field
tends to have more net flow “outwards” from any given neighborhood.

Finally, for K(x, y), we have

∇ ·K(x, y) =

Å̂
ı
∂

∂x
+ ̂

∂

∂y

ã
· x̂ı + ŷ√

1 + x2 + y2

=
∂

∂x

Ç
x̂ı + ŷ√

1 + x2 + y2

å
+

∂

∂y

Ç
x̂ı + ŷ√

1 + x2 + y2

å
=

2 + x2 + y2

(1 + x2 + y2)3/2
=

2 + r · r
(1 + r · r)3/2

.

Thus, observe that at r = 0, the field has a divergence of 2, which indicates that there is net
outward flow from the origin. The divergence decreases as ‖r‖ increases, since the denominator
grows more rapidly in r ·r than the numerator. Thus, this vector field has divergence that decreases
with distance from the origin, even though the magnitude of the vectors increases as the radius
increases.

Optional discussion of Divergence in other coordinates*. We would like to be able to
compute divergence in other coordinate systems. We must caution that to use the other versions
of the del operator, care must be taken when using the “dot product” mnemonic for divergence: to
apply, e.g., the spherical form of ∇ to compute divergence ∇·F, one must compute derivatives first,
and then take the appropriate dot products between basis vectors. This is because the spherical
frame itself is non-constant, and so change along the frame itself must be taken into account. In
the case of spherical coordinates, the frame vectors û%, ûθ and ûϕ are independent of % but depend
on the angular coordinates θ and ϕ. Then, consider for example how the spherical frame behaves
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under the action of the derivative ∂
∂θ :

∂

∂θ

 û%
ûθ
ûϕ

 =

 cos(ϕ)ûθ
− cos(ϕ)û% + sin(ϕ)ûϕ

− sin(ϕ)ûθ

 =

 0 cos(ϕ) 0
− cos(ϕ) 0 sin(ϕ)

0 − sin(ϕ) 0

 û%
ûθ
ûϕ

 ,
as you will show in problem (13) in the problems in section 2.8 below. Similarly, one can show that

∂û%
∂ϕ

= ûϕ ,
∂ûθ
∂ϕ

= 0 ,
∂ûϕ
∂ϕ

= −û% .

Now let F = F 1û% + F 2ûθ + F 3ûϕ (where F i are components, not powers). For convenience,
write

F =

 F 1

F 2

F 3


S

,

and observe that by the calculations above

∂F

∂θ
=


F 1
θ

F 2
θ

F 3
θ


S

+


0 − cos(ϕ) 0

cos(ϕ) 0 − sin(ϕ)

0 sin(ϕ) 0



F 1

F 2

F 3


S

=


F 1
θ − F 2 cos(ϕ)

F 2
θ + F 1 cos(ϕ)− F 3 sin(ϕ)

F 3
θ + F 2 sin(ϕ)


S

=
Ä
F 1
θ − F 2 cos(ϕ)

ä
û% +

Ä
F 2
θ + F 1 cos(ϕ)− F 3 sin(ϕ)

ä
ûθ +

Ä
F 3
θ + F 2 sin(ϕ)

ä
ûϕ ,

since, e.g., ∂θ(F
1û%) = F 1

θ û%+F
1∂θû% = F 1

θ +F 1 cos(ϕ)ûθ. Similarly one can compute an expression

for ∂F
∂ϕ in the spherical frame.

Putting the above ideas together, one can show that applying

∇ · • =

(
û%

∂

∂%
+

1

% cosϕ
ûθ

∂

∂θ
+

1

%
ûϕ

∂

∂ϕ

)
· •

to a vector field F by first computing ∂F
∂% , ∂F

∂θ and ∂F
∂ϕ , followed by computing the necessary scalar

products, one arrives at the following formula for the divergence in our version of spherical coordi-
nates:

Proposition 2.2. For F(%, θ, ϕ) = F 1û% + F 2ûθ + F 3ûϕ,

div F = ∇ · F(%, θ, ϕ) =
1

%2
∂

∂%

Ä
%2F 1

ä
+

1

% cos(ϕ)

∂F 2

∂θ
+

1

% cos(ϕ)

∂

∂ϕ

Ä
cos(ϕ)F 3

ä
=

2

%
F 1 +

∂F 1

∂%
+

1

% cosϕ

∂F 2

∂θ
− tan(ϕ)

%
F 3 +

1

%

∂F 3

∂ϕ
.

Example 2.14. We can easily compute the divergence of a radial vector field F = x̂ı+ŷ+zk̂ = %û%
using the spherical divergence expression:

∇ · F =
1

%2
∂

∂%

Ä
%3
ä

=
3%2

%2
= 3 , % 6= 0 .

Of course, at the origin, our spherical coordinates are ill defined, but in the limit, this expression
holds and agrees with the rectangular calculation.
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One moral from the above work is that along general curvilinear coordinates, one must take
care to account for the local change of the frame along various integral curves of the frame. The
key that allowed us to move forward was to express the derivatives of the frame element as linear
combinations of the frame elements, with weights given by functions of the variables. Reconsider
the equation

∂F

∂θ
=
Ä
F 1
θ − F 2 cos(ϕ)

ä
û% +

Ä
F 2
θ + F 1 cos(ϕ)− F 3 sin(ϕ)

ä
ûθ +

Ä
F 3
θ + F 2 sin(ϕ)

ä
ûϕ ,

which we also could express in matrix form. The extra terms appearing which aren’t of the form
F iθ appear precisely as a consequence of the change of the frame along itself (in this case, along the
directions of increasing θ).

In a general frame (û1, . . . ûn) adapted to orthogonal coordinates (y1, . . . , yn)Y on Rn, there
exists some collection of functions Γijk, i, j, k ∈ {1, . . . , n} such that

∂ûi
∂yj

=
n∑
k=1

Γijkûk .

These functions are called Cristoffel symbols (of the first kind). Using Cristoffel symbols, one can
express the yj partial derivative of a vector field F =

∑n
i=1 F

iûi as

∂F

∂yj
=

n∑
i=1

(
∂F i

∂yj
ûi +

n∑
k=1

F iΓijkûk

)
=

n∑
k=1

(
∂F k

∂yj
+

n∑
i=1

F iΓijk

)
ûk .

The Curl Operator. In three dimensions, we can also define a somewhat unique differential
operator on vector fields, which returns a vector field that quantifies the infinitesimal vorticity of
the original vector field. This operator is called the curl :

Definition. The curl of a vector field F : D → R3 is the vector field whose Cartesian coordinate
expression is

curl(F) := ∇× F = (∂yF3 − ∂zF2)̂ı + (∂zF1 − ∂xF3)̂ + (∂xF2 − ∂yF1)k̂ .

Perhaps the simplest fields to illustrate the meaning of the curl are spin fields like F± = ±(ŷı +

x̂) + 0k̂. It is easy to calculate that for these fields, ∇ × F± = ∓k̂. Thus, the spin field that

has right-handed (i.e., counter-clockwise) rotation has curl k̂, which points in the direction of the
angular velocity vector for a particle rotating in the flow, while the clockwise spin field has curl
−k̂, as one should expect.

Observe that curl can be nonzero even if the field doesn’t have an obvious vortex:

Example 2.15. For the field F = x̂, the curl is ∇× F = k̂.
If you imagine this field as wind, then a flag placed initially parallel to ı̂ will rotate counterclock-

wise on its way to being parallel to the stream-lines of the field. This counterclockwise rotation
has angular momentum in the k̂ direction, so perhaps we shouldn’t be too surprised. On the other
hand, that the magnitude of the curl is constantly one is more subtle. Can you explain why the
curl would have the same magnitude in an area near the plane x = 0, where the field is weak, as
it does in an area far out along the x-axis, where the field is stronger? The important realization
is that the curl is a limit, which can be calculated by considering independent circulations along
small paths. To define the curl this way, we need line integrals.

Example 2.16. The curl of a vector field in written in the rectangular frame may be computed
using the determinant trick for cross products, treating the components of ∇ as operators in the
usual way:

∇× F =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂x ∂y ∂z
F1 F2 F3

∣∣∣∣∣∣∣ .
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E.g., for the vector field F(x, y, z) = (y − z)̂ı + (z − x)̂ + xyk̂, we have

∇× F =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂x ∂y ∂z
y − z z − x xy

∣∣∣∣∣∣∣
=
Ä
∂y(xy)− ∂z(z − x)

ä̂
ı−
Ä
∂x(xy)− ∂z(y − z)

ä̂
 +
Ä
∂x(z − x)− ∂y(y − z)

ä
k̂

= (x− 1)̂ı− (y + 1)̂− 2k̂ .

Example 2.17. We’ll compute the curl of F = yẑı − xz̂ + xyk̂ and visualize the original field,
some of its field lines, and the curl field as it relates to the original field.

∇× F =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂x ∂y ∂z
yz −xz xy

∣∣∣∣∣∣∣ = 2x̂ı− 2zk̂ .

Note that the field lines of the curl field are hyperbolae in planes of constant y. As seen below in
figure ?? they meet the trajectories of F at right angles, and are oriented so as to indicate the
right-handed angular velocity of the rotational trajectories of F.

(a) (b)

Figure 21. (A) – A view of the vector field F = yẑı − xz̂ + xyk̂ and some of its
trajectories. The vectors are not drawn to scale, so as to avoid collisions; warmer
colors indicate increased magnitude. (B) – A view of the curl of F, ∇ × F = ∇ ×
(yẑı − xz̂ + xyk̂) = 2x̂ı − 2zk̂, and some of its trajectories (in orange), alongside
the trajectories of F.

One can show using Clairaut’s theorem that the divergence of the curl is always zero for suffi-
ciently smooth vector fields, and similarly, gradient vector fields are irrotational :

Proposition 2.3. For any 3-dimensional vector field F whose components are continuously differ-
entiable to second order on a domain D,

div curl(F(r)) = ∇ ·
Ä
∇× F(r)

ä
= 0 ,

and for any scalar function f(x, y, z) continuously differentiable to second order on D,

curl grad(f(r)) = ∇×∇f(r) = 0 .
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See (12) in the problems below.
It follows that a vector field with nonzero curl cannot be conservative.

The Jacobian. One of the most essential gifts of calculus is the ability to study non-linear phenom-
ena via approximations provided by linearization. In vector calculus, such a linear approximation
comes in the form of a matrix map, given by a matrix called the Jacobian:

Definition. The Jacobian matrix at r ∈ D ⊆ Rn of a differentiable n-dimensional vector field
F(r) =

∑n
i=1 Fi(r)êi on D is the matrix

JF(r) =



∂F1
∂x1

(r) ∂F1
∂x2

(r) · · · ∂F1
∂xn

(r)

∂F2
∂x1

(r) ∂F2
∂x2

(r) · · · ∂F2
∂xn

(r)

...
...

. . .
...

∂Fn
∂x1

(r) ∂Fn
∂x2

(r) · · · ∂Fn
∂xn

(r)


.

That is, the Jacobian matrix of F is the matrix whose expression with respect to the rectangular
coordinate basis has kth row equal to the gradient of the kth scalar field component, êTk JF(r) =

∇
Ä
êk · F

ä
(r) = ∇Fk(r).

The Jacobian is also frequently notated DF(r), and called the total derivative of F. Observe that
the matrix expression is coordinate dependent. We encountered Jacobians when expressing the
general chain rule for multivariate maps. Recall, if f(r) is a multivariate function and G : Rk → Rn
is a coordinate transformation for the map v 7→ r, then the chain rule could be expressed as a
composition of linear maps via matrix products:

Dv(f ◦G
ä
(v) = Dxf

Ä
G(v)

ä
◦DvG(v) ,

where Dxf is the Jacobian as above using variables xi, and Dvf , DvG are appropriate Jacobian
matrices with respect to variables vi. Though the form of the Jacobian matrix is dependent on the
choice of variables, the linear map it determines which approximates f is unique and independent
of coordinates:

Proposition 2.4. For a differentiable vector field F : D → Rn, there is a unique “best” linear
approximation to F : D → Rn centered at a point r ∈ D which is given by the map

x 7→
î
JF(r)

ó
x =

n∑
i=1

Ä
[DrFi(r)]x

ä
ei =

n∑
i=1

x · ∇Fi(r) ei .

If r = G(v) is a bijective coordinate transformation, then this linear map in the new coordinates is
given as well by the Jacobian with respect to the new variables v1, . . . vn, with the frame (e1, . . . , en)
replaced by the new coordinate frame (û1, . . . , ûn) determined via the new coordinates, and with x
expressed in this frame:

x 7→
î
JF(v)

ó
x =

n∑
i=1

Ä
[DvFi(v)]x

ä
ui =

n∑
i=1

Ä
[DrFi

Ä
G(v)

ä
◦DvG(v)]x

ä
ui .

By “best” we mean that it minimizes local error among all possible linear vector fields approx-
imating F near the point r around which the approximation is centered. We will not prove this
theorem here. The claim about the Jacobian approximation under coordinate transformations is a
consequence of the linear-algebraic rules for transforming matrices to re-express linear maps under
a change of coordinates, which reduces in this context to the above chain rule. We will focus on the
use of this theorem in capturing the local behavior of two-dimensional vector fields near zeroes: for
two-dimensional vector fields, linearization allows us to determine the local topology of a zero r0 of
a nonlinear vector field whenever the Jacobian is nonzero around r0.
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Example 2.18. We will use the Jacobian to determine the topology of the zeros of the vector field
F(x, y) = sin ŷı + cos x̂ inside the disk x2 + y2 ≤ 4.

The Jacobian is

JF(x, y) =

 ∂F1
∂x (x, y) ∂F1

∂y (x, y)

∂F2
∂x (x, y) ∂F2

∂y (x, y)

 =

ñ
0 cos y

− sinx 0

ô
.

The zeros of F occur whenever sin y = 0 = cosx, which requires y = kπ and x = (2l+ 1)π/2 for
integers k and l. Note that the only zeros occurring in the disk x2 + y2 ≤ 4 are at (±π/2, 0). For
these points we have

JF(π/2, 0) =

ñ
0 1
−1 0

ô
,

JF(−π/2, 0) =

ñ
0 1
1 0

ô
.

Thus, the linearized fields are

LF,(π/2,0)(r) = [JF(π/2, 0)]r = ŷı− x̂ ,

LF,(−π/2,0)(r) = [JF(−π/2, 0)]r = ŷı + x̂ .

The first is the clockwise spin field encountered at the beginning of section 2.1, and the second is
a saddle field, as you will hopefully show when completing problem 1 in section 2.8.

The Jacobian matrix also makes an appearance in the study of integrals under coordinate
changes. We briefly discuss change of variables for double integrals. For a bijective, continuously dif-
ferentiable coordinate transformation T : V → D of domains D,V ⊆ R2, one can assign a Jacobian,
whose determinant measures the areal distortion imposed by the transformation.

The transformation can be viewed as a vector field 〈u, v〉 7→ T(u, v) = 〈x(u, v), y(u, v)〉 ∈ V, and
the Jacobian determinant of T is then

∂(x, y)

∂(u, v)
:= det JT(u, v) =

∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Then the differential 2-forms giving the area transform as

dA(x, y) =

∣∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∣ dA(u, v) .

Thus the absolute value of the Jacobian determinant of the transformation gives the appropriate
scale factor. For example, the transformation from Cartesian to polar coordinates has Jacobian
equal to r, so we have the relation of area elements dx dy = r dr dθ, provided r is non-negative.

The Laplace Operator. We can also define second order differential operators for vector fields.
The most essential one is the Laplacian operator.

Definition. The Laplacian of a twice differentiable real scalar function f of n variables is

∇2f = ∇ · ∇f =
n∑
i=1

∂2f

∂x2i
.

Definition. Laplace’s equation for a scalar function is the partial differential equation ∇2u = 0.
A function u which satisfies Laplace’s equation is called a harmonic function.
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Example 2.19. We’ll verify that Ψ(x, y, z) = x
(x2+y2+z2)3/2

is a 3-dimensional harmonic function.

∇2Ψ(x, y, z) = ∇ · ∇Ψ(x, y, z) = ∇ ·
Ä
Ψx̂ı + Ψy ̂ + Ψzk̂

ä
= ∇ ·

[Ç
y2 + z2 − 2x2

(x2 + y2 + z2)5/2

å
ı̂−
Ç

3xy

(x2 + y2 + z2)5/2

å
̂−
Ç

3xz

(x2 + y2 + z2)5/2

å
k̂

]

=

Å
∂

∂x
ı̂ +

∂

∂y
̂ +

∂

∂z
k̂

ã
· (y2 + z2 − 2x2)̂ı− 3x(ŷ + zk̂)

(x2 + y2 + z2)5/2

=
(6x2 − 9y2 − 9z2)x

(x2 + y2 + z2)7/2
+

(12y2 − 3x2 − 3z2)x

(x2 + y2 + z2)7/2
+

(12z2 − 3x2 − 3y2)x

(x2 + y2 + z2)7/2

= 0 .

Another solution is to use the spherical form of the divergence given in proposition 2.2, together
with the fact that in our version of spherical coordinates, Ψ may be re-expressed as

Ψ(%, θ, ϕ) =
% cos θ cosϕ

%3
=

cos θ cosϕ

%2
.

Proposition 2.2 implies that the spherical form of the Laplacian is

∇2Ψ(%, θ, ϕ) = ∇ ·
Å

Ψ%û% +
1

% cosϕ
Ψθûθ +

1

%
Ψϕûϕ

ã
=

1

%2
∂

∂%

Å
%2
∂Ψ

∂%

ã
+

1

%2 cos2(ϕ)

∂2Ψ

∂θ2
+

1

%2 cos(ϕ)

∂

∂ϕ

Å
cos(ϕ)

∂Ψ

∂ϕ

ã
Thus, since Ψ% = −2Ψ/%, Ψθ = − tan(θ)Ψ, and Ψϕ = − tan(ϕ)Ψ, we have

∇2Ψ(%, θ, ϕ) =
1

%2
∂

∂%

Ä
%2Ψ%

ä
+

1

%2 cos2(ϕ)

Ä
Ψθ

ä
θ

+
1

%2 cos(ϕ)

∂

∂ϕ
(cos(ϕ)Ψϕ)

=
1

%2
∂

∂%
(−2%Ψ) +

1

%2 cos2(ϕ)

Ä
− tan(θ)Ψ

ä
θ

+
1

%2 cos(ϕ)

∂

∂ϕ
(− sin(ϕ)Ψ)

=
−2Ψ + 4Ψ

%2
− sec2(θ)− tan2(θ)

%2 cos2(ϕ)
Ψ +

− cos(ϕ) + sin(ϕ) tan(ϕ)

%2 cos(ϕ)
Ψ

=
2Ψ− sec2(ϕ)Ψ−Ψ + tan2(ϕ)Ψ

%2

= 0

§ 2.6. Parametrized Surfaces and Coordinate Vector Fields*

(Note: This is an optional section, which is incomplete; there are a number of figures and exam-
ples yet to add.)

In our study of vector fields, we’ve been able to view them as vector-valued maps of vectors or
points, and in the common examples arising from gradients or frames, we have emphasized two
main cases:

• 2-dimensional fields F : D → R2, D ⊂ R2,
• 3-dimensional fields F : D → R3, D ⊂ R3.

Special cases like normal vector fields arise by considering a restriction of one of the above types of
maps (often coming from a gradient of a scalar field) to either a level curve or a level surface. Now
we will consider a particularly useful interpretation of vector-valued maps from domains in R2 to
R3. Fix a connected domain V ∈ R2, and let σ : V → R3 be a continuous vector-valued function on
V, the outputs of which are 3-dimensional vectors. By interpreting the image vectors as position
vectors, we can ponder what geometric object the image σ(V) traces out in R3.
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Conventionally, we will denote the input for such a vector-valued function by the vector v̂, or by
writing its components as u and v:

v = ûı + v̂ ∈ V ,
σ(v) = σ(u, v) = σ1(u, v)̂ı + σ2(u, v)̂ı + σ3(u, v)k̂ .

Observe that σ(v) is composed of three components, each of which is a bivariate function.
We know that vector-valued functions from an interval I ⊂ R to R3 trace out space curves.

A natural guess would be that σ traces out a surface11, and under our presumption that σ was
continuous, this is usually true. But it could also be a constant map giving an image σ(V) = a
point, or, if it takes constant values along a family of curves building up V, it could also trace out
a space curve; in these cases you can imagine σ as collapsing V into a curve or point, which is then
embedded into three dimensional space.

To ensure that our image is a surface, we need a few more conditions, and hence, definitions.
The first is the idea of an open set in R3, which generalizes the idea of an open set in R2. Recall,
a set U ⊂ R2 is open if it does not contain any of its boundary points, or if equivalently, for any
point P ∈ U there is an open disk around P that is contained in U . Here, an open disk is one which
excludes its boundary points, i.e., a disk of the form {r ∈ R2 : 0 ≤ ‖r− r0‖ < R} for some radius
R and center r0.

Definition. An open ball in R3 is a set of the form B̊R(r0) = {r ∈ R3 : 0 ≤ ‖r − r0‖ < R}. Any
such ball may be thought of as the set of points interior to the sphere of radius R centered at a
point r0 ∈ R3. A set U ⊆ R3 is called open if around every point r ∈ U there is some open ball
B̊R(r) such that B̊R(r) ⊆ U .

To ensure that a vector-valued function gives us a genuine surface and not a curve or a point,
and to prevent other sorts of singular behavior, we can ask that it behave nicely with respect to
open sets of its domain. The intuition is that if the image of the map σ is a surface, then σ should
act on the domain locally by lifting small open subsets of the domain into three dimensions in a
one-to-one or injective manner, like carrying small open disks of R2 to analogous sets of R3. Such
a set should be the intersection of an open set of R3 with the image of the disk by σ. What this
means is that the pre-image of an open set of R3 by σ should be an open set (possibly empty) of V,
and when the image σ(V) is a nice, continuous surface, there is an honest inverse function, at least
locally away from any self-intersections, from the image σ(V) back to the domain V. The condition
on open sets is actually equivalent to continuity :

Proposition 2.5. Let V ⊆ R2 be a domain for the vector-valued map σ : V → R3. Then σ is
continuous throughout V if and only if for any open set U ⊆ R3, the pre-image σ−1(U) := {v ∈ V :
σ(v) ∈ U} is itself an open subset of V, i.e., it is the intersection of an open subset of R2 with V.

Proof. See problem (19) below. �

A continuous map which is also continuously invertible has a special name: a homeomorphism.
The most basic goal of the study of topology is understanding spaces with enough structure to
define continuous functions, up to equivalence of spaces by homeomorphisms. For our purposes, we
only need to understand homeomorphisms as they relate to defining surfaces in R3:

Definition. A parametric surface patch is a subset of R3 which is realized as the image of a
continuous and continuously invertible vector-valued map σ : V → R3 for a domain V ⊆ R2, i.e.,
it is the homeomorphic image of a vector-valued map from a domain of R2 into R3. The map σ is
called a parameterization of the patch. If resolved into components, then the resulting equations
are called parametric equations for the surface patch.

11Note that I have not defined surface yet. Differential geometers often use a fairly restrictive definition of a smooth
surface, such as “a surface in R3 is a subspace S such that around each point p ∈ S there is a smooth chart giving
a diffeomorphism from an open set U of the surface to an open set V of R2, and such that the transition functions
on overlapping charts are diffeomorphisms of the corresponding open sets of R2.” This definition is too restrictive
and elaborate for us; it excludes surfaces with boundary, and surfaces with interesting singularities, like cone points,
triple points, and self-intersections. See the next footnote for a rough but workable definition for our purposes.
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The idea is that a general surface in R3 can be built up from a number of patches, or param-
eterizations, which may overlap, and together fill out the whole surface. One should visualize the
homeomorphism condition on a surface patch σ as follows: if the domain V ⊆ R2 is placed in the
xy-plane within R3, then σ acts on V by stretching, bending, rotating, and translating the set V
until it is in the position to make up a patch of the (possibly) larger surface, but it is not permitted
to collapse multiple points, tear the image set, or cause it to pass through itself.

A general surface12 in R3 of course might admit self intersections, but it can always be arranged
that this occurs when patches intersect each other along some curve or in a point. One can also
construct parameterizations of these sorts of self-intersecting and pinching behaviors, but to avoid
difficulties in doing calculus on surfaces, it is often convenient to work with patches where the image
is homeomorphic to the plane domain of the parameterization. It is also sometimes convenient to
work with a single parameterization, even if it fails to be a homeomorphism (one just has to be
careful around subsets of the image which are not homeomorphic images of a plane domain, like
triple points, branch points, and curves of self-intersection).

We now turn to some examples of surfaces and parameterizations.

Example 2.20. For a domain V ⊆ R2, let f : V → R be any continuously differentiable function.
Let

σ(u, v) = ûı + v̂ + f(u, v)k̂ , v̂ = ûı + v̂ ∈ V .
Then σ parameterizes the graph of the function f . Since f is a function, it produces a single output
for any v̂ which ensures that the map σ : V → σ(V) ⊂ R3 is invertible. Thus the graph of a
continuous function is homeomorphic as a surface to the domain of the function being graphed.

Example 2.21. Fix a positive real number R. Then we can use the spherical coordinate functions
for when % = R to give a parameterization in rectangular coordinates of surface of the radius
R sphere, minus the meridian with y = 0 and negative x coordinates connecting the two poles
corresponding to ±R k̂:

σ(u, v) = R cosu cos v ı̂ +R sinu cos v ̂ +R sin v , −π < u < π, −π
2 < v < π

2 .

If we remove the restriction that the patch be a homeomorphism from an open set, we can cover
the sphere except at the poles (where θ is not defined) by letting θ take the value π. However, to
cover the whole sphere with patches giving honest homeomorphisms from open sets of R2 we would
need one more patch (e.g., we could use σ̃(u, v) = R sinu cos v ı̂ +R sin v ̂ +R cosu cos v k̂, with u
and v restricted as in the domain of σ.)

Another parametric way to try to build a sphere is with hemispherical patches, which correspond
to graphs of functions over open disks, switching the roles of the dependent variable. Each such
patch also misses a circle (an equator dividing the sphere into the two hemispheres), and you should
convince yourself you need six hemispherical patches to completely cover the sphere; see problem
(19) below.

There exist other parameterizations which only miss one point of the sphere; see problem (20)
below. It turns out this is the best we can do, and so to cover the whole sphere, we still need at
least two patches.

Example 2.22. Surfaces of revolution are among the first surfaces encountered by students of
calculus. Starting from a plane curve placed on a plane in R3, one can sweep out a surface by
revolving that curve about an axis in the plane containing the curve. One of the most important

12We can define general surfaces from our ideas of chart and patches; around every point which is not a boundary,
singularity, or a point along a curve of self intersection, we can construct a local chart to an open set of R2, and
there are clear local models for self-intersections, boundaries, and various types of singularities. Alternatively and
in more expert language, our notion of general surfaces in R3 is defined as any locus of points in R3 consisting of a
smooth portion, which is an immersion of a 2-manifold with or without boundary, and a singular sub-locus, which is
a discrete, measure zero (and possibly empty) collection of singular points, where there is no consistent definition of
a tangent space. Note that we don’t consider self intersections singular: for self intersections, we can define a tangent
space at a point to each “branch” of the surface. Indeed, if we choose a pre-image of the multiple point in the original
non-singular 2-manifold, we can select a tangent space and represent it by an affine plane in R3.
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examples of a surface of revolution is a torus, which famously is the mathematical version of a
doughnut.

Figure 22. It’s Torus!

To create a torus, one starts with a circle of radius a, centered at a point b > a units from the axis
of rotation. Then one sweeps this circle around a perpendicular circle centered on the chosen axis.
Thus, the core circle has radius b, while a meridional slice is a circle of radius a. This procedure
yields a simple parametrization:

σ(u, v) =
Ä
a cos(u) + b

ä
cos(v)̂ı +

Ä
a cos(u) + b

ä
sin(v)̂ı + a sin(u)k̂ , (u, v) ∈ [0, 2π]× [0, 2π] .

Here, u is the angular coordinate in the meridional direction, and v is a longitudinal angle. To make
this into a proper patch giving a homeomorphism from an open set, one must delete one meridional
circle and one longitudinal circle

Example 2.23. A ruled surface is a surface swept out by lines. A helicoid is a ruled surface
obtained by rotating a line about an axis while simultaneously translating the line along the axis.
Note that the surface z = arctan(y/x) is a portion of a helicoid. To parameterize the full helicoid
of which this graph is a portion, one can use

σ(ρ, ϑ) = ρ cos ϑ̂ı + ρ sin ϑ̂ + ϑk̂ , (ρ, ϑ) ∈ R2 .

Observe that the rulings are given by constant ϑ, while the space curves obtained by setting ρ equal
to a constant are helices.

Let S be a surface given by a parameterization σ : V → R3, and assume that the components of
σ are all continuously differentiable. Since σ is vector-valued, the partial derivatives

∂uσ(u0, v0) = lim
h→u0

σ(u0 + h, v0)− σ(u0, v0)

h
and ∂vσ(u0, v0) = lim

h→0

σ(u0, v0 + h)− σ(u0, v0)

h

are vectors. What do they represent?
From their definition, these partial derivatives are the result of varying one variable, while holding

the other constant, and then taking the limit of the corresponding difference quotient. If we vary
just one variable and hold the other constant, then the corresponding image under σ is a curve on
the surface. E.g., if we fix v = v0 and let u vary, then we have that σ(u, v0) is the curve given by
mapping a line of constant v and varying u in the uv-plane into R3. Taking the derivative of this
with respect to the mobile parameter u and evaluating at u = u0 is merely extracting a tangent
vector to this curve at the point σ(u0, v0). Since ∂uσ(u0, v0) is tangent to this curve of constant v,
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Figure 23. It’s Helicoid!

it is necessarily tangent to the surface S itself. Thus the partials ∂uσ(u0, v0) and ∂vσ(u0, v0) are
tangent vectors. They give rise to vector fields ∂uσ and ∂vσ defined on the surface S, which are
called the coordinate vector fields for the parameterized surface S. Note that they depend on the
coordinates used in the domain V and the parameterization given for S. The field-lines of these
fields are precisely the images of the grid-lines of constant coordinates u and v in the domain V.
See for example the toroidal grid in figure 22. One can view the coordinate vector fields as a lift of
the (u, v) coordinate frame to the surface S.

§ 2.7. Tangent Vectors, Normal Vectors, and Orientations*

In our study of curves (e.g., in the notes Curvature, Natural Frames, and Acceleration for Plane
and Space Curves) we’ve already encountered tangent vectors and natural frames for plane and
space curves. We now build on that discussion for space curves in light of the notion of vector
fields.
Tangent Vectors and Orientations for Space Curves For a space curve described by a
parameterization γ : I → R3, we know that the derivative γ̇(t) = d

dtγ(t) gives a tangent vector to

the curve at the point γ(t) = x(t)̂ı+y(t)̂+z(t)k̂. Thus, we can view the velocity γ̇ in two ways: as
describing a new curve (since it is a vector valued function), or as specifying tangent vectors which
we can attach to the position γ(t) to produce a vector field along the curve γ. This is the velocity
field along the curve parameterized by γ. If we instead regard a space curve as strictly being the set
of points in R3 given as the image of a vector valued function γ : I → R3, then we see that there
might be many velocity vector fields along the curve, corresponding to different parameterizations.
Note that the tangent lines to the curve are independent of the particular tangent vectors we obtain
as velocity vectors from possible parameterizations, though the possible directions are set in stone:
the velocity vectors can point one of two ways, depending on whether the parameterization traces
the curve out in one of two directions. Indeed, changing parameter by setting τ = −t and replacing
I by −I, one can reverse direction along the curve. This leads to the notion of an oriented curve:

Definition. Let C ⊂ Rn be a regular curve (thus, it admits at least one parameterization γ : I → Rn
which is differentiable with no-where 0 velocity). By regularity, at each point P of C, there is a well
defined tangent line ATPC. An orientation on C is a consistent (continuous13) choice for each P
along C of identification of ATPC with R sending P to 0 and specifying which half line departing
from P corresponds to the half line [0,∞) ⊂ R. Equivalently, it is a consistent choice in a small
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region of C around each point P of which portion of the curve in the region is “ahead” of P and
which portion is “behind” P .

Any regular parameterization γ of C induces an orientation by choosing the half line in ATPC
corresponding to the same direction as γ̇, and there are exactly two possible orientations. You can
imagine an orientation as an arrow, telling a particle which way to travel along the curve.

Example 2.24. The orientations on a line segment correspond to choosing which endpoint is
initial and which is terminal. Recall, if p and q are two position vectors for points P and Q, the
line segment from P to Q can be parameterized as

`ÐÐ⇀
PQ

(t) = p + t(q− p) = (1− t)p + tq , 0 ≤ t ≤ 1 ,

while the line segment from Q to P may be parameterized as

`ÐÐ⇀
QP

(t) = q + t(p− q) = (1− t)q + tp , 0 ≤ t ≤ 1 .

Note that changing t to 1− t and keeping I, we can pass from one parameterization to the other.

Example 2.25. Let γ(t) = cos(t)̂ı + sin(t)̂. This induces a counterclockwise orientation on the
unit circle. In terms of the tangent lines, we can express this explicitly. The tangent line at the
point γ(t) has equation (cos t)(x− cos t)− (sin t)(y − sin t) = 0, which may be parameterized as

`(s, t) = γ(t) + sγ̇(t) =
Ä

cos(t)− s sin(t)
ä̂
ı +
Ä

sin t+ s cos(t)
ä̂
 , 0 ≤ t ≤ 2π, s ∈ R .

This is a continuous vector-valued function of both s and t, and the identification of R with the
affine tangent lines lines is already given to us: s can be viewed as a coordinate map from the line
to R, such that s = 0 corresponds to points of the curve `(0, t) = γ(t) and such that positive s
chooses the half line ahead of the motion (in the direction of the velocity vector γ̇).

The clockwise orientation can be obtained by changing t to −t, or considering other parameter-
izations, such as η(t) = sin(t)̂ı + cos(t)̂.

For curves, we can define tangent vector fields along them from a given parameterization. We
can also define normal fields, and more generally, we can consider vectors attached along each point
of the curve, as suited to particular applications involving such a curve in the plane or in space.

Example 2.26. Recall, in the notes on Curvature, Natural Frames, and Acceleration for Plane
and Space Curves, we became acquainted with a natural frame for motion along a curve, called the
Frenet-Serret frame. In particular, given an oriented curve in space parameterized by a vector valued
function r : I → R3, we have a frame (T,N,B) consisting of a unit tangent vector (or normalized
velocity vector), the unit normal vector (or normalized curvature vector), and the binormal vector
(which is T×N). These satisfy the differential equation

d

ds

 T
N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 ,
where κ is the curvature and τ is the torsion. This frame furnishes a triple of vector fields defined
along the curve. If the curve lies in a surface, then the tangent and normal vectors will lie in affine
tangent planes to the surface, while the binormal will be normal to the surface.

More generally, for a regular curve parameterization r(t), there is a unique normal plane to r(t)
for any given t. We can then choose vectors parallel to each plane by a smooth function n(t) such
that n(t) · ṙ(t) = 0 for every t. This determines a normal vector field to the curve. Note that it need
not be the unit normal field N determined by the Frenet-Serret frame–we allow n to twist around
the curve, even if there is no curvature and N is undefined. If we keep the lengths of n(t) small,
then we get a copy of the original curve, called a push-off, which need not be strictly parallel, as

13The choice amounts to defining a map from the set of all affine tangent lines of C to I ×R which is continuous.
The notion of continuity here should be as that of the previous section: the pre-image of any open set of I×R should
be an open set of the space of all affine tangent lines to C . If you are interested in the subject of topology, you should
try to convince yourself that the conditions given leave you with only two possibilities for the orientation.
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it may wind around the original curve. Such push-offs are quite useful in studying knotted curves,
and in the study of low-dimensional topology (such as studying 3 and 4 dimensional spaces).

In the plane, a push-off of a simple (i.e., non-self-intersecting) closed curve along a normal
direction cannot cross the curve–Jordan’s curve theorem says any simple closed curve divides the
plane into two regions, and so the normal direction we choose confines us to a push-off that runs
either “outside” or “inside” the original curve. In the plane an outward pointing unit normal field
to a closed curve allows us to study a notion of flux : we can try to measure how much a given
vector field F flows out of a region by measuring the net change in incoming and outgoing flow. To
carefully define this, we would need the notion of line-integrals in vector fields, which is introduced
in §3.2.
Vector Fields and Orientations on Surfaces. We now move on to consider tangent and normal
vectors to surfaces. In the previous section, we encountered coordinate vector fields for a parameter-
ized surface, which are tangent to the surface. We can use these to construct more general tangent
vector fields by taking linear combinations of coordinate vector fields:

Definition. A tangent vector field X to a surface S ⊂ R3 is an assignment of a vector in R3 to
each point of S, such that each vector can be realized as a tangent vector to some curve lying on
S. If S is parameterized by σ(v) = σ1(v)̂ı + σ2(v)̂ı + σ3(v)k̂, then at any non-singular point σ(v),

X(v) = X1(v)σu(v) +X2(v)σv(v)

for some functions X1 and X2 defined in domain of σ within the v-plane.

Example 2.27. On the unit sphere minus its poles, S2 − {±k̂} parameterized by

σ(θ, φ) = cos θ cosϕ ı̂ + sin θ cosϕ ̂ + sinϕ k̂ = û%(θ, ϕ)

consider the vector field X(θ, φ) = 1√
2

Ä
ûθ(θ)+ûϕ(θ, ϕ)

ä
. Here, the coefficient functions are constant.

The integral curves of this field are depicted in figure 24. Note that the vector field cannot be defined
at the poles, but one can define a vector field which vanishes at each pole and everywhere else has
the same field-lines (but with different velocities along the trajectories) by multiplying X by cos2 ϕ,

and defining a limiting vector field: X̃(θ, ϕ) = lim(u,v)→(θ,ϕ) cos2(v)X(u, v).

Figure 24. The integral curves of the vector field X(θ, φ) = 1√
2

Ä
ûθ(θ) + ûϕ(θ, ϕ)

ä
on S2 − {±k̂}.
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We can also use the cross product to construct normal vectors where ever σu(v) and σv(v) are
linearly independent. We can normalize the cross product to obtain a unit normal vector:

N(v) =
σu(v)× σv(v)

‖σu(v)× σv(v)‖
.

The choice of a differentiable parameterization induces a map from the image σ(U) to the unit
sphere via the assignment σ(v) 7→ N(v). Suppose the surface can be covered by patches such that
on the overlaps, the choices of unit normals agree (meaning, they choose normals of the same sign,
since there are only two possible choices of unit normal at a regular point.) Then there is a well
defined map from the surface itself to the unit sphere:

N : S → S2

p 7→ N(p) =
σu(v)× σv(v)

‖σu(v)× σv(v)‖
,

where σ : U → S is any parametric surface patch for S with p a point in its image. When such
a map is well defined, we say the surface is orientable. Such a surface is always two sided ; we can
choose a consistent continuous normal vector field which points away from one side of the surface,
while the negative of this normal vector field points to the other side.

Definition. A surface is orientable if and only if there exists a continuous map N : S → S2 giving
a consistent choice of unit normal vector, i.e., N(p) is orthogonal to the tangent plane to S at p,

and if one follows any closed path γ : [0, 1]→ S on the surface, N
Ä
γ(0)

ä
= N

Ä
γ(1)

ä
. The map N

is then called the Gauss map of the surface14.

Choosing an orientation for a surface amounts to deciding which normal vector field is the
“positive one”. For a closed surface such as a sphere or a torus which divides R3 into an interior
region and an exterior region, it is conventional to choose orientations consistently. For this class,
we use the convention that the outer pointing normal is the positive one in such cases. Note that
one can always alter a parameterization (swapping the roles of u and v) to reverse the orientation
associated to the parameterization.

Example 2.28. Perhaps the simplest example of tangent vectors we can write down arises in the
context of graph surfaces. Let f(x, y) be a bivariate function. Recall that the graph Gf of f(x, y)
is the set of points (x, y, z) ∈ R3 such that z = f(x, y). Thus, the graph may be parameterized

using x and y as parameters: σ(x, y) = x̂ı + ŷ + f(x, y)k̂. Let (x0, y0) be some point in the domain
of f and let z0 = f(x0, y0) be the height of the graph over the point (x0, y0, 0). Then the curves
σ(x, y0) and σ(x0, y) are curves through (x0, y0, z0) along constant x and y directions respectively,
and the corresponding derivatives give us a basis of tangent vectors for the tangent space to the
graph surface at the point (x0, y0, z0):

σx(x0, y0) = ı̂ + fx(x0, y0)k̂ , σx(x0, y0) = ̂ + fy(x0, y0)k̂ .

We thus get coordinate vector fields on the surface (which are fields of tangent vectors) of the forms

σx(x, y) = ı̂ + fx(x, y)k̂ , σy(x, y) = ̂ + fy(x, y)k̂ .

Let t1 and t2 be arbitrary scalars, and fix a point (x0, y0) on the surface of the graph. Then observe
that {t1σx(x0, y0) + t2σy(x0, y0) : t1, t2 ∈ R} determines the set of all tangent vectors to the point
(x0, y0) on the graph. Replacing t1 and t2 by scalar functions of (x, y) defined on the same domain
as the function f , and varying (x, y) over the domain of f allows one to construct arbitrary vector
fields on the surface z = f(x, y). Note that the cross product of the graph’s coordinate vector fields

yields the normal vector field σx × σy = −fx̂ı − fy ̂ + k̂, which should look familiar if you recall

14The Gauss map is important in the study of the differential geometry of surfaces, and is named in honor of (who
else) Johann Karl Friedrich Gauß, who initiated the study of such maps in 1825, later publishing a discussion of this
map and its applications, e.g. in computing curvature, in his 1827 paper Disquisitiones generales circa superficies
curvas.
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our earlier discussions of the tangent plane to a graph. This vector is an “upward normal” to the
graph (note that the k̂-component is +1). The Gauss map is then

σ(x, y) 7→ N(x, y) =
−fx(x, y)̂ı− fy(x, y)̂ + k̂»
1 + [fx(x, y)]2 + [fy(x, y)]2

.

Not so coincidentally, the denominator of this expression appears when one wants to compute
surface areas; see (24) in the problems below.

Fascinatingly, there also exist non-orientable surfaces, which when placed in R3 are one-sided, as
demonstrated by the following well known example:

Example 2.29. Consider the surface M given by the parameterization

σ(u, v) =
Ä
2 + v cos(u/2)

ä
ûr(u) + v sin(u/2) k̂ , (u, v) ∈ [0, 2π]× [−1, 1] .

This surface is shown in figure 25, and is none other than the famous Möbius band. It is a “one-
sided” band. One can make a model of a Möbius band by adding one half-twist to a rectangular
strip of paper, and gluing the two ends15.

Figure 25. A Möbius band. Note that following the boundary stripe takes you
along the whole boundary: it may seem as though you go from the “inner edge”
to the “outer edge” and back, but there is actually just one edge! Imagine now
what happens as you carry a normal vector around the core circle–is there any
non-contractible loop around which you can give a consistent Gauss map?

Example 2.30. Another famous example of a non-orientable surface is the projective plane. The
projective plane is what one gets if one takes a Möbius band and tries to “cap it off” with a
disk (observe that the boundary of the band is a single loop; one can stitch a disk to this loop
along the disk’s boundary). In three dimensions, one can only do this by contorting the disk or the
band, and allowing the surface to self-intersect. Provided the self intersections happen in a regular
fashion, with a clear choice of independent tangent planes on each branch of surface along a curve
of intersection, the surface is said to be immersed in R3. A famous immersion of the projective
plane, which is called the Boy’s surface, is depicted in figure 26.

15The paper model of the Möbius band is geometrically different from the parameterization given; the paper model
though curved in space has “intrinsically flat geometry” meaning that the product of the minimum and maximum
curvatures of slices of the band by normal planes is zero–this is a consequence of the fact that the original paper
strip is flat, and it doesn’t need to be stretched considerably to form the Möbius strip. On the other hand, the
parameterization given above has nonzero Gaussian curvature: one can show that the product of the maximum and
minimum curvatures of curves sliced by normal planes through any point on is nonzero.
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Figure 26. One view of a Boy’s surface.

In figure 27 several “slices” of the surface are shown side by side, indicating the structure of the
surface, and in particular showing how it can be viewed as a Möbius band with three half-twists
capped by a warped disk which triply intersects itself. From the left, it starts with a small disk,
bent into a cup shape. Subsequent slices show stages of growth off of the original disk, as bands
embedded or immersed in R3. In the next slice, such a band may be viewed as a collar of the disk
(meaning a neighborhood of the boundary), which begins to bend in a 3-fold symmetric way. This
bending is so as to introduce full twists in the band. Growing the disk further, the next slice shows
the band self-intersect to form a triple point. After this, a collar of the growing disk is a knotted
trefoil ribbon, with 3 full twists, which were introduced when the ribbon passed through itself.
Finally, the band is pulled into a form where one boundary meets itself, leaving a Möbius band
with 3 half-twists. This closes the surface up, since the other boundary of this Möbius band meets
the preceding slice, which is just a collar of the (now self-intersecting) disk’s boundary.

Figure 27. A dissection of the Boy’s surface, with slices being like the frames of a
movie.
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§ 2.8. Problems

(1) For each of the following vector fields, provide a sketch. Then determine equations for the
field-lines, and sketch a sufficient family of oriented field-lines to capture the behavior of
the corresponding flow.
(a) F(x, y) = ŷı + x̂ ,

(b) F(x, y) = x̂ı + 2ŷ ,

(c) F(x, y) = ı̂− x̂ ,

(d) F(x, y) = x̂ı− ̂ ,

(e) F(x, y) = (x− y)(̂ı + ̂) .

(2) This is a small project which explores vector fields that arise from linear maps F : R2 → R2

given by matrix multiplication

F(r) = Mr =

ñ
a b
c d

ô ñ
x
y

ô
=

ñ
ax+ by
cx+ dy

ô
= (ax+ by)̂ı + (cx+ dy)̂ ,

which were introduced in example 2.2.
This collection of problems is highly recommended for those studying or planning to

study linear algebra or differential equations.

(a) (You may skip this part if you are already well acquainted with eigentheory.)
The preliminary idea we need is that of eigenvalues and eigenvectors, which play a role
for linear transformations analogous to fixed points in the study of functions, except
they are perhaps as important (if not more so) to the study of linear algebra as zeros
are to the theory of polynomial functions. A nonzero vector v is called an eigenvector
for M if Mv = λv for some scalar λ; the scalar λ is called the eigenvalue of M associated
to v. Assume M is a real 2× 2 matrix.
Show the following:

(i) If v is an eigenvector with eigenvalue λ, then so is cv for any scalar c. Thus,
the eigenvalue λ is associated with a whole subspace, which is at least a line
(and possibly the whole plane–if it is a repeated eigenvalue, it is possible that λ
is associated to two linearly independent vectors). Such a subspace is called an
eigenspace.

(ii) A scalar λ is an eigenvalue of M if and only if det(M − λI) = 0, where I is the
2× 2 identity matrix.

(iii) The equation det(M− λI) = 0 is called the characteristic equation of the matrix
M. Check that det(M − λI) = λ2 − τλ + ∆ where τ = trace(M) = a + d and
∆ = det M = ad− bc.

(iv) If τ2 > 4∆ then there are two distinct eigenvalues, and thus two distinct eigen-
lines. If τ2 = 4∆, there’s only one eigenvalue. If τ2 < 4∆ then the matrix has
two distinct complex eigenvalues, which are conjugates of each other.

From the above, describe an algorithm to compute the eigenvalues and determine
eigenvectors of a real 2× 2 matrix, assuming the eigenvalues are real.

(b) A 2D linear vector field has saddle topology at the origin if there exists a stable eigenline
and an unstable eigenline through the origin, i.e., there is one positive real eigenvalue
and one negative real eigenvalue. Determine conditions on ∆ and τ such that r 7→ Mr
has saddle topology at the origin, and then check that F(x, y) = (2x+ 4y)̂ı + (3x− y)̂
has saddle topology at the origin. Provide a sketch of the vector field F, indicating the
eigenlines with orientations, and showing additional oriented field-lines.
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(c) There are several types of nodal topologies for a 2D linear vector field F:
• F has stable node topology at the origin if there exist two stable eigenlines with

distinct eigenvalues associated to each of them.
• F has unstable node topology at the origin if there exist two unstable eigenlines

with distinct eigenvalues associated to each of them.
• F has stable degenerate node topology if there is just one eigenline, which is stable.
• F has unstable degenerate node topology if there is just one eigenline, which is

unstable.
For each nodal topology, determine conditions on M such that r 7→ Mr possesses that
topology at the origin. Phrase conditions in terms of ∆ and τ when possible, and in
terms of eigenvalues and eigenvectors otherwise. Construct example vector fields for
each, and provide sketches including field-lines.

(d) Stars occur as topology of 2D linear vector fields when every line through the origin is
an eigenline. A stable star is also called a star sink and an unstable star is also called
a star source. What types of matrices give stable/unstable stars?

(e) Suppose M has complex eigenvalues. Then the 2D linear vector field given by the linear
map r 7→ Mr has one of three topologies at the origin: a center, a stable spiral (also
called a spiral sink), or an unstable spiral (also called a spiral source). These are dis-
tinguished as follows: centers possess only closed field-lines (“trajectories are orbits”),
while stable spirals possess field-lines that spiral towards the origin, and unstable spi-
rals possess field-lines that spiral away from the origin. Determine the conditions on
∆ and τ which distinguish these topologies. Then construct example fields for each
topology, and provide sketches including field-lines.

(f) Determine any edge cases by considering the possibilities for ∆ and τ not covered by the
preceding parts. In particular, you should assess what possible vector field topologies
occur for linear vector fields determined by singular matrices M (which have nontrivial
null spaces). Construct example vector fields for each, and provide sketches including
field-lines.

(3) By computing the linearizations around the zeros for the vector field F(x, y) = sin(y) ı̂ +
cos(x) ̂, determine the general pattern in the topologies of the zeros, and use this informa-
tion to sketch the vector field and its field lines without the aid of a computer.

(4) Consider the vector field F(x, y) = (y2 − x)̂ı + (y − yx2)̂.
(a) Find all the zeros of F.

(b) For the zeros found in (a), determine the local topology (saddles, spiral sources, spiral
sinks, centers, nodes, dipoles, etc).

(c) Sketch the vector field F(x, y) in the square R = [−2, 2]× [−2, 2], and separately sketch
a sufficient family of oriented field-lines to capture the behavior of a corresponding flow.

(5) Consider the vector field F(x, y) = sin
Ä
π
4 (y − x)

ä̂
ı + cos

Ä
π
4 (x+ y)

ä̂
.

(a) Find all zeros of F in the rectangle R = [0, 4]× [0, 4].

(b) For the zeros found in (a), determine the local topology (saddles, spiral sources, spiral
sinks, centers, dipoles, etc). Determine if the zeros are sources, sinks, or neither.

(c) Sketch the vector field F(x, y) in the rectangle R, and separately sketch a sufficient
family of oriented field-lines to capture the behavior of a corresponding flow.
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(6) For each of the vector fields in problem (1) above, determine if the vector field is conservative.
For each conservative vector field, find a potential function.

(7) For an n-dimensional vector field F : V → Rn, how many equations of the type ∂xiFj = ∂xjFi
arising from Clairaut’s theorem does one have to check to test if F is not conservative?
First examine the pattern for dimensions 2, 3, 4, and 5, and then conjecture a pattern and
a formula in terms of n. Use this to guess how many partial derivatives one might need to
compute and how many equations might need to checked to apply the criterion to show
that a 17-dimensional vector field is not conservative.

(8) For the gravitational force field Fg induced by a central large object of mass M acting on
a test mass object with mass m, show explicitly that the field is conservative by carefully
computing all necessary partial integrals, and reconciling the undetermined functions.

(9) Coulomb’s law states that the electrical force exerted by a charged particle of charge q0
positioned at r0 on a charged particle of charge q1 positioned at r1 is given by

F =
1

4πε0

q0q1
‖r1 − r0‖3

(r1 − r0) ,

where ε0 = 8.854 × 10−12coulombs2 per newton−meters2 is the free permittivity of space,
charge is measured in coulombs, and distance is measured in meters. An electrostatic field
E(r) associated to a collection of fixed charges q1, . . . , qn placed at positions r1, . . . , rn is
the net force exerted on a unit test charge placed at position r.

(a) Write down an expression for the electric field from Coulomb’s law, assuming of course
the superposition principle for summing forces.

(b) Argue that an electrostatic field is always conservative, and find an appropriate poten-
tial.

(c) Compute the divergence of the electrostatic field produced by fixing a unit positive
charge at ı̂ and a unit negative charge at −̂ı. Explain why your result is physically
sensible.

(10) In this problem we study both the topological dipole introduced above, and electric dipole
fields.
(a) Compute the field-lines of the topological dipole field F(x, y) = (x2− y2) ı̂ + 2xy ̂, and

sketch them.

(b) Rewrite the topological dipole field F using the polar frame.

(c) Show that the topological dipole field F is not conservative.

(d) Compute the Jacobian of F, and use it to compute the linearization of the topo-
logical dipole field at the origin. Why doesn’t the linearization capture the topology
adequately?

(e) Find a continuous family Ft, 0 ≤ t ≤ 1, of fields whose limit F1 is the topological
dipole, such that the local topologies near the zeros of the initial field are captured
by the linearizations. Sketch a “movie” of the transformation from F0 to F1. Consider
how the limiting topology arises from the initial topologies, and explain the name
“topological dipole”.
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(f) A real physical dipole field should diminish in strength at large distances, and should
model a physical field. Using Coulomb’s law and the results of problem 9, construct an
electrostatic field equation for a pair of charged particles, one of positive charge q and
the other of negative charge −q, with the positive charge displaced from the negative
charge by a displacement vector d. Let p = qd, which is called the dipole moment of
the charge pair. Consider the limiting electric field as d→ 0 while q increases so that
the dipole moment p remains constant. Show that this limiting dipole “electret” field
is

E(r) =
3(p · ûr)ûr − p

4πε0r3
.

(g) Find a potential for E(r).

(11) Determine which of the following vector fields are conservative, and for each conservative
vector field, find a general potential function. For additional credit, determine which vector
fields are solenoidal, i.e., which vector fields have divergence equal to 0. Then find vector
potentials for the solenoidal fields, i.e., find A such that the field is given as ∇×A.

(a) F(x, y, z) = e−y
2−z2 ̂ + e−x

2−y2 k̂,

(b) G(x, y, z) = (ye−z − zey − yze−x) ı̂ + (xe−z + ze−x − xzey) ̂ + (ye−x − xey − xye−z) k̂,

(c) H(x, y, z) = (e−x + xe−z) ı̂ + (e−y + ye−x) ̂ + (e−z + ze−y) k̂,

(d) K(x, y, z) = (3x2 − yz2) ı̂ + (3y2 − xz2) ̂− xy k̂.

(12) Verify the proposition:

Proposition. For any 3-dimensional vector field F whose components are continuously
differentiable to second order on a domain D,

div curl(F(r)) = ∇ ·
Ä
∇× F(r)

ä
= 0 ,

and for any scalar function f(x, y, z) continuously differentiable to second order on D,

curl grad(f(r)) = ∇×∇f(r) = 0 .

(13) This problem works with the spherical frame.

(a) Work out the details of calculating
∂û%
∂θ ,

∂û%
∂ϕ , ∂ûθ

∂θ , ∂ûθ
∂ϕ ,

∂ûϕ
∂θ and

∂ûϕ
∂ϕ and expressing

the results in the spherical frame.

(b) Use the preceding calculations to compute directional derivativesDû%û%,Dû%ûθ,Dû%ûϕ,
Dûθ û%, Dûθ ûθ, Dû%ûϕ, Dûϕû%, Dûϕûθ, and Dûϕûϕ, given that

DûF(r) := lim
h→0

F(r + hû)− F(r)

h
= (û · ∇)F(r) ,

where one applies the del operator to both components and basis vectors prior to
computing dot products with û.

(c) Recall, for (̂ı, ̂, k̂) the standard global frame for rectangular coordinates (x, y, z), we
have that Dı̂F = ∂F

∂x , D̂F = ∂F
∂y , and Dk̂F = ∂F

∂z . By analogy, compare the resulting

directional derivatives of the spherical frame with respect to spherical frame elements
to the spherical frame partial derivatives with respect to spherical coordinate variables.
Is it true, e.g., that ∂F

∂θ = DûθF for a differentiable vector field F?
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(14) (a) Show that the divergence of a vector field F(r, θ, z) = F 1ûr + F 2ûθ + F 3k̂ given in
cylindrical coordinates may be expressed as

∇ · F(r, θ, z) =
1

r

∂

∂r

Ä
rF 1
ä

+
1

r

∂F 2

∂θ
+
∂F 3

∂z

=
1

r
F 1 +

∂F 1

∂r
+

1

r

∂F 2

∂θ
+
∂F 3

∂z
.

(b) Verify the expression given in proposition 2.2 for the divergence of a vector field
F(%, θ, ϕ) given in spherical coordinates:

∇ · F(%, θ, ϕ) =
1

%2
∂

∂%

Ä
%2F 1

ä
+

1

% cos(ϕ)

∂F 2

∂θ
+

1

% cos(ϕ)

∂

∂ϕ

Ä
cos(ϕ)F 3

ä
=

2

%
F 1 +

∂F 1

∂%
+

1

% cosϕ

∂F 2

∂θ
− tan(ϕ)

%
F 3 +

1

%

∂F 3

∂ϕ
,

by working out the details of the calculation of ∇ · F(%, θ, ϕ).

(c) Use either expression above to compute the divergence of the following vector fields:

(i) F(r, θ, z) =
rûr + zk̂√
r2 + z2

,

(ii) G(%, θ, ϕ) =
sin θû% − cosϕûθ + ûϕ

%
,

(iii) K(x, y, z) =
x̂ı + ŷ + zk̂

(x2 + y2 + z2)3/2
.

(15) Derive expressions for the curl in cylindrical and spherical coordinates, and use them to
compute the curl of the following vector fields:
(a) F(r, θ, z) = zûr + rûθ − θk̂

(b) G(%, θ, ϕ) = %√
2
(ûθ + ûϕ).

(16) Compute the Laplacians of the following functions:
(a) u(x, y, z) = x cos(yz)− y sin(xz) + z tan(xy) ,

(b) v(%, θ, ϕ) = %3 sin3 ϕ− 2%2 cos θ sin θ cosϕ ,

(c) f(r, θ, z) =
r2 cos 2θ

r2 + z2
.

(17) Let F and G be sufficiently differentiable 3-dimensional vector fields.
(a) Verify the following identities:

(i) ∇ · (F×G) = (∇× F) ·G− F · (∇×G) ,

(ii) ∇× (F×G) = (G · ∇)F− (F · ∇)G + F(∇ ·G)− (∇ · F)G ,

(iii) ∇× (∇× F) = ∇(∇ · F)−∇2F,
where ∇2F is the vector Laplacian, whose rectangular components are the Laplacians
of the rectangular components of F.

(b) Let F, and G be sufficiently differentiable 3-dimensional vector fields, and let f(x, y, z)
be a scalar field. Find coordinate free expressions using divergence, curl, and gradient
to compute product rules for each of the following derivatives:
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(i) ∇ · (fF) ,

(ii) ∇× (fF) ,

(iii) ∇(F ·G) ,

(iv) ∇2(F×G) .

(18) This exercise will help you construct a proof of the proposition in § 2.6.

(a) Write down a limit definition of continuity at a point for a vector-valued function
σ : V → R3. Note that you need to express the limit condition in terms of an ε-δ
formalism and the respective notions of distance for R2 and R3. (Compare with the
limit definitions of continuity for a vector-valued function from an interval I ⊂ R to
R3, and for a two variable function f(x, y) from a domain V ⊆ R2 to R3).

(b) Show that if a function σ : V → R3 meets the condition that the pre-image of any
open set W ⊆ R3 is an open set of V, then the function is continuous at every point.

Hints: First, argue that it suffices to think about open balls and open disks. Consider
what happens to pre-images as you take a ball of smaller and smaller radius ε around
a point P of the image.

(c) Show that a function which is continuous in the limit sense at every point is continuous
in the sense of the proposition, namely that it meets the condition on pre-images of
open sets. Again, you should try to make use of open balls and open disks.

(19) Write down the six hemispherical patches necessary to cover a sphere of radius R, such that
pairs of opposite hemispheres correspond to pairs of graphs over disks in the xy, xz or yz
planes.

(20) This problem concerns stereographic projection, which gives a map of the sphere minus
a pole to the plane R2 in such a way as to faithfully preserve the angles between tangent
vectors to curves. Thus, stereographic projection is an example of what is called a conformal
map. The intuitive idea of stereographic projection is to trace a ray of light emanating from
the north pole. Such a ray passes through a unique point on the sphere away from the north
pole. Then one can associate to a point on the sphere the point where the associated light
ray strikes the xy plane. The details are developed below.

For simplicity, we will work with the unit sphere centered at the origin in R3. To avoid
some conflicts of notation, use capital letters (X,Y, Z) for the coordinates in R3, and low-
ercase letters (x, y) for coordinates on R2. Thus, the sphere for which we are building a
coordinate chart is given algebraically by the equation X2 + Y 2 + Z2 = 1.

(a) Let N(0, 0, 1) denote the “north pole” of the sphere on the Z-axis. Identify R2 with
the plane Z = 0, so that a point (X,Y, 0) = (x, y, 0) corresponds uniquely to the point
(x, y). Parameterize the line between N(0, 0, 1) and (x, y, 0), and determine the point
(X,Y, Z) where it strikes the sphere, in terms of x and y. Thus, give a parameterization
of S2 −N with domain (x, y). Argue that this is a homeomorphism.

(b) Find a formula for a chart which is the inverse of the homeomorphism constructed in
the previous part, i.e., determine a formula for an ordered pair (x, y) given in terms of
the coordinates (X,Y, Z) of a point on the sphere. Verify that this is a homeomorphism.
This chart is the stereographic projection map.

(c) Thus, deduce that there is a one-to-one correspondence between points of the plane
and points of the sphere with a point removed, given by stereographic projection and
its inverse. What point on the sphere corresponds to (0, 0)? What is the image on the
sphere of a line in R2?
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(d) Re-express the stereographic projection map using polar coordinates on R2 and spher-
ical coordinates defined by

%2 = X2 + Y 2 + Z2, (X,Y, Z) = (% sinϕ cos θ, % sinϕ sin θ, % cosϕ) .

(e) Reprove the formulae from parts (a), (b), and (c) using diagrams of the sphere and a
ray in profile, and appealing to similar triangles and Euclidean geometry, rather than
linear and vector algebra. You may also find the following results of Euclidean geometry
useful:

Theorem 2.1 (Thale’s theorem). A triangle inscribed in a circle is a right triangle if
and only if its hypotenuse is a diameter.

Theorem 2.2 (Inscribed Angle Theorem). Let 4ABC be a triangle with vertices A,
B, and C, which is inscribed in a circle with center O. If α = ∠BAC is the inscribed
angle of the triangle at vertex A, then 2α = ∠BOC is the central angle subtending the
corresponding arc of the circle.

Note that Thale’s Theorem is a special case of the inscribed angle theorem.
(f) Compute coordinate vector fields for the sphere coming from the stereographic coor-

dinates in parts (b) and (c), and draw pictures of these coordinate vector fields on the
sphere.

(21) Consider the parameterization of a torus given by

σ(u, v) =
Ä
2 + cos

Ä
3
2u
ä ä

ûr(u+ v) + sin
Ä
3
2u
ä

k̂ , (u, v) ∈ [0, 4π]× [0, 2π/3] .

Note that the argument of ûr is u+ v, hence θ = u+ v.
(a) Express the parameterization in rectangular coordinates.

(b) Compute the coordinate vector fields σu and σv, and express them in both cylindrical
and rectangular frames. Sketch the torus and the coordinate vector fields.

(c) Describe the curves of constant u and the curves of constant v. How do they relate
to the usual meridional and longitudinal curves determined by the parameterization
given in section 2.6 (for appropriate a and b)? Sketch the curve σ(u, 0).

(d) Generalizing the above, for fixed coprime integers p, and q, study the (u, v) coordinate
system for the parameterization

σ(u, v) =
Ä
2 + cos

Ä
q
pu
ä ä

ûr(u+ v) + sin
Ä
q
pu
ä

k̂ , (u, v) ∈ [0, 2πp]× [0, 2π/q] .

In particular, explain the dynamics of the coordinate vector fields, and describe the
coordinate curves for constant u and for constant v. What are the images of these
coordinate curves under a chart from the torus to [0, 2π]2 which inverts the parame-
terization given in section 2.6?

(22) Compute the Gauss map of the torus corresponding to the outward pointing normal for the
parameterization given in section 2.6. Does the map cover S2?

(23) Use the parameterization σ(u, v) of the Möbius band given in section 2.7 to compute a
normal vector σu(u, v) × σv(u, v). Show explicitly that this parameterization cannot be
used to define a Gauss map for the band by considering the limiting values of your normal
vector field around the core loop. What happens if you traverse such a loop twice, allowing
u to range from 0 to 4π? Argue that there is no way to create a set of alternate patches that
have well defined Gauss map, and thus deduce the non-orientability of the Möbius band.
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(24) Give a geometric argument that the area of a smooth surface patch σ : V → R3 is given by

A
Ä
σ(V)

ä
=

¨
V
‖σu(v)× σv(v)‖ dA(v) ,

where dA(v) becomes either dudv or dv du when passing to an iterated integral. Use this
formula to compute surface areas for the sphere, and the torus using the parameterizations
given above. Set up the surface area calculation for the Möbius band, then use a computer
and a preferred choice of numerical method to obtain an approximate result.
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3. Line Integrals

§ 3.1. Defining Scalar Line Integrals

We’d like to define a way of accumulating change along paths, e.g., computing the work a force
field does on a particle moving along a curve, or the mass of a wire given a density function defined
along its length. To do this, we need to define a new integral object. First we define such an integral
object for scalar fields in a way which generalizes the comfortable notion of an integral of a function

along an interval. Recall, the definite integral in single variable calculus is an object
´ b
a f(x) dx that

associates a number to a (well-behaved) single variable function f : D → R given an interval [a, b]
in (the closure16 of) its domain, and this number is interpreted as the “net” area bounded by the
graph of y = f(x) over [a, b] and the x-axis. Similarly, a line integral (unfortunately named) will
associate to a multivariable function f : D → Rn and a curve γ : I → D a number, which in the
case of a two variable function f(x, y) can be visually interpreted as the net area between the curve
γ in D ⊆ {(x, y, 0) ∈ R3} and the graph Gf ⊂ R3 of z = f(x, y). See figure (28).

Figure 28. A vertical ribbon between a curve γ(t) sitting in the xy-plane and the
surface of a graph z = f(x, y); the scalar line integral

´
γ f(x, y) ds is geometrically

interpreted as the net area of such a ribbon.

For the general set up, fix a function f : D → R of n variables and a continuous vector-valued
function γ : I → D describing a connected curve C in the domain of the function. We want to
capture the net area along a “vertical ribbon” between the curve C ⊂ D ⊆ Rn ⊂ Rn+1 and the
graph Gf ⊂ Rn+1. The image f(γ(t)) gives the xn+1 coordinate of the top of the slice sitting on the
graph, and so γ(t) + f(γ(t))ên+1 for t ∈ I traces out a curve on the graph at a “height” of f(γ(t))
above (or below) the curve C in the the domain.

16The function f should be “continuous almost everywhere” along [a, b]; what this means in practice is that we
can allow a bounded function to be undefined on a discrete subset of [a, b], and to have a discrete set of jump
discontinuities. By closure, we mean that the actual domain of f D should meet [a, b] in a possibly disjoint collection
of intervals, such that if we add in all of the boundary points of D that are also in [a, b], we get back all of [a, b].
To formalize what is really meant by “well behaved” and “discrete”, we need the notion of Lebesgue measure and
Lebesgue integrals; the discussion of these topics belongs to a good course on modern real analysis.
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We will build an integral to calculate the net area by considering a limit of Riemann sums, as
one often does to construct new integrals. Let I = [a, b] and choose a partition

Pm : a = t0 < t1 < . . . < tm = b

of I such that we may subdivide the interval I into m subintervals [t0, t1], . . . , [tm−1, tm]. Choosing a
sample point t∗j ∈ [tj−1, tj ] for each j = 1, . . . ,m, we make the partition Pm into a marked partition.

This partitions the curve C into m arcs, which have lengths ∆sj =
´ tj
tj−1
‖ṙ(τ)‖ dτ . Now we want to

consider the sum
m∑
j=1

f
Ä
γ(t∗j )

ä
∆sj .

Each term of this sum can be interpreted geometrically as taking the product of a a little bit of
arc-length along γ and with the value of f at a point within the little arc being approximated,
which gives the signed area of a “bent rectangle” or vertical ribbon approximating a piece of the
surface between γ ⊂ D and the graph of f along γ. Thus, the sum is itself an approximation of the
net area bounded between γ and the curve {γ(t) + f(γ(t))ên+1 : t ∈ I} ⊂ Gf in Rn+1. Increasing
the number of subdivisions, we can play the usual limit game to define an integral that gives us
the net area we desire:

Definition. Let f : D → R be a function of n variables on a domain D ⊆ Rn and γ : I → D a
continuous vector-valued function parameterizing a curve in D. Given a marked partition Pm of I
into m subintervals such that as m→∞ the maximum length of a subinterval tends to 0, yielding
a sequence of Riemann sums

Rm(f,γ) =
m∑
j=1

f
Ä
γ(t∗j )

ä
∆sj ,

the line integral of f along γ is the limit of the Riemann sumsˆ
γ
f(r) ds = lim

m→∞
Rm(f,γ) = lim

m→∞

m∑
j=1

f
Ä
γ(t∗j )

ä
∆sj ,

if this limit exists.

By standard arguments, if f is continuous on γ, this limit exists and is well defined, i.e., it does
not depend on the choice of partition of I or the sequence of sample points marking the partitions.
Note also that we defined this limit from a given parameterization, but in the end the integral
itself, which represents the geometric quantity of net area between the curve γ and the graph of
f , is an object which morally should depend only upon the curve itself, and not the choice of map
γ : I → D realizing the curve as its image. We are fortunate that this is true:

Proposition 3.1. Let f : D → R be a function of n variables on a domain D ⊆ Rn and suppose
γ : I → D and η : J → D are two continuous vector-valued functions with a common image curve
C ⊂ D traversed exactly once by each of the parameterizations. If the line integralsˆ

γ
f(r) ds and

ˆ
η
f(r) ds

both exist, then they are equal. We can thus writeˆ
C
f(r) ds

to mean the line integral of f over the curve C, regardless of the parameterization chosen.

Proof. See exercise (4) below. �

The matter of evaluation however still often invokes a particular parameterization. Moreover,
observe that the differential in the integral is ds rather than dt; even though we subdivided the
domain of γ using whatever parameter t was given, the Riemann sums used the lengths of the
displacement vectors in the image, and so approximated length along the curve (which is intrinsic
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to the curve C, and independent of the choice of parameterization). But for a given parameteriza-
tion, the arc-length element is ds = ‖γ̇(t)‖ dt, and so to evaluate such an integral when given a
parameterization γ(t), we will work to re-express everything in terms of the given parameterization.

For our first examples, we will consider two-variable functions f : D → R and plane curves
C ⊂ D ⊂ R2. Consider a curve C parameterized by a vector valued function γ(t) = x(t)̂ı + y(t)̂.

Then since ds = ‖γ̇(t)‖ dt =
»

[ẋ(t)]2 + [ẏ(t)]2 dt, the line integral in terms of the parameterization
is given by

ˆ
C
f(x, y) ds =

ˆ b

a
f
Ä
x(t), y(t)

ä»
[ẋ(t)]2 + [ẏ(t)]2 dt ,

where a and b are the endpoints for the interval of parameterization for γ : [a, b] → D. We’ll use
this formula to compute some manageable line integrals.

Example 3.1. Let C be the line segment from (−2, 6) to (4,−2), and let f(x, y) = xy. We wish to
compute the line integral of f(x, y) along C.

Figure 29. The net area computed by the line integral
´
C xy ds over the line from

(−2, 6) and (4,−2). Note that since most of it is below the plane z = 0, the value
of the integral is negative.

Let p = −2̂ı + 6̂ and q = 4̂ı− 2̂ be the respective position vectors of (−2, 6) and (4,−2). Then

γ(t) = (1− t)p + tq = (6t− 2)̂ı + (6− 8t) , 0 ≤ t ≤ 1

parameterizes C as a vector valued function. Thus the parametric equations are

x(t) = 6t− 2 , y(t) = 6− 8t , 0 ≤ t ≤ 1 ,

giving

ds =
»

[ẋ(t)]2 + [ẏ(t)]2 dt =
»

62 + (−8)2 dt =
√

36 + 64 dt = 10 dt .
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Thus, ˆ
C
f(x, y) ds =

ˆ 1

0
x(t) y(t) (10) dt = 10

ˆ 1

0
(6t− 2)(6− 8t) dt

= 10

ˆ 1

0
−48t2 + 52t− 12 dt = 10

î
−16t3 + 26t2 − 12t

ó1
0

= 10(−16 + 26− 12 + 0− 0 + 0) = −20 .

Example 3.2. Let C be the portion of the parabola y = 4 − x2 in the first quadrant, and let
f(x, y) =

√
4x− y + 8. We will exploit that the curve is a graph of a function of x to compute the

line integral of f(x, y) along C.
Since y = 4 − x2, C is described parametrically by r(x) = x̂ı + (4 − x2)̂, with 0 ≤ x ≤ 2, since

0 ≤ x and 0 ≤ 4− x2. From this, we can rewrite the arc-length differential as ds =
√

1 + 4x2 dx.
Next, we rewrite the function in terms of x:

f(x, y) = f(x, 4− x2) =
»

4x− (4− x2) + 8 =
√
x2 + 4x+ 4 = |x+ 2| .

Note that since 0 ≤ x ≤ 2 along C, we can drop the absolute value symbols. From here, we can
assemble a single variable integral in terms of x:ˆ

C
f(x, y) ds =

ˆ
C

√
4x− y + 8 ds =

ˆ 2

0
(x+ 2)

√
1 + 4x2 dx .

We can rewrite the integrand as x
√

1 + 4x2 +2
√

1 + 4x2. The antiderivative of the first term can
be found using the simple substitution u = 1 + 4x2, giving du = 8x dx soˆ

x
√

1 + 4x2 dx =

ˆ
1

8

√
udu .

The antiderivative of 2
√

1 + 4x2 is found by using the trigonometric substitution 2x = tan v,
yielding 2 dx = sec2 v dv and

√
1 + 4x2 = | sec v|. Since 0 ≤ x ≤ 2 along C, the range of values of v

should be taken to be [0, arctan(4)], over which both tan v and sec v are positive. Thus the tangent

substitution turns
´

2
√

1 + 4x2 dx into
´

sec3 v dv, which can be computed via integration by parts.
Using the antiderivatives one gets by back-substituting after following the above substitutions,

we can compute the line integral as a definite integral:ˆ
C

√
4x− y + 8 ds =

ˆ 2

0
(x+ 2)

√
1 + 4x2 dx

=

ï
1
12

Ä
1 + 4x2

ä3/2
+ x

√
1 + 4x2 + 1

2 ln
∣∣∣2x+

√
1 + 4x2

∣∣∣ ò2
0

=
1

12

√
2 + 2

√
17 +

1

2
ln(4 +

√
17) .

One of the chief difficulties of evaluating line integrals is finding an easy to work with parame-
terization of the curve C, and as we’ll see in the examples, having an easy to work with arc-length
parameterization γ(s) can simplify things immensely.

A line integral on a closed curve C is often written in the notation˛
C
f(r) ds .

Our next example is over a closed curve.

Example 3.3. Let C be a circle of radius R centered at (0, 0) ∈ R2, and let f(x, y) = ax2 + by2,
where a, b are constants. We wish to compute

¸
C f(x, y) ds in terms of a, b and R. We will use the

fact that it is easy to arc-length parameterize a circle in order to rewrite x and y as functions of
the arc-length s along C
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Figure 30. The area computed by the line integral
´
C
√

4x− y + 8 ds over the

parabola from y = 4− x2.

Let s be the arc-length along C at a point (x, y) ∈ C measured from the point (R, 0). Then s is
just R times the angle between the position vector r = x̂ı + ŷ and ı̂, and the total arc-length of C
is just 2πR. Thus we have parametric equations

x(s) = R cos (s/R) , y(s) = R sin (s/R) , 0 ≤ s ≤ 2πR .

It is easy to check that [x′(s)]2+[y′(s)]2 = 1, confirming that this is an arc-length parameterization.
The integral can now be computed using our arc-length parameterization:

˛
C
ax2 + by2 ds =

ˆ 2πR

0
a cos2 (s/R) + b sin2 (s/R) ds

=

ˆ 2πR

0
a

Ç
1 + cos(2s/R)

2

å
+ b

Ç
1− cos(2s/R)

2

å
ds

=

ˆ 2πR

0

a+ b

2
+
a− b

2
cos (2s/R) ds

= πR (a+ b) .

For the sake of completeness, let us also look at one example of a line integral for a 3-variable
function f(x, y, z) along a space curve.

Example 3.4. We will calculate
´
C xyz ds for the helix r(t) = sin(2t) ı̂ − cos(2t) ̂ + t k̂ for t ∈

[−π, π] by re-parameterizing with arc-length. First, we compute the arc-length function s(t) =
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´ t
−π ‖ṙ(τ)‖ dτ :

s(t) =

ˆ t

−π

»
[ẋ(τ)]2 + [ẏ(τ)]2 + [ż(τ)]2 dτ

=

ˆ t

−π

»
[2 cos(2τ)]2 + [−2 sin(2τ)]2 + [1]2 dτ

=

ˆ t

−π

»
4 cos2(2τ) + 4 sin2(2τ) + 1 dτ

=

ˆ t

−π

√
8 + 1 dτ = 3

ˆ t

−π
dτ = 3(t+ π)

=⇒ t =
s

3
− π .

Figure 31. The helix r(t) = sin(2t) ı̂− cos(2t) ̂ + t k̂, for t ∈ [−π, π], together with
some level sets of f(x, y, z) = xyz.

Thus, let

γ(s) = sin
Ä
2s
3

ä
ı̂− cos

Ä
2s
3

ä
̂ +

( s
3 − π

)
k̂ , 0 ≤ s ≤ 6π .
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ˆ
C
xyz ds =

ˆ 6π

0
−
( s
3 − π

)
sin
Ä
2s
3

ä
cos
Ä
2s
3

ä
ds

=

ˆ 6π

0

(π
2 −

s
6

)
sin
Ä
4s
3

ä
ds

=
Ä
s
8 −

3π
8

ä
cos
Ä
4s
3

ä ∣∣∣∣6π
0
− 3

8

ˆ 6π

0
cos
Ä
4s
3

ä
ds

=
Ä
3π
4 −

3π
8

ä
cos(8π) +

3π

8
cos(0)− 9

32
sin(8π) +

9

32
sin(0)

=
3π

4
.

We can also define scalar line integrals where the differential is not an arc-length differential: given
a collection of n multivariable functions G1, . . . Gn defined on D ⊂ Rn and an oriented curve C in D,
we can define a scalar line integral along C of the differential one-form G1(r) dx1 + . . .+Gn(r) dxn.

Definition. Let G1, . . . Gn be n functions of n variables defined on a domain D ⊂ Rn, and let C be
an oriented curve in D parameterized by γ : I → D. Let Pm be a sequence of partitions of I into m
subintervals, such that as m→∞ the maximum length of a subinterval tends to 0. Choose sample
points t∗j in each subinterval [tj−1, tj ] and set rj = γ(t∗j ). Let ∆xij = (rj−rj−1)·êi = xi(t

∗
j )−xi(t∗j−1).

Then the line integral of the differential form G1(r) dx1 + . . .+Gn(r) dxn isˆ
C
G1(r) dx1 + . . .+Gn(r) dxn = lim

m→∞

n∑
i=1

m∑
j=1

Gi(rj)∆xij

if the limit exists.

Again, when this exists it is well defined and independent of the parameterization of the curve C.
The geometric meaning of such a line integral will become more clear when we discuss line integrals
in vector fields. Observe, however, that we defined it for an oriented curve, and in fact, you should
convince yourself that if you reverse the orientation of the curve, the value of the integral is negated.

We’ll consider again a few examples using functions of two variables. Let P,Q : D → R be scalar
fields and C an oriented curve in D. Given a parameterization γ(t) = x(t)̂ı + y(t)̂ of C defined on
an interval [a, b], we can rewrite the integral of P (x, y) dx+Q(x, y) dy along C in terms of t:ˆ

C
P (x, y) dx+Q(x, y) dy =

ˆ b

a
P
Ä
x(t), y(t)

ä
dx(t) +Q

Ä
x(t), y(t)

ä
dy(t)

=

ˆ b

a

(
P
Ä
x(t), y(t)

ä
ẋ(t) +Q

Ä
x(t), y(t)

ä
ẏ(t)

)
dt

Example 3.5. Let C be the segment of the plane curve y2 = x3 joining the point (1, 1) to (2, 2
√

2).
We will compute ˆ

C
y1/3 dx+ x1/2 dy .

To parameterize C we could simply rewrite y as a function of x since C lies completely in the first
quadrant. However, a more interesting parameterization to work with is the monomial parameter-
ization

x(t) = t2 , y(t) = t3 , 1 ≤ t ≤
√

2 .

One way to arrive at this is to start with y = x3/2 and ask what power of t should be used in place
of x to ensure that y is also an integral power of t. Of course, setting x = t2 works since (t2)3/2 = t3.

Now, we need to express the differentials dx and dy in terms of t:

dx = d(t2) = 2tdt dy = d(t3) = 3t2 dt .
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Thus,
ˆ
C
y1/3 dx+ x1/2 dy =

ˆ √2
1

(t3)1/3 2t dt+ (t2)1/2 3t2 dt

=

ˆ √2
1

2t2 + 3t3 dt =
î
2
3 t

3 + 3
4 t

4
ó√2
1

= 4
3

√
2 + 3−

Ä
2
3 + 3

4

ä
=

16
√

2 + 19

12
.

Our next example shows that endpoints and orientations are not enough to determine the value
of a line integral with respect to the coordinate variables.

Example 3.6. Let C1 be the portion of the parabola y = 2 − x2 where y ≥ x. Let C2 be the
line segment connecting the points of intersection of C1 and the line y = x. We consider three line
integrals: the integral of 1

2(y dx−x dy) over C1 oriented “left to right”, the integral of the same form

over −C1, by which we mean oriented from “right to left”, and the line integral of 1
2(y dx − x dy)

over C2, oriented from “left to right”.
First, we need to locate the intersection points of y = 2 − x2 and y = x. A little algebra shows

these are at (1, 1) and (−2,−2). Since C1 is oriented right to left, the initial point is (−2,−2) and
the terminal point is (1, 1). We can evaluate by using that C1 is a portion of a graph:ˆ

C1

1

2
(y dx− x dy) =

1

2

ˆ 1

−2
(2− x2) dx− x d(2− x2)

=
1

2

ˆ 1

−2
(2− x2) + 2x2 dx =

1

2

ˆ 1

−2
2 + x2 dx

=
1

2

ñ
2x+

x3

3

ô1
−2

=
1

2

ï
2 +

1

3
−
Å
−4− 8

3

ãò
=

9

2
If we reverse orientations, we merely reverse the limits of the corresponding integral with respect

to x. Thus, ˆ
−C1

1

2
(y dx− x dy) = −9

2
= −

ˆ
C1

1

2
(y dx− x dy) .

For the line integral over C2, we can use that y = x along the line segment to deduce that the
differential form vanishes:

1

2
(y dx− x dy) =

1

2
(x dx− x dx) = 0 .

Thus, despite having the same endpoints and orientation as C1, the line integral over C2 is not equal
to the line integral over C1: ˆ

C2

1

2
(y dx− x dy) = 0 .

The following proposition lists some useful properties of scalar line integrals.

Proposition 3.2. Let ω and ψ represent differential one-forms on a domain D ⊆ Rn either of the
form f(r) ds or G1(r) dx1 + . . .+Gn(r) dxn, and let C, C′ represent oriented curves in the domain
D, and −C denote the same curve as C but with opposite orientation. Let C+ C′ be the curve which
is the (possibly disjoint) union of the curves C and C′. Let a and b be any real constants. Then the
following identities hold for scalar line integrals:

(i)

ˆ
C
aω + bψ = a

ˆ
C
ω + b

ˆ
C
ψ,
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(ii) if ω = f(r) ds then

ˆ
−C
ω =

ˆ
C
ω,

(iii) if ω = G1(r) dx1 + . . .+Gn(r) dxn, then

ˆ
−C
ω = −

ˆ
C
ω,

(iv)

ˆ
C+C′

ω =

ˆ
C
ω +

ˆ
C′
ω.

Proof. See exercise (5) below. �

Example 3.7. We will compute the line integralˆ
S

cos(πy) dx− sin(πx) dy

where S is the boundary of the unit square [0, 1] × [0, 1] in the first quadrant of R2, oriented
counter-clockwise.

Let S1 be the line segment parameterized by r1(t) = t̂ı, S2 be the line segment parameterized
by r2(t) = ı̂ + t̂, S3 be the line segment parameterized by r3(t) = (1 − t)̂ı + ̂ and S4 be the line
segment parameterized by r4(t) = (1− t)̂. Using property (iv) we can re-express the integral over
S = S1 + S2 + S3 + S4 as

˛
S

cos(πy) dx− sin(πx) dy =
4∑

k=1

ˆ
Sk

cos(πy) dx− sin(πx) dy

=

ˆ
S1

cos(πy) dx− sin(πx) dy +

ˆ
S2

cos(πy) dx− sin(πx) dy

+

ˆ
S3

cos(πy) dx− sin(πx) dy +

ˆ
S4

cos(πy) dx− sin(πx) dy

For each line segment Sk, k = 1, . . . , 4 we use the parameterization rk(t) to re-express the differential
one-form cos(πy) dx− sin(πx) dy in terms of the parameter t:

– along S1 cos(πy) dx− sin(πx) dy = cos(0π) d(t)− sin(πt) d(0) = dt,

– while along S2 cos(πy) dx− sin(πx) dy = cos(πt) d(1)− sin(1π) d(t) = 0,

– and along S3: cos(πy) dx− sin(πx) dy = cos(1π) d(1− t)− sin((1− t)π) d(1) = −1 d(−t) = dt,

– and finally along S4: cos(πy) dx− sin(πx) dy = cos((1− t)π) d(0)− sin(0π) d(1) = 0.

Thus ˛
S

cos(πy) dx− sin(πx) dy =

ˆ
S1+S3

cos(πy) dx− sin(πx) dy

=

ˆ 1

0
2 dt = 2 .

Another way to see this is to observe that along S1 and S3, y is constant and along S2 and S4, x
is constant. On S1, since y = 0, the integral reduces to

ˆ
S1

cos(πy) dx− sin(πx) dy =

ˆ 1

0
cos(0) dx =

ˆ 1

0
dx = 1

and along S3 we similarly obtain a simplified integral with value 1, since πy = π(1) = π and
cos(π) = −1, and the orientation is negative with respect to increasing x. The other two sides end
up having zero integrand since only y is changing, and sin(πx) vanishes whenever x is an integer,
as it is along these sides of the square.
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§ 3.2. Line Integrals in Vector Fields

We are now interested in defining line integrals for curves in a vector field F : D → Rn. As before,
let C be an oriented continuous curve parameterized by a vector-valued function γ : I → D. We
can repeat the process of subdivision of the domain of γ, and analogously define a Riemann sum,
this time dotting the vector field with displacement vectors ∆rj = γ(tj) − γ(tj−1), j = 1, . . . ,m,
giving a piecewise linear/polygonal approximation of the curve γ. Observe that for a sufficiently
fine partition of the curve, ‖∆rj‖ ≈ ∆sj .

Definition. Let F : D → R be a vector field on a domain D ⊆ Rn and C be an oriented continuous
curve parameterized by a vector-valued function γ : I → D. Given a sequence of marked partitions
Pm of I into m subintervals with sample points t∗j in each subinterval [tj−1, tj ] of a partition Pm,
yielding Riemann sums

m∑
j=1

F
Ä
γ(t∗j )

ä
·∆rj ,

the line integral of F along C is the limit of the Riemann sumsˆ
C

F(r) · dr = lim
m→∞

m∑
j=1

F
Ä
γ(t∗j )

ä
·∆rj ,

if the limit exists.

As above, you should deduce that this is well defined when the limit exists, that it is independent
of the choice of parameterization of C, and that the expected properties hold. In particular, it is
useful to note that ˆ

C+C′
F(r) · dr =

ˆ
C

F(r) · dr +

ˆ
C′

F(r) · dr

for any curves C and C′ in the domain D of F. This allows us to describe methods of computation
of line integrals in vector fields when the curve of integration can be decomposed as a collection of
regular curves (that is, curves whose tangent vectors are defined and non-zero).

Presume that C is a curve admitting a regular parameterization γ : I → D. Regularity implies
that the unit tangent vector

T̂(t) =
γ̇(t)

‖γ̇(t)‖
=

dγ

ds

is well defined along the length of C. It is easy to argue that the Riemann sum
m∑
j=1

F
Ä
γ(t∗j )

ä
·∆rj

is approximately equal to
m∑
j=1

F
Ä
γ(t∗j )

ä
· T̂(t∗j )∆sj ,

using that ∆sj =
´ tj
tj−1
‖r′(τ)‖dτ ≈ ‖∆rj‖. If the limits of these sums exists, one can show that

the limits are actually equal. But the latter sequence of Riemann sums converges to a scalar line
integral of the form ˆ

C
F(r) · T̂(r) ds ,

where T̂(r) is evaluated at points r along C, and ds is the usual arc-length element as before. This
is often abbreviated as ˆ

C
F(r) · T̂ ds .

Now, since

T̂ =
dγ

ds
=

n∑
i=1

dxi
ds

êi

75



11/14/19 Multivariate Calculus: Vector Calculus Havens

we have that ˆ
C

F(r) · T̂ ds =

ˆ
C

F(r) ·
(

n∑
i=1

dxi
ds

êi

)
ds

=

ˆ
C

F(r) ·
(

n∑
i=1

dxiêi

)

=

ˆ
C

n∑
i=1

(F(r) · êi) dxi =

ˆ
C

n∑
i=1

Fi(r) dxi

=

ˆ
C
F1(r) dx1 + . . .+ Fn(r) dxn ,

which is the second kind of scalar line integral. Writing

dr = T̂ ds =
n∑
i=1

êi
dxi
ds

ds =
n∑
i=1

êi dxi

the notation F(r) · dr := F1(r) dx1 + . . . + Fn(r) dxn now presents us with a unified geometric
meaning for line integrals in vector fields and the second kind of scalar line integral we defined.

The above arguments applied when the curve C was regular, but if we had a piecewise curve
C =

∑l
k=1 Ck whose sub-pieces Ck were regular curves, then each sub-piece can be evaluated as a

scalar line integral by any of the previous techniques (involving parameterizations or realizing a
differential form as the total derivative of some function). Thus, applying the property

ˆ
C

F(r) · dr =
l∑

k=1

ˆ
Ck

F(r) · dr ,

we can evaluate general line integrals in vector fields by utilizing a parameterization or, when we
are fortunate, by identifying a function whose total derivative is the differential form F(r) · dr =
F1(r) dx1 + . . .+ Fn(r) dxn.

Example 3.8. Let T be the triangle in R2 with vertices A(0, 0), B(
√

3,−1) and C(
√

3, 1) oriented
counterclockwise, and let F(x, y) = −2xy ı̂ + (x2 − y2) ̂. Let us compute the line integral˛

T
F(x, y) · T̂ ds .

Note that T is an equilateral triangle with sides of length 2. Write T = T1 + T2 + T3 where T1
is the line segment from A(0, 0) to B(

√
3,−1), T2 is the line segment from B(

√
3,−1) to C(

√
3, 1),

and T3 is the line segment from C(
√

3,−1) to A(0, 0). Let T̂i, i = 1, 2, 3 denote the unit tangent
vectors to these segments. We have arc-length parameterizations

r1(s) = a + s
2(b− a) = s

2(
√

3̂ı− ̂) = s
(√

3
2 ı̂− 1

2 ̂
)
, 0 ≤ s ≤ 2 ,

r2(s) = b + s
2(c− b) = (

√
3̂ı− ̂) + s ̂ =

√
3̂ı + (s− 1)̂ , 0 ≤ s ≤ 2 ,

r3(s) = c + s
2(a− c) = (

√
3̂ı + ̂)− s

2
(
√

3̂ı + ̂) = (2− s)
(√

3
2 ı̂ + 1

2 ̂
)
, 0 ≤ s ≤ 2 ,

for T1, T2, and T3, respectively. Each of the above parameterizations can be obtained by adding
an initial position vector to s/2 times a displacement vector between endpoints, and so the unit
tangent vectors are just normalizations of these displacements. Thus, the unit tangents are

T̂1 =
√
3
2 ı̂− 1

2 ̂ , T̂2 = ̂ , T̂3 = −
√
3
2 ı̂− 1

2 ̂ .

We can compute the line integral we want as a sum of line integrals over each of the segments:˛
T

F(x, y) · T̂ ds =

ˆ
T1

F(x, y) · T̂ ds+

ˆ
T2

F(x, y) · T̂ ds+

ˆ
T3

F(x, y) · T̂ ds .
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Figure 32. The dipole field F(x, y) = −2xy ı̂ + (x2 − y2) ̂ as well as some of its
field-lines, together with the triangle T .

Along T1 we have parametric equations x(s) = s
√

3/2, y(s) = −s/2, with s ∈ [0, 2], so

F
Ä
x(s), y(s)

ä
= −2x(s)y(s) ı̂ +

Ä
[x(s)]2 − [y(s)]2

ä
̂ =

s2
√

3

2
ı̂ +

s2

2
̂ = −s2 T̂3

ˆ
T1

F(x(s), y(s)) · T̂ ds =

ˆ 2

0
−s2 T̂3 · T̂1 ds

=

ˆ 2

0
−s2 cos

Å
2π

3

ã
ds =

1

2

ñ
s3

3

ô2
0

=
4

3
,

where we’ve used that the dot product T̂1 · T̂3 is the cosine of the angle between them measured
when they are both placed with tails at a common point (such as the origin).

Along T2, we have parametric equations x(s) =
√

3, y(s) = s− 1, with s ∈ [0, 2], which gives

F
Ä
x(s), y(s)

ä
= −2

√
3(s− 1)̂ı + (2 + 2s− s2)̂ .

Since the unit tangent vector along T2 is ̂, F(x(s), y(s)) · T̂ = 2 + 2s− s2, whenceˆ
T2

F(x(s), y(s)) · T̂ ds =

ˆ 2

0
2 + 2s− s2 ds

= 2(2) + 22 − 23

3
=

16

3
.

Finally, along T3 we have parametric equations x(s) =
√

3−s
√

3/2, y(s) = 1−s/2, with s ∈ [0, 2],
and

F
Ä
x(s), y(s)

ä
= −2

√
3

Å
1− s

2

ã2
ı̂ + 2

Å
1− s

2

ã2
̂ = −4

Å
1− s

2

ã2
T̂1 .
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Thus, ˆ
T3

F(x(s), y(s)) · T̂ ds =

ˆ 2

0
−4

Å
1− s

2

ã2
T̂1 · T̂3 ds

= −4

ˆ 2

0

Å
1− s

2

ã2
cos

Å
2π

3

ã
ds =

ñ
−4

3

Å
1− s

2

ã3ô2
0

=
4

3
,

where again we’ve used that T̂1 · T̂3 = cos(2π/3) = −1/2.
Putting it all together:˛

T
F(x, y) · T̂ ds =

ˆ
T1

F(x, y) · T̂ ds+

ˆ
T2

F(x, y) · T̂ ds+

ˆ
T3

F(x, y) · T̂ ds

=
4

3
+

16

3
+

4

3
= 8 .

§ 3.3. Work in a Force Field

As far as giving a physical intuition to line integrals in vector fields, and thus to the line integrals
of differential forms involving the coordinate differentials, we recall the notion of work in physics:
the work done on a particle by a force is equal to the magnitude of the effective force times the
displacement produced. For a constant linear force F producing a displacement ∆r in the position
of a particle, this is calculated as the dot product W = F ·∆r. However, if the direction of motion
and force both vary, then we can imagine our particle as having trajectory given by some oriented
curve, and the force being given at different points of the particle’s path by a vector field F defined
along the trajectory. The infinitesimal work would then be F(r) · dr := F1(r) dx1 + . . .+Fn(r) dxn
where dr = T̂ ds is a directed differential along the trajectory. The total work contributed by the
field to the particle’s motion along its trajectory C is then the line integral

W[F, C] :=

ˆ
C

F(r) · T̂ ds =

ˆ
C

F(r) · dr .

Example 3.9. Let F(x, y) = (x − y)̂ı + (y − x)̂, and let C be the unit circle S1. Then the work
done by F on a particle completing one counterclockwise circuit around S1 is

W[F, C] =

˛
C

F(r) · dr =

ˆ
S1

(x− y) dx+ (x+ y) dy

=

ˆ 2π

0
(cos θ − sin θ) d(cos θ) + (cos θ + sin θ) d(sin θ)

=

ˆ 2π

0
(cos θ − sin θ)(− sin θ) + (cos θ + sin θ)(cos θ) dθ

=

ˆ 2π

0
sin2 θ − sin θ cos θ + sin θ cos θ + cos2 θ dθ

=

ˆ 2π

0
dθ = 2π

Another way we could have found this is to use that r(θ) = cos(θ) ı̂ + sin(θ) ̂ is an arc-length

parameterization, whence T̂(θ) = dr/dθ = − sin(θ) ı̂ + cos(θ)̂ and ds = dθ, so

W[F, C] =

˛
S1

F(r) · T̂ ds =

ˆ 2π

0
1 ds ,
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Figure 33. The spiral source vector field F = rûr(θ) + rûθ(θ) = (x− y)̂ı+ (x+ y)̂
and the unit circle S1. Vectors are not drawn to scale to avoid cluttering the image;
colors indicate magnitude, with warmer hues indicating larger magnitude.

since F(r) · T̂ = (cos θ− sin θ)(− sin θ) + (cos θ+ sin θ)(cos θ) = 1, as seen above. What this says is

that the components of the field F along the tangential direction to S1 are all of length 1 = ‖T̂(θ)‖
and oriented compatibly (circulating counterclockwise). Indeed, the field can be rewritten in polar
coordinates:

F = (x− y)̂ı + (y − x)̂ = x̂ı + ŷ + (−ŷı + x̂) = rûr(θ) + rûθ(θ) ,

where ûr and ûθ are the vectors of the polar frame, ûr being a unit vector parallel to the position
at (x, y), and ûθ being a unit vector tangential to the circle x2 + y2 = r2. We see then that for

S1 = {(r, θ)P : r = 1)}, T̂(θ) = ûθ(θ), and it is immediate that F can be written as ûr(θ) + T̂(θ)
along S1. It is thus unsurprising that the work done in this case is the arc-length along the trajectory.

§ 3.4. The Fundamental Theorem of Line Integrals

Working with parameterizations can be difficult and tedious, and so you may wonder if there
is a swifter way to compute line integrals, more in line with the fundamental theorem of calculus.
Why can’t we just take something like an antiderivative right from the start, and evaluate at the
endpoints of our path, and subtract?

Several of the previous examples demonstrate why this isn’t always a possible approach. If it
were always the case that only endpoints of paths and orientations mattered, then closed paths,
which begin and end at the same point, would necessarily lead to vanishing line integrals. But we’ve
seen examples of closed curves C such that line integrals around them have non-zero values.
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But there is a large class of vector fields whose line integrals can be computed without resorting
to parameterizations. Suppose a vector field F over D is conservative, i.e., F(r) = ∇f(r) for some
scalar function f : D → R called a potential. Then in fact, line integrals of F over curves C ⊂ D are
independent of path, meaning they only depend on the choice initial and terminal point.

Theorem 3.1 (Fundamental Theorem of Line Integrals). If a vector field F : D → Rn is conser-
vative with potential f : D → R, then for any oriented curve C ⊂ D with the initial point r1 and
the terminal point r2, ˆ

C
F(r) · dr = f(r2)− f(r1) ,

whenever the line integral is defined for such a C.
For closed curves C, i.e., curves such that r1 = r2,˛

C
F(r) · dr = 0 .

Proof. Let F(r) = ∇f(r). Then if r(t) is any parameterization of C defined on an interval I = [a, b]
with r(a) = r1 and r(b) = r2, by the chain rule:

d

dt
f
Ä
r(t)
ä

=
n∑
i=1

∂f

∂xi

Ä
r(t)
ä
ẋi(t) = ∇f

Ä
r(t)
ä
· ṙ(t) .

On the other hand: ˆ
C

F(r) · dr =

ˆ
C

F
Ä
r(t)
ä
· ṙ(t) dt =

ˆ
C
∇f
Ä
r(t)
ä
· ṙ(t) dt .

Thus, by the second fundamental theorem of calculus,
ˆ
C

F(r) · dr =

ˆ b

a

d

dt
f
Ä
r(t)
ä

dt

= f
Ä
r(b)
ä
− f
Ä
r(a)
ä

= f(r2)− f(r1) .

As the path was arbitrary and the final difference depends only upon the potential and the endpoints
together with the orientation determining which is initial and final, we conclude that for any
conservative vector field F, the line integralˆ

C
F(r) · dr

is independent of path.
Finally, if C is closed, then this final expression is a difference of identical terms, and must

therefore be zero. �

We can formalize the idea of path independence for vector fields as follows:

Definition. Given a fixed vector field F defined on a domain D, a line integral
´
C F(r) · dr is said

to be path independent if its value depends only upon the endpoints and orientation of C ⊂ D, and
not on the particular path C.

A vector field F defined on a domain D is said to have the property of independence of path in
D if for any curves C1 and C2 in D, whose initial endpoints coincide and whose terminal endpoints
coincide, the equality

W[F, C1] =W[F, C2]

holds; equivalently, the work of F on any particle undergoing motion on a trajectory in D depends
only upon the starting and ending points of the particle’s motion.
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Example 3.10. Let F(x, y) = (y2−x2)̂ı + 2xŷ, and let C be the curve given by the portion of the
graph of y = 2 ln cosx+ ln 4− ln 3 with nonnegative y coordinates, starting on the positive x axis
and terminating on the negative x axis. What is the work done by F on a particle moving from a
starting position on the positive x axis and ending on the y axis, following C?

In this case, F happens to be conservative. Indeed, if we partially integrate we find:ˆ
y2 − x2 dx = xy2 − x3

3
+ C(y) ,

for some C(y). Taking the derivative of this partial integral with respect to y, we have

∂

∂y

Ç
xy2 − x3

3
+ C(y)

å
= 2xy + C ′(y) .

Comparing with F · ̂, we see that we should take C ′(y) = 0, and so C(y) can really be chosen as

any constant. Thus, f(x, y) = xy2 − x3

3 is a potential for F(x, y).
Since F is conservative, we only need to find the endpoints of our curve. Setting y = 0 gives that

ln cosx = ln
√
3
2 . There are many such points, but as we want C to be the portion of the graph which

travels from the +x-axis to the −x-axis, we have to pick the least positive value of x satisfying
cosx =

√
3/2 to get the initial point; using that the graph has y-axis symmetry, we can then find

the terminal point by negating this x. Of course x = π/6 is the least such value. Thus our endpoints
are (π/6, 0) and (−π/6, 0).

Thus, using the fundamental theorem of line integralsˆ
C

F(x, y) · dr = f(−π/6, 0)− f(π/6, 0)

= 0− 1

3

Å
−π

6

ã3
− 0 +

1

3

Å
π

6

ã3
=

π3

324
.

Example 3.11. Let C be one arch of the cycloid r(t) = (t − sin t)̂ı + (1 − cos t)̂, starting at the
origin and ending at the point (2π, 0). Consider the line integralˆ

C
e−y

2
dx− 2xye−y

2
dy .

The differential e−y
2

dx − 2xye−y
2

dy is actually the total differential df(x, y) of the function

f(x, y) = xe−y
2
. Thus ˆ

C
e−y

2
dx− 2xye−y

2
dy =

ˆ
C

Ä
e−y

2
ı̂− 2xye−y

2
̂
ä
· dr

=

ˆ
C
∇
Ä
xe−y

2ä · dr

= f(2π, 0)− f(0, 0)

= 2π .

§ 3.5. Motion in Conservative Force Fields Conserves Energy

Equipped with the fundamental theorem of line integrals, we are finally in a position to explain
the terminology ”conservative vector field” and ”potential” in terms of a connection to the physics of
conservation of energy. Let F(r) be a force field acting on a particle with a trajectory C described by
the time-dependent vector-valued function r(t), beginning at r(t0) and ending at r(t1), t0 ≤ t ≤ t1.
If F represents the net force acting on the particle, then by Newton’s second law of motion, the
trajectory of the particle is determined by an initial value problem:

F(r(t)) = mr̈(t) , ṙ(t0) = ṙ0 , r(t0) = r0 ,
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where m is the particle’s mass, ṙ0 is its initial velocity, and r0 is the starting point of the trajectory
measured at time t = t0. Now, the net work of F on the particle is

W[F, C] =

ˆ
C

F(r) · dr =

ˆ t1

t0

mr̈(t) · ṙ(t) dt

=

ˆ t1

t0

m

2

d

dt

Ä
ṙ(t) · ṙ(t)

ä
dt

=
m

2
ṙ(t) · ṙ(t)

∣∣∣t1
t0
.

We recognize the result as a difference in kinetic energy values for the particle at the end and
beginning of the its trajectory. Writing vi = ‖ṙ(ti)‖, i = 0, 1 for the initial and final speeds of the
particle, we can express the net work as

W[F, C] =
1

2
mv21 −

1

2
mv20 = ∆K ,

where ∆K is the net change in kinetic energy.
Since F is conservative, we can repeat this calculation using that F(r) = −∇P (r) for a scalar

field P (r) called the potential energy. By the fundamental theorem of line integrals

W[F, C] =

ˆ
C
−∇P (r) · dr = −

Ä
P (r1)− P (r0)

ä
= P (r0)− P (r1) .

Writing ∆P = P (r1)− P (r0), we have that

∆K =W[F, C] = −∆P .

The net change in total energy is ∆E := ∆K+ ∆P , and by the above equality ∆K = −∆P we see
that for F conservative, ∆E = 0, which is the statement of the principle of conservation of energy.

§ 3.6. Path Independence and Corollaries of the Fundamental Theorem

In the final portion of this section, we explore the connections between path independence of
vector fields and the existence of potentials. The following result is a corollary of the fundamental
theorem of line integrals:

Proposition 3.3. Let F : D be a continuous vector field on an open path-connected domain of R2.
Suppose F is independent of path in D. Then F is conservative.

Proof. Fix a point r0 ∈ D, and for any r ∈ D, select a path Cr starting at r0 and ending at r. Let

f(r) =

ˆ
Cr

F · dr .

Since F is path independent throughout D, this is well defined independent of the choice of a path
Cr. We now must show that ∇f(r) = F(r). This detail is left to (7) in the problems below. �

Recall that for a continuously differentiable 2-dimensional conservative vector field F(x, y) =
P (x, y)̂ı +Q(x, y)̂, the component functions P and Q satisfy the partial differential equation

∂Q

∂x
=
∂P

∂y
.

We now explore the conditions under which a converse holds. Namely, we can give a condition on a
domain D of F such that given a continuously differentiable vector field F(x, y) whose components

P (x, y) and Q(x, y) satisfy ∂Q
∂x = ∂P

∂y on D, F will be conservative over D.

First, we need a pair of definitions. The first pertains to curves, and the second to domains. Both
are. topological in nature; they concern properties of curves and domains that are invariant under
continuous deformations, but do not depend on the exact geometric shapes involved.
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Definition. A curve C ⊂ R2 is said to be a simple closed curve if it is a closed curve that admits
no self-intersections. Recall, a closed curve in R2 is one for which there exists a continuous param-
eterization γ : [a, b] → R2 such that γ(a) = γ(b). Equivalently, a continuous closed curve can be
viewed as a map from the circle S1 = {r ∈ R2 : ‖r‖ = 1} to R2, and so a curve is simple if it can
be realized as a continuous embedded image of the circle, meaning that the map from S1 admits a
continuous inverse from its image.

A famous theorem regarding the topology of simple closed curves in the plane bears mentioning:

Theorem 3.2 (The Jordan Curve Theorem). Any simple closed curve C in R2 divides the plane into
two disjoint regions, called the interior of C and the exterior of C. The interior int(C) is a bounded
region of R2 (there exists a disk of sufficiently large radius which covers int(C)) with boundary
∂int(C) = C, while the exterior ext(C) is an unbounded region, with boundary ∂ext(C) = C.

Despite the intuitive nature of this theorem, it is quite difficult to prove, and belongs to the study
of topology. However, we’d like to be able to assume its result in the remainder of our discussion
of domains of R2.

Definition. A connected plane region D ⊆ R2 is said to be simply connected if the interior of every
simple closed curve in D is contained entirely in D. That is, D is simply connected if and only if it
is connected and given any continuous embedding γ : S1 → D, with image C = γ(S1), int(C) ⊂ D.

Example 3.12. By definition, the interior of a simple closed curve in R2 is itself a simply connected
region, and so in particular, any disk is simply connected. On the other hand, a punctured disk, like
{r ∈ R2 : 0 < ‖r‖ < 1} is not simply connected, nor is any annular region {r ∈ R2 : a ≤ ‖r− r0‖ ≤
b}. Simple-connectivity can be colloquially stated as the property that the a connected region is
“free of holes.” Another way to describe it is that any closed curve within a simply connected region
D can be contracted to a single point without tracing through any points not lying within D.

Proposition 3.4. Suppose a continuously differentiable vector field F : D → R2 is defined over a
simply connected region D. Then F(x, y) = P (x, y)̂ı +Q(x, y)̂ is conservative in D if and only if

∂Q

∂x
=
∂P

∂y

holds throughout D.

We will defer the proof of this result to our discussion of Green’s Theorem.
Another interesting application of line integrals of differential forms is that we can use them to

express the area of a closed region as a line integral. Let C be a continuous simple closed curve,
oriented counter-clockwise. C bounds a region D whose area A we wish to express using a line
integral (rather than a double integral).

Select m + 1 points (x0, y0), . . . (xm, ym) spaced around C. Let ∆xj = xj − xj−1 and ∆yj =
yj − yj−1. As one might recall from single variable calculus,

∑m
j=1 yj∆xj and

∑m
j=1 xj∆yj are sums

of signed areas of rectangles bounded by the x and y axes respectively, which can be used to
approximate the area inside C. In particular, you can cut the region D into pieces which are either
Type I or Type II regions, meaning that they are described as areas between curves that are either
locally graphs y = f(x) or x = g(y). As m → ∞, we can ensure that all regions are both type I
and type II, except for a vanishingly small proportion. It follows that each of the integrals˛

C
x dy and

˛
C
−y dx

give the area of the region D. Note the minus sign needed for the second integral: since C has a
counterclockwise orientation, x is decreasing for the “upper” portions of C. By averaging these line
integrals and employing property (i), we arrive at the interesting formula for the area A(D) of the
interior D of the curve C:

A(D) =
1

2

˛
C
x dy − y dx .

One can easily prove this formula using Green’s theorem, to be discussed in section 3.7 below.
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§ 3.7. Green’s Theorem

We can now connect line integrals along closed curves to double integrals over regions bounded
by the curves. First, we give the theorem of Green that connects line integrals along simple closed
curves in domains of R2 to area integrals over the interiors of simple closed curves.

Theorem 3.3 (Green’s Theorem for simply connected regions). Let C ⊂ R2 be a piecewise smooth,
simple closed plane curve oriented counterclockwise. Suppose P (x, y) and Q(x, y) are continuously
differentiable functions on an open set R containing C and such that int(C) ⊂ R. Then˛

C
P (x, y) dx+Q(x, y) dy =

¨
int(C)

∂Q

∂x
− ∂P

∂y
dA .

Before partially proving Green’s theorem, we show two example applications of the theorem.

Example 3.13. Let F(x, y) = 〈sin(πy) − e−x2 , ey2 + cos(πy) + cos(πx/4)〉, and let S be the unit
square [0, 1]× [0, 1] = {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1}. We can use Green’s Theorem to calculate˛

∂S
F · dr =

˛
∂S

Ä
sin(πy)− e−x2

ä
dx+

Ä
ey

2
+ cos(πy) + cos(πx/4)

ä
dy ,

without resorting to computing a difficult collection of line integrals along each of the sides of the
square. Note that the function is continuously differentiable on R2, and so also on S ⊂ R2. Observe
also that

∂Q

∂x
− ∂P

∂y
= −π

4
sin

Å
πx

4

ã
− π cos(πy) .

Thus, applying Green’s theorem:ˆ
∂S

F · dr =

¨
S
−π

4
sin

Å
πx

4

ã
− π cos(πy) dA

=

ˆ 1

0

ˆ 1

0
−π

4
sin

Å
πx

4

ã
− π cos(πy) dy dx

=

ˆ 1

0
−π

4
sin

Å
πx

4

ã
dx

=
π

4
cos

π

4
− π

4
cos 0 =

π(
√

2− 2)

8
.

Example 3.14. We will compute the line integral˛
C

Ä
cos(x2)− 4y3

ä
dx+

Ä»
1 + y3 + 4x3

ä
dy ,

where C is the curve bounding the semi-annular region D = {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 4, y ≥ 0}
illustrated in figure 34.

Figure 34. The semiannular region of integration and oriented boundary curve C.

Observe that C has four pieces, and at least two of them yield particularly difficult integrals if
we use standard parameterizations. However, C bounds a polar rectangle, and

∂Q

∂x
− ∂P

∂y
= 12x2 + 12y2 = 12r2 ,
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so that by Green’s theorem˛
C
(e−x

2 − 4y3) dx+ (
»

1 + y3 + 4x3) dy = 12

¨
D
x2 + y2 dA .

This double integral is simple to evaluate:

12

¨
D
x2 + y2 dA = 12

ˆ π

0

ˆ 2

1
r3 dA

= 12π r
4

4

∣∣∣2
1

= 12π(4− 1
4) = 45π .

To prove Green’s theorem we’ll need the following lemma:

Lemma. Suppose a simply connected region D is bounded by a piecewise smooth curve C. Then
there exists a decomposition of D into finitely many subregions Di with boundaries ∂Di = Ci such
that each Di is expressible as both a type I region and a type II region, and such that˛

C
ω =

∑
i

˛
Ci
ω ,

for any continuous differential form ω defined throughout an open set containing D.

Proof sketch. Orient C counterclockwise. Divide the region D by cutting along any simple curve
K ∈ D connecting a pair of points A and B on C. We can realize C as a piecewise curve: C =
CÐÐ⇀
AB

+ CÐÐ⇀
BA

where CÐÐ⇀
AB

is the piece of C starting at A and terminating at B, while CÐÐ⇀
BA

starts at B

and terminates at A. Orient K so that C1 := CÐÐ⇀
AB

+ K is a counterclockwise simple closed curve.

Let C2 = CÐÐ⇀
AB
− K, and observe this is also counterclockwise oriented. Now, for any continuous

differential form defined on D:˛
C
ω =

ˆ
CÐÐ⇀
AB

+CÐÐ⇀
BA

ω =

ˆ
CÐÐ⇀
AB

ω +

ˆ
CÐÐ⇀
BA

ω +

ˆ
K
ω −
ˆ
K
ω

=

ˆ
CÐÐ⇀
AB

ω +

ˆ
K
ω +

ˆ
CÐÐ⇀
BA

ω +

ˆ
−K

ω

=

˛
CÐÐ⇀
AB

+K
ω +

˛
CÐÐ⇀
BA
−K

ω

=

˛
C1
ω +

˛
C2
ω

This shows that any simply connected region D decomposes into simply connected subregions such
that the line integrals of a form ω over the positively oriented boundaries of the subregions sum to
the line integral over the positively oriented boundary ∂D. It follows that if we cut D into finitely
many regions Di, then ˛

C
ω =

∑
i

˛
Ci
ω ,

for any continuous differential form ω defined throughout D. It remains to show we can perform
the cuts so that all the Di are regions which can be expressed both as type I and type II regions.
Call such a region elementary. Note that rectangles with edges parallel to the x and y coordinate
axes are elementary.

We can show, in a method reminiscent of using Riemann sums to define integrals, that D is
covered and approximated by a region composed of rectangles, and the boundary of this collection of
rectangles is itself an approximation of C = ∂D. At the boundary, replace rectangles Ri which cover
portions of C by Ri ∩D; this at worst alters one or more boundaries of Ri by incorporating points
on the boundary curve and portions of the boundary curve into the boundary of the new, smaller
region. We can choose a sufficiently fine partition of D into subregions such that all such boundary-
adjacent regions are elementary. This last step relies on the assumption that C is piecewise smooth,
and so admits a decomposition into finitely many smooth pieces. That the resulting edge regions
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can be chosen to be elementary requires some deep results from topology involving compactness
and smoothness: each smooth piece of the curve C is compact, and smoothness + compactness17

guarantee that the number of places where tangent lines are either vertical or horizontal is finite,
and these points are therefore isolated. It follows that we can choose a set of cuts to ensure that
each subregion adjacent to the boundary can be chosen to be simple.

�

We will now begin to outline the proof of Green’s Theorem.

Proof. Let D be the closure of the interior of C, i.e. D = C ∪ int(C). With the above lemma, it
now suffices to prove that Green’s theorem holds for elementary regions. Let E be a closed, simply
connected, elementary region with ∂E a piecewise smooth, simple closed curve, and P (x, y), Q(x, y)
continuously differentiable functions over an open set U containing E . Since E is elementary, there
are constants a, b, c, d ∈ R and functions fi : [a, b]→ R, gi : [c, d]→ R2, i = 1, 2, such that

E = {(x, y) ∈ R2 : a ≤ x ≤ b , f1(x) ≤ y ≤ f2(x)} = {(x, y) ∈ R2 : c ≤ y ≤ d , g1(y) ≤ x ≤ g2(y)} .
Then¨

E

∂Q

∂x
− ∂P

∂y
dA =

¨
E

∂Q

∂x
dA−

¨
E

∂P

∂y
dA

=

ˆ d

c

ˆ g2(y)

g1(y)

∂Q

∂x
dx dy −

ˆ b

a

ˆ f2(x)

f1(y)

∂P

∂y
dy dx

=

ˆ d

c
Q
Ä
g2(y), y

ä
−Q
Ä
g1(y), y

ä
dy −

ˆ b

a
P
Ä
x, f2(x)

ä
− P
Ä
x, f1(x)

ä
dx

=

˛
∂E
Q(x, y) dy −

˛
∂E
−P (x, y) dx

=

˛
∂E
P (x, y) dx+Q(x, y) dy ,

where the equalities ˆ d

c
Q
Ä
g2(y), y

ä
−Q
Ä
g1(y), y

ä
dy =

˛
∂E
Q(x, y) dy , and

ˆ b

a
P
Ä
x, f2(x)

ä
− P
Ä
x, f1(x)

ä
dx =

˛
∂E
−P (x, y) dx

follow from the elementary cases handled in (11) in the problems below. �

Note that the integrand ∂Q
∂x −

∂P
∂y of the double integral in Green’s theorem is identically zero

if P (x, y) dx+Q(x, y) dy is the total differential of some scalar function f(x, y). Put another way,
we can rewrite the equation of Green’s theorem for a line integral over a piecewise smooth simple
closed curve C in a continuously differentiable vector field F(r) = P (r)̂ı +Q(r)̂ defined on an open
set containing D := int(C): ˛

C
F · dr =

¨
D

∂Q

∂x
− ∂P

∂y
dA .

If F is conservative, then we know that the left hand side is zero, while the right hand side is
also clearly zero as the integrand vanishes. Since int(C) is simply connected, ∂Q

∂x −
∂P
∂y being zero

throughout would also imply that F was conservative and path independent in D. This gives rise
to the following interpretation when ∂Q

∂x 6=
∂P
∂y : the integrand ∂Q

∂x −
∂P
∂y of the double integral is a

differential that gives a measure of the failure of F(r) = P (r)̂ı + Q(r)̂ to be conservative, since
it is zero throughout a simply connected region if and only if F is conservative. The area integral

17This is essentially a result from Morse Theory (named for Marston Morse), though it is closely related to the
Morse-Sard theorem (named for the unrelated Anthony Morse who proved the 1-dimensional version, and Arthur
Sard who generalized it). The formal statements concern critical points of smooth functions, but the take away is that
for a compact smooth curve r(t) = x(t)̂ı + y(t)̂ neither ẏ/ẋ nor ẋ/ẏ can admit infinitely many zeros or singularities.
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then accumulates this differential over the interior of the curve C, and the result is precisely the
work the field does moving a particle counterclockwise around this curve C! This is reminiscent of
the usual fundamental theorem of calculus: we pass from an integral on the interior of a set to
an integral that produces a value associated to the boundary of the set. The thing we evaluate on
the boundary has to be, in some sense, an anti-derivative of the thing evaluated on the interior.
Perhaps a better perspective is to think that accumulated change of a function along a boundary
of a simply-connected region is related to the accumulated change of a differential of that function
on the interior of the region.

In light of this interpretation as a connection between integrals of vector fields on boundaries
and integrals of a derivative object associated to them on interiors, Green’s theorem is commonly
rewritten as ¨

D

∂Q

∂x
− ∂P

∂y
dA =

˛
∂D

F · dr ,

where D is taken as any simply connected region such that F is continuously differentiable on an
open set containing D, and ∂D is the boundary curve of D.

We can extend Green’s theorem to regions which aren’t simply connected, as long as we ap-
propriately orient boundaries. For example, if a region D has an “inner” boundary and an “outer
boundary”, we should orient the outer boundary counterclockwise, and the inner boundary clock-
wise. If a region is bounded by a closed, possibly disconnected curve which is not simple, then one
can break it up into pieces which are bounded by a collection of simple closed curves. This gives
rise to the general form of Green’s theorem for a bounded plane region D with oriented boundary
∂D =

∑
i Ci, where each Ci is orientated such that points of D lie to the left of a particle following

Ci with its orientation: ¨
D

∂Q

∂x
− ∂P

∂y
dA =

∑
i

˛
Ci
P dx+Qdy .

We can now appeal to Green’s Theorem to sketch a proof of the proposition in the previous
section:

Proposition 3.5. Suppose a continuously differentiable vector field F : D → R2 is defined over a
simply connected region D. Then F(x, y) = P (x, y)̂ı +Q(x, y)̂ is conservative in D if and only if

∂Q

∂x
=
∂P

∂y

holds throughout D.

Proof. Let C be any closed piecewise smooth curve within the region D. Since D is simply con-
nected, C decomposes into a finite collection of simple closed curves Ci bounding simply connected
subregions Di inside D. By Green’s theorem, along any such Ci taken with counter-clockwise ori-
entation: ˛

Ci
P dx+Qdy =

¨
Di

∂Q

∂x
− ∂P

∂y
dA = 0 ,

since ∂Q
∂x = ∂P

∂y throughout D ⊇ Di. It follows that, given appropriate orientations realizing C =∑
i Ci: ˛

C
F · dr =

∑
i

˛
Ci
P dx+Qdy = 0 ,

whence
¸
C F dr = 0 for any closed curve C ⊂ D. But then, considering a pair of arbitrary paths P1

and P2 in D, both emanating from r0 ∈ D and terminating in r1 ∈ D, we have thatˆ
P1

F · dr−
ˆ
P2

F · dr =

˛
P1−P2

F · dr = 0 ,

Since the union of the paths with one taking the opposite orientation is itself a closed curve. This
implies that ˆ

P1

F · dr =

ˆ
P2

F · dr
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But then, since r0, r1, P1 and P2 were all arbitrary, it follows that F is path independent, and thus
conservative, throughout D. �

We now discuss a corollary of Green’s theorem that allows us to compute planar areas via line
integrals.

Corollary. Suppose C is a piecewise smooth closed curve bounding a collection of simply connected
regions Di, i = 1, . . . , k, disjoint except at “corners” where C self-intersects. Let Ai be the area of
the region Di, and Ci = ∂Di, oriented counterclockwise. Writing C =

∑
i=1 εiCi, where εi = +1

if the orientation of Ci agrees with that of C, and −1 otherwise, one can express the signed area
A =

∑k
i=1 εiAi of the regions as

A =

˛
C
x dy =

˛
C
−y dx =

1

2

˛
C
x dy − y dx .

The simplest case of this proposition is when C is a simple closed curve bounding a simply
connected region D, of area A, in which case the geometric (positive) area is recovered by any of
the line integrals above. We prove only this simpler case; the general case follows by subdivision
and repeated applications of Green’s theorem, minding orientations for each region.

Proof. If C = ∂D is a piecewise smooth simple closed curve bounding a simply connected region D.
Then Observe that by Green’s theorem:¨

D
dA =

¨
D

1 dA

=

¨
D

ï
∂

∂x
(x)− 0

ò
dA =

˛
C
x dy

=

¨
D

ï
0− ∂

∂y
(−y)

ò
dA =

˛
C
−y dx

=

¨
D

ï
∂

∂x

Å
x

2

ã
− ∂

∂y

Å
−y

2

ãò
dA =

1

2

˛
C
x dy − y dx .

�

Example 3.15. We’ll compute the area bounded by the ellipse E with equation x2

a2
+ y2

b2
= 1

using a line integral. Observe that one can parameterize this ellipse by r(t) = a cos(t)̂ı + b sin(t)̂,
0 ≤ t ≤ 2π. Then the area A is given by

A =
1

2

˛
E
x dy − y dx

=
1

2

ˆ 2π

0
(a cos t) d(b sin t)− (b sin t) d(a cos t)

=
1

2

ˆ 2π

0

î
ab cos2(t) + ab sin2(t)

ó
dt

=
1

2

ˆ 2π

0
abdt

= πab .
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§ 3.8. Problems

(1) Compute the following line integrals by parametrizing the given curves.

(a) C is the portion of the parabolic graph y = 3x− x2 in the first quadrant,
ˆ
C

(3− 2x)2 + y + 1»
1 + (3− 2x)2

ds .

(b) C is the pair of line segments from (1/4,−1/4) to (1, 1), and from (1, 1) to (−1/2, 1/2),ˆ
C

cos(πx) dx+ sin(πy) dy .

(c) The line integral computing the area of the vertical ribbon above the circle of radius R
centered on the +x-axis that passes through the origin, and below the upper surface
of the cylinder (x−R)2 + z2 = R2.

(d) T is the triangle with vertices (0, 0), (1, 0) and (1, 1), oriented counterclockwise,ˆ
T
yesinx cosx dx+ (esinx − sin y) dy .

(2) For each of the above line integrals in (1), exhibit a vector field so that the integral is
realized as the work by the field on a particle with a trajectory along the given curve.

(3) Determine whether the vector fields discovered in (2) are conservative. If a field is conser-
vative, specify a maximal domain over which that field is conservative and find a potential
function for it, and use this potential to verify the results from problem (1). If a field is not
conservative, show explicitly that no potential can exist.

(4) Prove the proposition on the independence of parameterization of a line integral. Namely,
show that for any differential one-form ω on Rn either of the form F (r) ds or G1(r) dx1 +
. . . + Gn(r) dxn, if γ : I → D and η : J → D are two continuous vector-valued functions
with a common image curve C ⊂ D, traversed exactly once by each parameterization (with
the same orientation, if ω = G1(r) dx1 + . . .+Gn(r) dxn) and if the line integrals of ω over
γ and η both exist, then ˆ

γ
ω =

ˆ
η
ω .

Hint: Appeal to the change of variables theorem for Riemann integrals of a single variable
(i.e., find suitable substitutions) to show how to transform an integral under change of
parameterization.

(5) Prove that scalar line integrals satisfy the properties

(i)

ˆ
C
aω + bψ = a

ˆ
C
ω + b

ˆ
C
ψ,

(ii) if ω = f(r) ds then

ˆ
−C
ω =

ˆ
C
ω,

(iii) if ω = G1(r) dx1 + . . .+Gn(r) dxn, then

ˆ
−C
ω = −

ˆ
C
ω,

(iv)

ˆ
C+C′

ω =

ˆ
C
ω +

ˆ
C′
ω,
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for any differential one-forms ω and ψ on a domain D ⊆ Rn, curves C and C′ in the domain
D, and real constants a and b. As above, −C denotes the same curve as C but with opposite
orientation, and C + C′ denotes the oriented curve which is the union of the oriented curves
C and C′.

(6) Let F(x, y) = −2xy ı̂ + (x2 − y2) ̂, the topological dipole field seen above in example 3.8.
(a) Compute the work done by F on a particle that traverses a full circuit on any of the

circles that are field-lines, by parameterizing to evaluate a line integral.

(b) Recompute the line integral from the previous part using Green’s theorem.

(c) Use Green’s Theorem to recompute and verify the line integral of the example above:˛
T

F(x, y) · T̂ ds = 8 .

where T is the triangle in R2 with vertices A(0, 0), B(
√

3,−1) and C(
√

3, 1) oriented
counterclockwise.

(7) Finish the proof of the proposition:

Proposition. Let F : D be a continuous vector field on an open path-connected domain of
R2. Suppose F is independent of path in D. Then F is conservative.

In particular, for some fixed r0 ∈ D, and for any r ∈ D, select a path Cr starting at r0
and ending at r let

f(r) =

ˆ
Cr

F · dr .

Use that D is an open region to describe a path from r0 to r that allows you to determine

∂f

∂x
(r) ,

and then relate this to ı̂ · F(r) using a parametrization and the fundamental theorem of
calculus. Similarly calculate ∂f/∂y and relate it to ̂ · F(r) to conclude that ∇f(r) = F.

(8) State whether the following are true or false, and provide justification. In particular, either
prove the statements or provide counterexamples.

(a) For a vector field F continuous in a region D ⊆ R2, if
¸
C F · dr = 0 for every piecewise

smooth simple closed curve C in D, then F is conservative in D.

(b) A domain D with piecewise smooth boundary is simply connected if and only if its
boundary is a union of simple closed curves whose interiors are non-intersecting.

(c) If F is conservative in regions D1 and D2, then F is conservative in D1 ∪ D2.

(d) Suppose F is a force field that has the path-independence property in D. If there is a
curve C from r0 to r1 such that F is perpendicular to C at every point along C, then F
does no work in moving a particle from r0 to r1.
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(9) Let F(x, y) =
−y

x2 + y2
ı̂ +

x

x2 + y2
̂.

(a) Let C be the unit circle S1 ⊂ R2, oriented counter-clockwise. Compute˛
C

F · dr

by suitably parametrizing C.

(b) Let D be the unit disk bounded by C. Compute the double integral¨
D

Å
∂F2

∂x
− ∂F1

∂y

ã
dA ,

and compare to the result of part (b). Why does this not contradict Green’s Theorem?

(c) Is F conservative? If so, specify a maximal domain in R2 over which it is conservative
and find a potential function for F if one exists. If F is not conservative, show explicitly
that no potential can exist.

(d) Explain the results of (a) and (b) geometrically by arguing that F · dr = dθ.

(e) Give two proofs, one by Green’s theorem, and one by the fundamental theorem of line
integrals, that for any simple, closed, rectifiable curve C ⊂ R2 − {(0, 0)} not enclosing
the origin, ˛

C
F · dr = 0 .

(10) Let F(x, y) =
x− y√
x2 + y2

ı̂ +
x+ y√
x2 + y2

̂.

(a) Sketch the vector field F over the region 0 < x2 + y2 ≤ 16.

(b) Show F is not conservative.

(c) Let D be the region in the first quadrant bounded by the circles x2 + y2 = 1 and
x2 + y2 = 4 together with the x and y axes. Let C = ∂D be the boundary of D.
Without integrating, use the geometry of F over the region D to compute the work
done by F on a particle completing a counter-clockwise circuit around C.

(d) By parametrizing C, explicitly compute the work

W[F, C] =

˛
C

F · dr

done by F on a particle completing a counter-clockwise circuit around C.

(e) Apply Green’s Theorem to recompute the work W[F, C] as a double integral over D.
(Hint: choose appropriate coordinates, and the integral will become quite simple).

(f) Show that

W[F, C] =

˛
C

dr + r dθ ,

and recompute the work using this line integral, further justifying the calculation of
part (c).
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(11) Prove that for a simply connected type I region

R = {(x, y) ∈ R2 : a ≤ x ≤ b , f1(x) ≤ y ≤ f2(x)}
with boundary a simple closed curve ∂R thatˆ b

a
P
Ä
x, f2(x)

ä
− P
Ä
x, f1(x)

ä
dx =

˛
∂R
−P (x, y) dx .

Is it necessary that ∂R be simple?
Argue similarly that if R is a simply connected type II region

R = {(x, y) ∈ R2 : c ≤ y ≤ d , g1(y) ≤ x ≤ g2(y)}
then ˆ d

c
Q
Ä
g2(y), y

ä
−Q
Ä
g1(y), y

ä
dy =

˛
∂R

Q(x, y) dy .

This completes the proof of Green’s Theorem for elementary regions.

(12) Let u = 〈u1, u2, 0〉 and v = 〈v1, v2, 0〉 be two nonzero vectors in R3 lying in the xy-plane
with their tails placed at the origin. These span a parallelogram with vertices positioned
at 0, u, v, and u + v. The pair (u,v) is right-handed if, when reading the vertices of the
parallelogram off going counterclockwise from 0, the order is 0, u, u + v, v.

Recall that u × v = (u1v2 − u2v1)k̂ has length equal to the area of the parallelogram

spanned by u and v, and points in the +k̂ direction if (u,v, k̂) is right-handed and in the

−k direction (u,v, k̂) is left handed (in which case, (u,v,−k̂) is right-handed).

By regarding u and v as being in R2, use Green’s Theorem to prove the above statement
about u × v by showing that the signed area of the parallelogram is u1v2 − u2v1, with
sign positive if and only if (u,v) is right handed. You may use symmetry to simplify your
integral calculations.
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4. Surface Integrals, Flux, and Fundamental Theorems

§ 4.1. Surface Integrals of Scalar Fields

For a surface S arising as a graph of a differentiable bivariate function z = f(x, y), the area of
the portion of the surface over a region D in the xy plane is given by the double integral

A(S) =

¨
D

dAS =

¨
D

»
1 + (∂z/∂x)2 + (∂z/∂y)2 dAD .

To arrive at such an expression, one can start by approximating a small patch of S above a rectangle
by a small piece of tangent plane. Forming an appropriate Riemann sum and taking the limit, one
arrives at the above expression. One can view this integral expression as a special case of a more
general type of multiple integral, called a surface integral.

Consider a scalar field F (x, y, z) which is defined at every point of a surface S. In physical
applications such a function may represent density, temperature, or a distribution of charges on the
surface S. In any case, it is fruitful to be able to integrate a scalar field over a (usually compact)
surface. To define such an object, one partitions the surface S into small pieces Sij , and within
each piece, chooses a sample point r∗ij = 〈x∗ij , y∗ij , z∗ij〉. Then evaluating a sum of products of the
scalar field F (r) evaluated at sample points r∗ij multiplied by the corresponding areas of the Sij ’s,
one obtains a Riemann sum which in the usual limit as the partition becomes infinitely fine gives
a surface integral ¨

S
F (x, y, z) dAS = lim

m,n→∞

m∑
i=1

n∑
j=1

F (x∗ij , y
∗
ij , z

∗
ij)A(Sij) ,

provided the limit exists. Here A(Sij) represents surface area of the piece Sij , and dAS represents
the differential element of surface area. For a graph surface, as above, we have

dAS =
»

1 + (∂z/∂x)2 + (∂z/∂y)2 dAD ,
where AD is the usual area element dx dy (or dy dx) for the region D of the plane which is the
domain of the function whose graph is S. It is not uncommon for the surface area element to be
denoted dS, though we will use dAS to emphasize that it is an area element on the surface S,
analogous to an area element AD on a piece D of a coordinate plane.

Example 4.1. Compute the surface integral

¨
S
x2y dAS where S is the portion of the plane

2x− 2y + z = 4 above the region of the xy plane where 0 ≤ y ≤ 4− x2.

Solution: Let D = {(x, y) : −2 ≤ x ≤ 2, 0 ≤ y ≤ 4 − x2} be the plane region in the plane z = 0
onto which S projects, and observe that this region is described in as a type I plane region, for
which the order of iterated integration is first with respect to y and then with respect to x. Note
that for the plane 2x− 2y + z = 4

∂z

∂x
= −2 ,

∂z

∂y
= 2 =⇒ dAS =

√
1 + 4 + 4 dy dx = 3 dy dx .

Thus ¨
S
x2y dAS =

¨
D

3x2y dAD = 3

ˆ 2

−2

ˆ 4−x2

0
x2y dy dx

=
3

2

ˆ 2

−2
x2(4− x2)2 dx = 3

ˆ 2

0
16x2 − 8x4 + x6 dx

= 3
[16

3
x3 − 8

5
x5 +

1

7
x7
]2
0

= 3
(27

3
− 28

5
+

27

7

)
=

210

35
=

1024

35
.
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Figure 35. The portion of the plane 2x − 2y + z = 4 above the parabolic region
D = {(x, y) : −2 ≤ x ≤ 2, 0 ≤ y ≤ 4− x2} giving the surface S of example 4.1.

Example 4.2. Let S be the portion of the paraboloid z = 2−x2−y2 above the xy plane. Compute¨
S
x2 + y2 dAS .

Solution: Let D be the disk contained in the xy plane and within the paraboloid z = 2− x2 − y2.
Since

∂z

∂x
= −2x ,

∂z

∂y
= −2y ,

the surface area differential is
dAS =

»
1 + 4x2 + 4y2 dAD .

Using polar coordinates, one has dAD = r dr dθ, and¨
S
x2 + y2 dAS =

¨
D
r2
√

1 + 4r2r dr dθ

=

ˆ 2π

0

ˆ √2
0

r3
√

1 + 4r2 dr dθ

=
2π

8

ˆ √2
0

r2(8r)
√

1 + 4r2 dr dθ

=
π

4

ˆ √2
0

(1 + 4r2)− 1

4

√
1 + 4r2 (8r) dr dθ

=
π

16

ï
2

5
(1 + 4r2)5/2 − 2

3
(1 + 4r2)3/2

ò√2
0

=
π

8

Ç
35

5
− 33

3
− 1

5
+

1

3

å
=

149π

30
.

One can of course consider surface integrals over surfaces which are not graphs. If a surface is
given implicitly or in terms of several pieces, one faces a choice in setting up a surface integral:
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(1) break the surface down into disjoint pieces which are locally graphs given by a choice of
dependent variable as a function with respect to the remaining variables in your preferred
3-dimensional coordinate system, or

(2) parameterize the surface (possibly into multiple, disjoint patches) and for each parameter-
ization σ(u, v), use the expression

dAS = ‖σu(v)× σv(v)‖ dAV ,
derived in problem (24) of the problems in subsection 2.8. Here σ(v) = σ(u, v) is the
parameterization, and V will be the region of the planar v = 〈u, v〉 parameter space over
which one integrates for this parametric patch, so dAV is either dudv or dv du depending
on whether V is a type I or two region. Note that the preceding case of splitting into graphs
is a special case of this general procedure.

Then one adds together any surface integrals over disjoint patches of the surface to compute the
original surface integral over the whole surface.

Example 4.3. To calculate the surface area of a sphere, one could split the sphere up into two
hemispherical patches, and evaluate the corresponding surface integrals for each patch. By symme-
try, one should get the same result on each patch, so one may instead double the surface integral
over one hemisphere. Note this does not work, e.g., if one intends to double the integral

˜
U z dAU

over the upper hemisphere U to compute the surface integral
˜
S z dAS , because the coordinate

function z is not completely symmetric over the sphere (it is “antisymmetric” with respect to re-
flection in the equatorial circle where z = 0!) Alternatively, one could use a parameterization arising
from a choice of spherical coordinates. For example, one could use the mathematician’s standard
spherical coordinates, and write

σ(u, v) = 〈a cos(u) cos(v), a sin(u) cos(v), a sin(v)〉

to parameterize the sphere % =
√
x2 + y2 + z2 = a for a choice of a positive constant a. Then a

quick calculation gives

dAS = ‖σu(v)× σv(v)‖ dAV = a2 sin v dudv .

We thus find that the surface area of a radius R sphere is¨
S

dAS =

ˆ 2π

0

ˆ π

0
a2 sin v dudv = 4πa2 .

For the surface integral
˜
U z dAU over the upper hemisphere, one obtains
¨
S
z dAS =

ˆ 2π

0

ˆ π/2

0
a3 sin v cos v dudv =

π

2
a3 ,

while over the whole sphere the result is 0 by the aforementioned anti-symmetry.

Example 4.4. Let S be the radius 1
√

2 cylinder centered on the z axis, of height
√

2, capped off
with pieces of the unit sphere at each end. Consider the problem of computing¨

S

dAS√
r2 + z2

.

Along the spherical caps, r2+z2 = 1, so the integral would simply become the surface area
˜
S dAS .

Since the cylinder meets the sphere at heights z = ±1
√

2, the surface area integral of a single cap,
let’s call it S2, may be calculated as¨

S2
dAS2 =

ˆ 2π

0

ˆ π/4

0
sin v dv du = (2−

√
2)π ,

whence the two spherical caps contribute (4−2
√

2)π to the surface integral. Now, for the cylindrical
piece S1, one can use the parameterization

σ(u, v) = 〈(1/
√

2) cosu, (1/
√

2) sinu, v〉 , 0 ≤ u ≤ 2π,−1
√

2 ≤ v ≤ 1
√

2 .
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This leads to ¨
S2

dAS2 =

ˆ 1
√
2

−1/
√
2

ˆ 2π

0

(1/
√

2) dudv»
1/2 + v2

,

where we’ve used that the surface area element is

‖σu(v)× σv(v)‖ dAV = ‖〈−(1/
√

2) sinu, (1/
√

2) cosu, 0〉 × 〈0, 0, 1〉‖ dudv = (1/
√

2) dudv .

The final surface integral may be completed using the trigonometric substitution
√

2v = tan t:¨
S2

dAS2 =

ˆ 1
√
2

−1/
√
2

ˆ 2π

0

dudv√
1 + 2v2

= 2π

ˆ π/4

−π/4

1√
2

sec t dt = 4π ln(1 +
√

2) .

Thus ¨
S

dAS√
r2 + z2

=
Ä
4− 2

√
2 + 4 ln(1 +

√
2)
ä
π .

§ 4.2. Flux

The word flux derives from fluxus, which is a Latin noun meaning “flow.” For now we will describe
only the scalar flux of a field F through either a curve or surface, which is defined by integrating
the scalar component of F perpendicular to the curve or surface, relative to a chosen normal field.

Planar Flux. We consider first flux in two dimensions, as it pertains to the net flow of a planar
vector field F through a curve C.

Definition. Let F be a vector field defined on a planar domain D ⊆ R2. Let C be an oriented curve
in D which has a well defined co-oriented tangent vector field along it, except possibly at finitely
many disjoint points (consider for example piecewise smooth curve, which is regular at all points

except the joints between pieces). Let N̂s be the signed unit normal field to C obtained by rotating

co-oriented unit tangent vectors T̂ by π/2 radians counter-clockwise. Then the flux of the vector
field F through the oriented curve C is

F [F, C] :=

ˆ
C

F · N̂s ds .

Observe that F [F,−C] = −F [F, C], since reversing the tangent vector reverses N̂s. This line
integral thus measures the net flow across the curve C, with flow counted as positive if it is along
the chosen normal field relative to the orientation. For closed curves, note that one normal field will
point “inward”, and the other will point “outward”. Our convention for orientations of a closed curve
C is that we take counterclockwise orientation to be positive, and the resulting signed normal field
is an inward normal field. Thus, for simple closed curves C with positive orientation, flux measures
how much F flows into the region bounded by C. This is contrary to the usual flux desired in
physics applications, but only in that it defers by a sign from the outward flux. However, if one
wishes to measure the flux out of a region bounded by a non-simple closed curve, then choosing
normal vectors in this fashion is disastrous, as illustrated by figure 36.
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Figure 36. A lemniscate curve and the signed normal vector field determined by
the orientation of the lemniscate.

Thus, we establish a separate convention for flux out of a region:

Definition. Let D be a bounded region (not necessarily simply connected), and C = ∂D the
boundary curve(s) of D, and suppose that a well defined normal direction exists at all but finitely
many disjoint points along C. Let n̂ denote the outward unit normal field to D, defined by ensuring
that a path with velocity n̂(r) at any point r along C is exiting D. Then for a vector field F defined
on an open set containing D, we define the net flux of F out of D to be

F [F,D] :=

ˆ
C

F · n̂ ds .

Figure 37. A lemniscate curve and its outward normal vector field. Observe the
ambiguity in defining normals at the self-crossing. Since this ambiguity only occurs
at an isolated point, it is still possible to use the illustrated normals to compute
outward flux via line integration for this lemniscate.

Note that the formula appears nearly identical, but the convention about how n̂ is defined yields
a definition of flux that behaves very differently from the initial definition when handling multiply
connected regions or regions with non-simple boundaries. In particular, reversing the curve C has no
effect on the value of flux out of a region. Since counterclockwise is the common positive orientation,
it is sensible to choose the flux line differential n̂ ds = dy ı̂− dx ̂ in circumstances when one wants
the flux out of a simply connected region. More generally, if n̂ is a choice of a preferred normal field
along C, we can define the flux relative to our chosen normal:

F [F, C, n̂] =

ˆ
C

F · n̂ ds

One should compare the definition of flux to the definition of work of F along C:

W[F, C] :=

ˆ
C

F(r) · T̂ ds =

ˆ
C

F(r) · dr .

If we write F(x, y) = P (x, y) ı̂ +Q(x, y) ̂ and take n̂ ds = dy ı̂− dx ̂ then

F [F, C] =

ˆ
C
P (x, y) dy −Q(x, y) dx ,
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while for work one has

W[F, C] =

ˆ
C
P (x, y) dx+Q(x, y) dy .

We will later compare these two scalar measures of a field’s behavior along and across C by
applying Green’s Theorem to flux.

Example 4.5. Let C be the portion of the parabola y = 1 − x2 above the x axis, traversed from
(−1, 0) to (1, 0), and let F(x, y) = xy ı̂ + (1 + y)̂. Compute the flux

F [F, C] =

ˆ
C

F · N̂s ds .

Figure 38. The curve C given by the parameterization r(x) = x̂ı + (1 − x2) ̂
(orange), together with the vector field F(x, y) = xy ı̂ + (1 + y)̂ and some if its
stream lines.

Solution: We first parameterize C, in this case using x as the parameter:

C : r(x) = x̂ı + (1− x2) ̂ , −1 ≤ x ≤ 1 ,

r′(x) = ı̂− 2x̂ =⇒ T̂(x) =
ı̂− 2x ̂√
1 + 4x2

.

One can view the xy-plane as the plane z = 0 in R3 to calculate the signed normal as N̂s = k̂× T̂,
but this just has the effect of swapping the ı̂ and ̂ components of T̂, and negating the ı̂ component
(equivalently, one can multiply T̂ by the matrix whose first and second columns are the vectors
obtained by rotating ı̂ and ̂ by π/2 clockwise, respectively). Thus

N̂s(x) =
2x ı̂ + ̂√
1 + 4x2

.
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Now, since ds = ‖r′(x)‖dx =
√

1 + 4x2 dx, we get N̂s(x) ds = (2x ı̂ + ̂) dx, whence

F [F, C] =

ˆ
C

F · N̂s ds

=

ˆ 1

−1

Ä
x(1− x2) ı̂ +

Ä
1 + (1− x2)

ä
̂
ä
· (2x ı̂ + ̂) dx

=

ˆ 1

−1
2x2(1− x2)− x2 + 2 dx =

ˆ 1

−1
x2 − 2x4 + 2 dx

=
2

3
− 4

5
+ 4 =

58

15
.

Example 4.6. Recall the field in example 3.9, F(x, y) = (x − y)̂ı + (y − x)̂, for which the work
around the unit circle was calculated. The flux of this field out of the unit disk D, through its
boundary is

F [F,D] =

ˆ
S1

F · n̂ ds = 2π ,

as can be easily verified parametrically. In this case geometric insight allows quick computation of
both work and flux. Indeed, since F = rûr(θ) + rûθ(θ) when expressed in polar coordinates, it is

seen to restrict to n̂ + T̂ along S1 where n̂ is the unit outward normal and T̂ is the unit tangent
vector for clockwise motion. Thus

W[F, S1] =

ˆ
S1

F · T̂ ds =

ˆ
S1

(n̂ + T̂) · T̂ ds =

ˆ
S1

T̂ · T̂ ds =

ˆ
S1

ds = s(S1) ,

F [F,D] =

ˆ
S1

F · n̂ ds =

ˆ
S1

(n̂ + T̂) · n̂ ds =

ˆ
S1

n̂ · n̂ ds =

ˆ
S1

ds = s(S1) .

Flux through surfaces. We now move on to describe flux of a 3 dimensional vector field across
a surface. Let S be a surface in R3 such that there is a well defined tangent plane at all points of
S, except possibly a finite collection of disjoint points and piecewise smooth curves. At any regular
point we can choose a unit normal vector perpendicular to the tangent plane, and locally we can
choose normals in a fashion as to construct a normal vector field. Recall, as in section 2.6, we say a
surface is oriented if there is a consistent global choice of such a normal vector field. We adopt the
following conventions regarding orientations and normals:

• If S is a closed surface (meaning it bounds a compact region E ⊂ R3) then a positively
oriented normal vector field on S is the outward normal vector field, meaning that any
curve crossing S whose velocity at a point of S is given by the normal vector there is
exiting the region E .
• If the surface is a graph z = f(x, y) not giving a facet of a closed surface, we take the

positive unit normal at a regular point
Ä
x, y, f(x, y)

ä
to be the unit normal vector n̂ such

that n̂ · k̂ > 0. Similarly, if the surface is a graph y = g(x, z) not giving a facet of a closed

surface, we take the positive unit normal at a regular point
Ä
x, g(x, z), z

ä
to be the unit

normal vector n̂ such that n̂ · ̂ > 0, and if the surface is a graph x = h(y, z) not giving a

facet of a closed surface, we take the positive unit normal at a regular point
Ä
h(y, z), y, z

ä
to be the unit normal vector n̂ such that n̂ · ı̂ > 0.
• If S is non-orientable, we can make no choice of positively oriented normal, but we can

associate a normal line to every regular point.

Definition. Let S be an oriented surface in R3, and let F be a vector field defined on an open
set of R3 containing S. Let n̂ be a positively oriented unit normal vector field to S. Then the flux
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of F through the surface S is the surface integral of the scalar component of F along the positive
normal direction to S:

F [F,S] :=

¨
S

F · n̂ dAS .

Observe that in the non-orientable case though we cannot choose a consistent positive normal
allowing us to define the scalar flux as an integral

˜
S F · n̂ dAS , there does exist a unique choice

of normal line at each point of the surface, and one can project a vector field onto the normal
directions using any locally defined normal vector field N, and so one can still define and compute a
vector valued flux through, e.g., a Möbius band by integrating such projections over the surface. One
can also address only how much flows across the surface without regard to direction, and integrate
the lengths of such projections onto normal lines, obtaining a strictly nonnegative scalar flux for a
non-orientable surface, which we may call a gross flux. These notions are, strictly speaking, useless
quantities, but many a useless mathematical calculation can be performed for sheer joy. However,
our examples will henceforth focus on orientable surfaces, though you may try problem (??) below
to explore flux for non-orientable surfaces.

Example 4.7. Let S be the portion of the plane 6x+ 2y + 3z = 6 in the first octant, oriented via
the “upward” normal (ie., the normals with k̂ component positive). Compute the flux of the vector

field F(x, y, z) = ẑı + x̂− yk̂ through S.
Solution: Since S is a portion of a plane, it is simple to read off an upward normal vector from
the coefficients in the given linear equation. Normalizing we get

n̂ = 6
7 ı̂ + 2

7 ̂ + 3
7 k̂ .

Note that we can solve for z in terms of x and y, and rewrite F restricted to S as a function of just
x and y, and thus the integral we wish to compute is

F [F,S] =

¨
S

¨
2− 2x− 2

3y, x,−y
∂
·
¨
6
7 ,

2
7 ,

3
7

∂
dAS .

Our domain of integration in the xy plane is bounded by the x and y axes and the line y = 3− 3x
where S meets the plane z = 0. Treating D as a type I region, the surface area element is

dAS =
»

1 + (∂z/∂x)2 + (∂z/∂y)2 dy dx = 7
3 dy dy .

Thus the flux is

F [F,S] =

ˆ 1

0

ˆ 3−3x

0

¨
2− 2x− 2

3y, x,−y
∂
·
¨
6
7 ,

2
7 ,

3
7

∂
7
3 dy dx

=

ˆ 1

0

ˆ 3−3x

0
4− 10

3 x−
5
3y dy dx

=

ˆ 1

0
4(3− 3x)− 10

3 x(3− 3x)− 5
6(3− 3x)2 dx

= 12x− 6x2 − 5x2 + 10
3 x

3 + 5
2(1− x)3

∣∣∣∣1
0

=
11

6

Notice that it is no coincidence that in the preceding example oriented the surface area element
could be written as

n̂ dAS =
¨
6
7 ,

2
7 ,

3
7

∂
7
3 dAD =

¨
2, 23 , 1

∂
dy dx .

Indeed, if S a graph of a function z = f(x, y) over a region D in the xy plane, we have a preferred
positive normal vector

n̂ =
−fx(x, y) ı̂− fy(x, y) ̂ + k̂»
1 + [fx(x, y)]2 + [fy(x, y)]2

,
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whence the flux through such a graph surface becomes

F [F,S] =

¨
D

F(x, y, z) ·

Ñ
−fx(x, y) ı̂− fy(x, y) ̂ + k̂»
1 + [fx(x, y)]2 + [fy(x, y)]2

é»
1 + [fx(x, y)]2 + [fy(x, y)]2 dAD

=

¨
D
−P (x, y, f(x, y))fx(x, y)−Q(x, y, f(x, y))fy(x, y) +R(x, y, f(x, y)) dAD ,

where F(x, y, z) = P (x, y, z) ı̂ + Q(x, y, z) ̂ + R(x, y, z) k̂. Similar formulae emerge for surfaces
defined as graphs using x or y as dependent variables.

Example 4.8. Compute the flux of the spherically radial field F(x, y, z) = %û% = x̂ı + ŷ + zk̂
through the portion of the paraboloid 4x+ y2 + z2 = 4 where x ≥ 0.
Solution: Let S be the surface with the given equation, and note that we can rewrite the equation
as

x = 1− 1

4
(y2 + z2) .

The normal vector can be calculated as a function of y and z via

n̂(y, z) =
ı̂− ∂x

∂y ̂− ∂x
∂z k̂»

1 + (∂x/∂y)2 + (∂x/∂z)2
=

ı̂ + (y/2) ̂ + (z/2) k̂»
1 + y2/4 + z2/4

=
2̂ı + y ̂ + z k̂√

4 + y2 + z2
.

The surface area element is dAS =
»

1 + y2/4 + z2/4 dy dz = 1
2

√
4 + y2 + z2 dy dz. Let D be the

disk of radius 2 in the yz plane centered at (0, 0, 0). The surface integral we wish to compute is
then given by the integral¨

S
F · n̂ dAS =

¨
D

Ç
(1− (y2 + z2)/4)̂ı + ŷ + zk̂

å
· 2̂ı + y ̂ + z k̂√

4 + y2 + z2

√
4 + y2 + z2

2
dy dz

=

ˆ 2

−2

ˆ √4−z2
−
√
4−z2

1 + 1
4(y2 + z2) dy dz .

Given the bounds, this integral is certainly better suited to being computed using polar coordinates.
We can adapt polar coordinates to the yz plane by setting y = u cos v and z = u sin v, for u a radial
parameter and v an angular parameter. Then u2 = y2 + z2, and dy dz = udu dv, andˆ 2

−2

ˆ √4−z2
−
√
4−z2

1 + 1
4(y2 + z2) dy dz =

ˆ 2π

0

ˆ 2

0
u+ u3

4 dudv .

This integral works out straightforwardly to 6π, whence¨
S

(x̂ı + ŷ + zk̂) · n̂ dAS = 6π .

Example 4.9. Compute the surface integral¨
S

F · n̂ dAS

where S is a closed circular cylinder of radius 2 and height 4 centered at (0, 0, 0), and

F(x, y, z) = 〈x2 − y2, 2xy, z2 − x2 − y2〉 .
Solution: Since S is a closed cylinder we can use cylindrical coordinates. We have to compute
the flux through the top, bottom, and side. Let S1 denote the top of the cylinder, S2 denote the
bottom, and S3 denote the side. Then¨

S
F · n̂ dAS =

¨
S1

F · n̂ dAS1 +

¨
S2

F · n̂ dAS2 +

¨
S3

F · n̂ dAS3 .

For the top S1 note that the outward normal is n̂ = k̂ and

F(x, y, z) · n̂ = z2 − x2 − y2 = z2 − r2 ,
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Figure 39. The field F(r, θ, z) = r2ûr(2θ) + (z2 − r2)k̂ and the origin centered
cylinder S.

and along S1 this restricts to F(x, y, 2) · n̂ = (2)2 − r2 = 4 − r2. Since S1 is planar and parallel
to the xy plane the area element expressed in cylindrical coordinates is just the usual polar area
element dAS = r dr dθ. Thus¨

S1
F · n̂ dAS1 =

ˆ 2π

0

ˆ 2

0
4r − r3 dr dθ = 8π .

Similarly along the bottom S2, we have outward normal n̂ = −k̂ and F(x, y,−2) · n̂ = r2 − 4, and
so ¨

S2
F · n̂ dAS2 = −

¨
S1

F · n̂ dAS1 = −8π ,

whence the net flux, if nonzero, is determined solely by the flux through the cylinder’s side S3.

For S3, the outward unit normal is the polar radial unit vector ûr(θ) = x̂ı+ŷ
r = cos(θ) ı̂+sin(θ) ̂.

Since F was given in cartesian coordinates, it is straightforward to calculate F · ûr using the
Cartesian variables and then to convert:

F(x, y, z) · ûr = (x2 − y2)x
r

+ (2xy)
y

r

=
x3

r
− xy2

r
+

2xy2

r
=
x3 + xy2

r

=
xr2

r
= x r

= r2 cos θ .

Alternatively, one can express F in terms of cylindrical coordinates by observing that

x2 − y2 = r2 cos2(θ)− r2 sin2(θ) = r2 cos(2θ) ,

2xy = r2 sin(θ) cos(θ) = r2 sin(2θ) ,

z2 − x2 − y2 = z2 − r2 ,
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Figure 40. Some integral curves of F(r, θ, z) = r2 cos(2θ)ûr + (z2 − r2)k̂.

whence

F(r, θ, z) = r2 cos(2θ)ûr + (z2 − r2)k̂ .
Then taking n̂ = ûr(θ), note that

F(r, θ, z) · n̂(θ) =
Ä
r2 cos(2θ)ûr + (z2 − r2)k̂

ä
· ûr(θ)

= r2ûr(2θ) · ûr(θ)
= r2 cos(2θ − θ) = r2 cos(θ) ,

where we’ve used that the dot product of two unit vectors is merely the cosine of the angle between
them. Now, the surface area element is r dθ dz = 2 dθ dz since the cylinder has radius r = 2. Thus
the flux is ¨

S
F · n̂ dAS =

¨
S3

F · n̂ dAS3 =

ˆ 2

−2

ˆ 2π

0
8 cos θ dθ dz = 0 .

That the flux is zero means that as much of the field flows into the cylinder as flows out, as may
be partially understood visually; see figures 39 and 40.

§ 4.3. The Gradient, Divergence, and Curl Operators Via Limits*

We will modify our understandings of flux and circulation in order to construct limit definitions
of the three most important differential operators in vector calculus: the gradient, the curl, and the
divergence.

This optional section could certainly benefit from some pictures. The good news is that if you’ve
built up sufficient background by working through and understanding the preceding sections of
these notes, taking the time to absorb the visual information that previous figures convey, then you
are well equipped to draw your own pictures moving forward! As you read through about gradient,
curl, and divergence, it is strongly encouraged that you sketch simple visualizations and work out
the details of using these limit definitions in polar, cylindrical, or spherical coordinates.
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The Gradient via vector flux.
We will motivate ourselves with an example application. Let T (x, y) be a function defined on a

region D of the plane, representing the temperature of a plate or lamina at a moment in time. Let k
be a constant representing the thermal conductivity of the plate. Heat energy flows from regions of
high temperature to lower temperature, and the more thermally conductive the medium, the more
efficiently heat is transported or diffused to the lower temperature regions. This heat diffusion
phenomenon is modeled by a partial differential equation called the heat equation. However at the
moment we are only interested in the direction heat will flow, given the temperature distribution
at this moment. We thus define the heat flux density to be

q(x, y) := −k∇T (x, y) .

Assume now that E is a subregion of the plate. Integrating the components of heat flux density
in the outward normal direction to the boundary of E gives us the (scalar) outward heat flux of the
subregion E :

F [q, E ] =

˛
∂E

q · n̂ ds =

˛
∂E
−k∇T · n̂ ds .

The heat flux density q, being a vector valued quantity given by a gradient, can be thought of as
a vector form of flux. It is alternately definable by considering the limiting value of a temperature-
weighted “average” of normal vectors leaving a shrinking region:

q(r0) := lim
A(E)→0

1

A(E)

˛
∂E
−kT (r) n̂(r) ds ,

where the limit is taken over smooth simply connected subregions E bounded by simple closed
curves ∂E and with r0 interior to every E in the sequence, A(E) is the area bounded inside ∂E , and
n̂(r) is an outward unit normal to E at the position r on ∂E .

An intuition for this definition is as follows: at any position r along a curve C, we first associate
a normal vector whose length is determined by the temperature T (r), and then we rescale all such
normals by −k. Note that near warmer portions of the curve C the vectors T (r)n̂(r) are longer,
and so upon rescaling and integrating along the curve C, the warmer directions dominate, so the
resulting “average flux vector” points from the warmer regions towards the colder regions. As we
shrink the curves and take the limit, this limiting average captures the direction along which heat
flows most rapidly, which is the heat flux density at the point r0.

We can similarly define heat flux density q in 3 dimensions in terms of the gradient of tempera-
ture, and in terms of a limit of vector valued flux:

q(r0) = −k∇T (x0, y0, z0) = lim
V(S)→0

1

V(S)

‹
S
−kT (r) n̂(r) dAS ,

where the limit on the right is taken over a family of orientable closed smooth surfaces S shrinking
to the point r0, and nr is an outward unit normal field to S. For these definitions of heat flux
density to agree, the gradient must be given by such a limit.

Theorem. Given a differentiable bivariate function f(r) = f(x, y) defined on a region D ⊆ R2,
the gradient ∇f(r) is the unique vector field in D determined point-wise at any r0 ∈ D by the limit

∇f(r0) = lim
A(C)→0

1

A(C)

˛
C
f(r) n̂(r) ds ,

where the limit is taken over a continuum of smooth simple closed curves C in D each bounding
a region around the position r0 and shrinking to the point at position r0, A(C) is the area of the
region bounded by C, and n̂(r) is an outward unit normal to C at the position r on C.

Given a differentiable trivariate function f(r) = f(x, y, z) on a domain D ⊆ R3, the gradient
∇f(r) is the unique vector field in D determined point-wise at any r0 ∈ D by the limit

∇f(r0) = lim
V(S)→0

1

V(S)

‹
S
f(r) n̂(r) dAS ,
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where the limit is taken over a continuum of orientable closed smoothly embedded surfaces S bound-
ing solid regions of volume V(S) containing r0 and shrinking to the point r0, and nr is an outward
unit normal field to S.

Any battle-hardened mathematician would point out that we should address well-definedness,
for it is not immediately clear that the above limits exist independent of any choices made in
selecting families of curves or surfaces shrinking to a desired point. Correctly addressing such
a question requires tools of analysis and topology, and some subtle argumentation. Nonetheless,
there is utility in these coordinate free definitions, for they provide a means of obtaining coordinate
expressions in new coordinate systems, without the fuss and tedium of the approach discussed in
§1.4* which required copious applications of the chain rule and linear algebra.

Example 4.10. We can apply this idea to arrive at the two dimensional formula for the gradient in
rectangular coordinates, appealing to our definition and the assumption that the resulting operator
is independent of the choice of curves over which the limit is taken. Let f(x, y) be a differentiable
function on an open disk around a point (x0, y0), and consider the problem of determining∇f(x0, y0)
via the limit construction of the gradient. Since we are working in rectangular coordinates, we choose
for C a small square of area h2 centered at (x0, y0), the corners of which areÅ

x0 +
h

2
, y0 +

h

2

ã
,

Å
x0 −

h

2
, y0 +

h

2

ã
,

Å
x0 −

h

2
, y0 −

h

2

ã
, and

Å
x0 +

h

2
, y0 −

h

2

ã
.

Along the bottom edge, the outward unit normal is constantly n̂ = −̂, while along the top edge
the unit normal is constantly n̂ = ̂. Meanwhile, for the left edge of the square the unit normal is
the constant vector n̂ = −̂ı, whereas on the right edge the unit normal is n̂ = ı̂. Label the edges
C1, C2, C3, and C4 going counterclockwise starting from the bottom edge. Each line integral may be
approximated by evaluating f(x, y) at the midpoint of the corresponding edge, and multiplying by
the length of the edge. Grouping by horizontal and vertical normals:

1

h2

ˆ
C
f(x, y) n̂ ds =

ı̂

h2

ˆ
C2+C4

f(x, y) ds+
̂

h2

ˆ
C1+C3

f(x, y) ds

≈ ı̂

h2

(
f
(
x0 + h

2 , y0
)
h− f

(
x0 − h

2 , y0
)
h
)

+
̂

h2

(
f
(
x0, y0 + h

2

)
h− f

(
x0, y0 − h

2

)
h
)

=
f
(
x0 + h

2 , y0
)
− f

(
x0 − h

2 , y0
)

h
ı̂ +

f
(
x0, y0 + h

2

)
− f

(
x0, y0 − h

2

)
h

̂ .

In the limit as h shrinks to 0, the difference quotients in the approximation converge to the partial
derivatives of f(x, y) at (x0, y0). This may not be an immediately convincing argument, for one
could reasonably protest “why should a single midpoint times arc length generate an approximation
of the line integral that holds in the limit?” By the mean value theorem for integrals, along any
given edge E of the square, 1/h2

´
E f(x, y) ds is equal to f(x1, y1) for some (x1, y1) ∈ E . In the

limit as h approaches 0, the point (x1, y1) must converge to the midpoint, and so too must the
value of f(x1, y1) by continuity, and so if the overall limit exists, it must be true that the midpoint
approximations become arbitrarily accurate in the limit.
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We thus conclude that

∇f(x0, y0) = lim
A(C)→0

1

A(C)

˛
C
f(r) n̂(r) ds

= lim
h→0

ı̂

h2

ˆ
C2+C4

f(x, y) ds+
̂

h2

ˆ
C1+C3

f(x, y) ds

= lim
h→0

f
(
x0 + h

2 , y0
)
− f

(
x0 − h

2 , y0
)

h
ı̂ +

f
(
x0, y0 + h

2

)
− f

(
x0, y0 − h

2 )

h
̂

=
∂f

∂x
(x0, y0) ı̂ +

∂f

∂y
(x0, y0) ̂ .

See the problems below to develop formulae for the gradient in other coordinate systems by a
similar procedure.

Curl via limiting circulation.
Before we address three dimensional curl, we return to the plane and re-examine Green’s theorem,

which allows us to compute the work

W[F, C] =

˛
C

F(r) · dr =

˛
C
P (x, y) dx+Q(x, y) dy

around a simple closed curve bounding a simply connected region D around and over which F is
C1 by instead computing a double integral¨

D

∂Q

∂x
− ∂P

∂y
dA .

One interpretation of this is that the circulation of F around C = ∂D is given as the area of D times
the average value of ∂Q

∂x −
∂P
∂y in D. In particular, circulation vanishes when Qx − Py = 0, and for

D simply connected, this is enough to conclude path independence in D and hence to show that F
is conservative. We then begin to suspect that the quantity Qx−Py, which measures the failure of
F to be conservative, may also measure a kind of local circulation. Indeed, we can argue using the
mean value theorem for integrals thatÅ

∂Q

∂x
− ∂P

∂y

ã
(r0) = lim

A(D)→0

1

A(D)

¨
D

∂Q

∂x
− ∂P

∂y
dA ,

where the regions D shrink around the point r0, like in the limiting construction of the gradient.
Then by Green’s theorem, we conclude that in fact Qx − Py measures “infinitesimal circulation”,
since

lim
A(D)→0

1

A(D)

¨
D

∂Q

∂x
− ∂P

∂y
dA = lim

A(D)→0

1

A(D)

˛
∂D

F(r) · dr .

This motivates us to call this quantity Qx(r0)− Py(r0) the planar curl of F:

Theorem. The planar curl of a C1(D,R2) vector field F is the scalar field curl F(r) determined
point-wise at any r0 in the domain D of F by

curl F(r0) = lim
A(C)→0

1

A(C)

˛
C

F(r) · dr ,

where the limit is taken over a continuum of smooth simple closed curves C in D each bounding a
simply connected subregion of D around the position r0 and shrinking to the point at position r0,
and A(C) is the area of the region bounded by C. If the expression of F in the rectangular frame is
F(r) = P (r) ı̂ +Q(r)̂ then as a consequence of Green’s theorem the planar curl is given by

curl F(r0) =

Å
∂Q

∂x
− ∂P

∂y

ã
(r0) .

106



11/14/19 Multivariate Calculus: Vector Calculus Havens

We now recall how the curl was defined for 3 dimensional vector fields:

Definition. The curl of a vector field F : D → R3 expressed in the rectangular frame as F(r) =

P (r) ı̂ +Q(r) ̂ +R(r) k̂ is the vector field whose rectangular coordinate expression is

curl(F) := ∇× F = (∂yR− ∂zQ)̂ı + (∂zP − ∂xR)̂ + (∂xQ− ∂yP )k̂

We will prefer the notation ∇× F for the 3 dimensional curl. Note that each component of the
rectangular expression for ∇× F appears as a planar curl relative to the coordinate plane normal
to the respective frame vector. This suggests the following:

Theorem. Let n̂ be any unit vector, and let Πn̂,r0 be the plane through r0 normal to n̂. Then the
curl of a C1(D,R3) vector field is the unique vector field ∇ × F(r) such that for any n̂ and any
point r0 ∈ U an open subset of D,

n̂ ·
Ä
∇× F(r0)

ä
= lim
A(C)→0

1

A(C)

˛
C

F(r) · dr ,

where the limit is taken over a continuum of smooth simple closed curves C in the plane Πn̂,r0 each
bounding a simply connected subregion of Πn̂,r0 around the position r0 and shrinking to the point
at position r0, and A(C) is the area of the region bounded by C.

See the problems below to explore the use of this formalism to obtain expression for the three
dimensional curl operator in cylindrical and spherical coordinates.

We can try to connect the idea of curl as a limit of circulation to the theory of integration in
three dimensions. For a moment, let us regard Green’s Theorem as applying to a vector field defined
not just in the plane, but in an open set of R3 that contains D. You may recognize that ∂Q

∂x −
∂P
∂y

is the k̂-component of the curl of such an F. If we rewrite Green’s theorem with this in mind, we
get the following equation:˛

∂D
F · dr =

¨
D

(∇× F) · k̂ dA =

¨
D

(∇× F) · n dSA ,

or

W[F, ∂D] = F [∇× F,D] .

That is, we get an equality relating work of a vector field F along a closed curve C = ∂D to the
flux of the curl of F on a surface bounded by C, in the special case where the surface is just a
simply-connected region in the xy-plane. We may wonder if this is more generally true, namely,
will it still hold if we use a different “capping surface” for C, or if C is a piecewise smooth simple
closed space curve not confined to a plane.

It turns out that such a generalization does exist: the Stokes-Kelvin theorem explored in §4.4.

Divergence via limiting Flux per unit area.
We analogously will arrive at an interpretation of planar divergence as “infinitesimal flux” by

considering the limiting value of flux out of a shrinking simply connected region around a point
r0 in a planar C1 field. We will generalize this idea to three dimensions, which leads us naturally
towards the divergence theorem discussed in §4.5.

Recall that the planar flux of a 2-dimensional vector field F out of D is given by finding a
unit outward normal field n̂ to ∂D and then integrating the scalar component of F in this normal
direction around the boundary:

F [F,D] :=

ˆ
∂D

F · n̂ ds .

Writing F(x, y) = P (x, y) ı̂+Q(x, y) ̂ and using the expression n̂ ds = dy ı̂− dx ̂ the flux becomes

F [F,D] =

ˆ
∂D
P (x, y) dy −Q(x, y) dx .
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Applying Green’s theorem to this expression we conclude

F [F,D] =

ˆ
∂D

F · n̂ ds =

¨
D

∂P

∂x
+
∂Q

∂y
dA .

In particular, by arguing about averages as we did for the planar curl we deduce

Theorem. The planar divergence of a C1(D,R2) vector field F is the scalar field div F(r) deter-
mined point-wise at any r0 in the domain D of F by

div F(r0) = lim
A(C)→0

1

A(C)

˛
C

F(r) · n̂ ds ,

where the limit is taken over a continuum of smooth simple closed curves C in D each bounding a
simply connected subregion of D around the position r0 and shrinking to the point at position r0,
and A(C) is the area of the region bounded by C. If the expression of F in the rectangular frame is
F(r) = P (r) ı̂ +Q(r)̂ then as a consequence of Green’s theorem the planar divergence is given by

div F(r0) = ∇ · F(r0) =

Å
∂P

∂x
+
∂Q

∂y

ã
(r0) .

Generalizing this idea to surfaces seems straightforward: we could choose to define the 3-dimensional
divergence operator as the differential operator that produces the uniquely determined scalar field
which is obtained point-wise as the limiting value of flux through a family of closed surfaces shrink-
ing to a position r0:

Definition. The divergence div F = ∇ · F of a C1(D,R3) vector field is the unique scalar field
determined point-wise by at any r0 ∈ D by the limit

div F(r0) := lim
V(S)→0

1

V(S)

‹
S

F(r) · n̂(r) dAS ,

where the limit is taken over a continuum of orientable closed smoothly embedded surfaces S
bounding solid regions of volume V(S) containing r0 and shrinking to the point r0, and nr is an
outward unit normal field to S.

Note that the planar statement of Green’s theorem applied to flux has the form¨
D
∇ · F dA =

ˆ
∂D

F · n̂ ds ,

and we may expect a similar result of the form˚
E
∇ · F dV =

¨
∂E

F · n̂ dA∂E .

Indeed this is the divergence theorem discussed in §4.5.

§ 4.4. The Stokes-Kelvin Theorem

We now arrive at another generalization of the fundamental theorem of calculus, which relates
line integrals to surface integrals, work to flux and curl, boundaries to interiors.

Theorem 4.1 (Stokes-Kelvin Theorem). Let F be a continuously differentiable vector field on an
open domain D in R3. For a given a piecewise smooth simple closed curve C bounding at least one
simply connected orientable surface S in D, orient C and S so that S is “to the left” as one traverses
C. Then the circulation of F on C equals the flux of the curl through S:ˆ

C
F · dr =

¨
S
∇× F · n̂ dAS .
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The surface S is often called a capping surface for C. Thus, in words the theorem states “the
work of a vector field on a particle moving along a simple loop is equal to the flux of the curl of
that vector field through any co-oriented capping surface, provided the vector field is continuously
differentiable in an open set containing the surface and its boundary loop.” Here, the co-orientation
of S and C amounts to requiring that the normal vector field n̂ for S is chosen so that, if viewing C
from the tip of such a normal vector, it appears that C is traversed counter-clockwise. One often then
calls the curve C positively oriented with respect to the orientation of the surface S. A topologist
would say that the curve C has the induced orientation; observe that reversing the orientation of S
reverses the orientation of C which is considered positive.

Example 4.11. We will verify the Stokes-Kelvin theorem in the case of the line integral

˛
T

(z − y) dx+ (x− z) dy + (x− y) dz

where T is the loop of the edges of the triangle in R3 with vertices (3, 0, 0), (0, 3, 0), and (0, 0, 3),
oriented so that the vertices are encountered in the order listed (see figure 41).

Figure 41. The curve T and the planar surface capping it, S.

To compute the line integral directly by parameterization, one first must parameterize each edge
of the triangle. Let T decompose as the edges T1 in the xy-plane, T2 in the yz-plane, and T3 in the
xz-plane, and let r1(t), r2(t) and r3(t) be parameterizations of these edges given by

r1(t) = (3− 3t) ı̂ + 3t ̂ , r1(t) = (3− 3t) ̂ + 3t k̂ , and r3(t) = 3t ̂ + (3− 3t) k̂ ,

where 0 ≤ t ≤ 1 for each parameterization.
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Then˛
T

(z − y) dx+ (x− z) dy + (x− y) dz =

˛
T1

(z − y) dx+ (x− z) dy + (x− y) dz

+

˛
T2

(z − y) dx+ (x− z) dy + (x− y) dz

+

˛
T3

(z − y) dx+ (x− z) dy + (x− y) dz

=

ˆ 1

0
−3t d(3− 3t) + (3− 3t) d(3t) + (3− 6t) d(0)

+

ˆ 1

0
3td(0)− 3t d(3− 3t)− (3− 3t) d(3t)

+

ˆ 1

0
(3− 3t) d(3t) + (6t− 3) d(0) + 3t d(3− 3t)

=

ˆ 1

0
9 dt = 9.

On the other hand, we could have avoided the pain of writing down these parameterizations
and setting up three separate integrals for the price of making the following observations before
computing a simple double integral:

• T bounds a triangular surface S which is a portion of the plane x + y + z = 3 in the first
octant, with unit normal n̂ = 1√

3
(̂ı+ ̂+ k̂), and surface area element dAS =

√
3 dAD where

D = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3− x},
• The desired line integral can be written as

˛
T =∂S

F · dr for the vector field F = (z − y) ı̂ +

(x− z) ̂ + (x− y) k̂, which has curl

∇× F =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂x ∂y ∂z
z − y x− z y − z

∣∣∣∣∣∣∣ = 2(̂ı + ̂ + k̂) .

The Stokes-Kelvin theorem then allows us to calculate the line integral as follows:˛
T

(z − y) dx+ (x− z) dy + (x− y) dz =

˛
F · dr =

¨
S
∇× F · n̂ dAS

=

¨
D

2(̂ı + ̂ + k̂) · 1√
3
(̂ı + ̂ + k̂)

√
3 dAD

=

ˆ 3

0

ˆ 3−x

0
2 dy dx

= 2A(D) = 9 ,

in agreement with our other calculation.

Of course, the choice of a valid capping surface meeting the conditions of the Stokes-Kelvin
theorem does not affect the resulting value of the double integral. Our next example shows that
one can turn a potentially difficult surface integral of curl into an easier one by switching capping
surfaces:

Example 4.12. We compute the flux of the curl field ∇× (yẑı− xz̂ + xyk̂) = 2x̂ı− 2zk̂ through
the portion S of the cone z = 1−

√
x2 + y2 above the plane z = 0, oriented with the upward unit

normal. This unit upward normal to the cone is given by

n̂ =
x̂ı + ŷ +

√
x2 + y2 k̂»

2(x2 + y2)
,

110



11/14/19 Multivariate Calculus: Vector Calculus Havens

as one can readily check using the formula

n̂ =
−fx(x, y) ı̂− fy(x, y) ̂ + k̂»
1 + [fx(x, y)]2 + [fy(x, y)]2

.

The surface area element works out to
√

2 dAD, where D is the unit disk in the xy-plane centered
at the origin. Thus

¨
S

Ä
2x̂ı− 2zk̂

ä
· n̂ dAS =

¨
D

Ä
2x̂ı− 2zk̂

ä
·

Ñ
x̂ı + ŷ +

√
x2 + y2 k̂»

2(x2 + y2)

é
√

2 dAD

=

¨
D

2x2√
x2 + y2

− 2(1−
»
x2 + y2) dAD .

On the other hand, we know from the Stokes-Kelvin theorem that¨
S
∇× (yẑı− xz̂ + xyk̂) · n̂ dAS =

˛
C
(yẑı− xz̂ + xyk̂) · dr =

¨
D

(2x̂ı− 2zk̂) · k̂ dAD ,

since the unit disk is itself a capping circle of the unit circle C, which gives the boundary of S. But
of course, z = 0 on the disk, whence¨

S
∇× (yẑı− xz̂ + xyk̂) · n̂ dAS =

¨
D

0 dAD = 0 .

Computing the original surface integral over the cone is a bit more work. Indeed, to directly verify
that the surface integral over the cone is zero, we switch to polar coordinates:

¨
S

Ä
2x̂ı− 2zk̂

ä
· n̂ dAS =

ˆ 2π

0

ˆ 1

0

(2r2 cos2 θ

r
− 2 + 2r

)
r dr dθ

=

ˆ 2π

0

ˆ 1

0
2r2 cos2 θ − 2r + 2r2 dr dθ

=

ˆ 2π

0

2

3
r3(1 + cos2 θ)− r2

∣∣∣1
0

dθ

=

ˆ 2π

0

2

3
cos2 θ − 1

3
dθ

=

ˆ 2π

0

2

3

Ç
1 + cos(2θ)

2

å
− 1

3
dθ

=

ˆ 2π

0

1

3
cos(2θ) dθ = 0 .

To put this theorem in context with the fundamental theorems encountered so far, we briefly
discuss the parallels between those fundamental theorems encountered in single variable calculus,
the fundamental theorem of line integrals, and Green’s theorem.

Consider the problem of computing the flux of some vector field G through an oriented surface
S with co-oriented boundary ∂S. If there exists a vector field F such that G = ∇×F, then we can
calculate the surface integral by¨

S
(∇× F) · n̂ dAS =

˛
∂S

F · T̂ ds .

Many texts think of n̂ dAS as an oriented surface area element, and T̂ ds as an oriented line element,
and write both in vector notation:

dr = T̂ ds , dA = n̂ dAS ,
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and write the equality of Stokes-Kelvin theorem as¨
S

(∇× F) · dA =

˛
∂S

F · dr .

This parallels the fundamental theorems encountered thus far as follows: on the left we have an
integral over a space (in this case a surface), with an associated oriented differential element, and
on the right we evaluate an integral on the boundary of the original space, again using an oriented
differential element, and with integrand given in terms of an “antiderivative” of the left-hand
integrand. In particular, the relation between the integrand on the left and the right is one of anti-
differentiation in the sense of finding a vector potential F realizing G as the curl of F, or viewed
the other way, a relation of partial differentiation, turning F into its curl G. But the essence is
common to all such fundamental theorems of calculus: if one integrates a field over a space, then
one equivalently can accumulate data about an antiderivative on the boundary of the space, and
if one integrates a form on a closed boundary of some space, one obtains the same information as
an integral of a differential of that form over the interior. The divergence theorem also follows this
pattern, though the differential appears different from the curl. In truth, they can be unified as a
common differential if we change how we think about integrals and vector fields. But that is the
topic of the modern theory of differential forms and integrals on manifolds.

§ 4.5. The Divergence Theorem

The divergence theorem relates the flux of a vector field F through a closed surface S to the
divergence of the vector field F on region bounded inside the surface S.

Theorem 4.2 (The Divergence Theorem). Let F be a continuously differentiable vector field on an
open domain D which contains a simply connected solid region E which is bounded by a piecewise
smooth, orientable closed surface S. Let n̂ be the outward unit normal vector field to S. Then the
flux of F through S is equal to the integral of the divergence of F over the solid region E:‹

S
F · n̂ dAS =

˚
E
∇ · F dV .

As with the Stokes-Kelvin theorem, this theorem can be phrased in terms of boundaries and
interiors, differentiation and anti-differentiation. The Divergence theorem in words states the flux
of a vector field through an oriented piecewise smooth closed surface is equal to the integral of
divergence over the volume the surface encloses, provided the divergence is of that vector field is
continuous over a neighborhood enveloping the surface and the solid region interior to it. One may
write the equality of theorem in the form

˚
E
∇ · F dV =

‹
∂E

F · dA ,

where as in our discussion of Stokes-Kelvin, dA = n̂ dAS is the oriented surface area element, in
this case positively oriented relative to the interior of the region E (hence n̂ is an outward normal).

Example 4.13. We compute the flux of the vector field F(x, y, z) = 〈x2 − y, y2 − x, z2 − x2 − y2〉
through the tetrahedral surface T given as the boundary of the region E in the first octant below
the plane x+ y+ z = 1. Computing the flux directly would be slightly horrendous, given that there
are four triangular faces over which we need to compute surface integrals. Instead, we compute

∇ · F = 2x+ 2y + 2z ,

and by the divergence theorem‹
S

F · n̂ dAS =

˚
E
∇ · F dV =

˚
E

2x+ 2y + 2z dV .
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This triple integral may be evaluated readily:˚
E

2x+ 2y + 2z dV =

ˆ 1

0

ˆ 1−x

0

ˆ 1−x−y

0
2x+ 2y + 2z dz dy dx

=

ˆ 1

0

ˆ 1−x

0

î
2(x+ y)z + z2

ó1−x−y
0

dy dx

=

ˆ 1

0

ˆ 1−x

0
2(x+ y)(1− x− y) + (1− x− y)2 dy dx

=

ˆ 1

0

ˆ 1−x

0
2(x+ y + 1− x− y)(1− x− y) dy dx

=

ˆ 1

0

ˆ 1−x

0
2− 2x− 2y dy dx

=

ˆ 1

0

î
(2− 2x)y − y2

ó1−x
0

dy dx

=

ˆ 1

0
(x− 1)2 dx

=

ˆ 1

0
x2 − 2x+ 1 dx

=
1

3
.
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§ 4.6. Problems

(1) Compute the following scalar surface integrals:

(a)

¨
S

dAS
1 + 4x2 + 4y2

, where the surface S is the portion of the paraboloid z = 1−x2−y2

above the plane z = 0,

(b)

¨
S
x2 + y2 dAS where S is the sphere x2 + y2 + z2 = R2 for any constant R > 0,

(c)

¨
S
xyz dAS where S is still the sphere x2 + y2 + z2 = R2 for any constant R > 0,

(d)

¨
Q
x+ y + z dAS where Q = [0, 1]3 is the unit cube with vertices 0, ı̂, ̂, k̂, ı̂+ ̂, ı̂+ k̂,

̂ + k̂, and ı̂ + ̂ + k̂.

(2) Compute the following planar fluxes using parametric descriptions of the curves. Where
possible, appeal to the Green’s form of the divergence theorem and verify the equality of
the outward flux through closed curves with the double integral of divergence over the region
interior to the curve.
(a) The flux of the radial field r out of the unit square,

(b) The flux of the vector field F = x̂ı+2xŷ out of the circle with equation (x−1)2+y2 = 1,

(c) The flux F [F, C] :=
´
C F · N̂s ds where F = (x3 − 3xy2) ı̂ + (y3 − 3x2y) ̂, and C is the

lemniscate (x2 + y2)2 = x2 − y2,
(d) The flux of F = (x3 − 3xy2) ı̂ + (y3 − 3x2y) ̂ out of the region bounded by the lemnis-

cate (x2 + y2)2 = x2 − y2.

(3) Compute the following flux surface integrals directly. Where possible verify the divergence
theorem by checking equality of the surface integral and the relevant triple integral of
divergence.
(a) The flux of the field F = xz2̂ı + yx2̂ + zy2k̂ out of the region bounded by the upper

hemisphere of a radius a sphere together with the radius a disk in the plane z = 0,

(b) The flux of F = re−r·r out of the unit sphere,

(c) The flux of the field (2x− 1)̂ı + (2y − 1)̂ + (2z − 1)k̂ through the unit cube [0, 1]3,

(d) the flux integral
˜
S F · dA where F = x2̂ı + y2̂ + z2k̂ and S is the surface bounding

the region

{(x, y, z) : x2 + y2 + z2 ≤ 4, 1 ≤ x2 + y2} .

(4) Derive coordinate expressions for 3D Gradient, Divergence and Curl using the integral
definitions in each of the following coordinate systems: (a) rectangular, (b) cylindrical, and
(c) spherical.

(5) Calculate the following line integrals. Where possible, by selecting appropriate parameteri-
zations or capping surfaces, verify the conclusion of the Stokes-Kelvin theorem.
(a) The work of F = ẑı− ŷ+xk̂ along the curve of intersection of the plane x+y−2z = 0

and the cylinder x2 + y2 = 2,

(b)

˛
C
xz2 dx+ yx2 dy + zy2 dz where C is the square with vertices (1, 1, 1), (−1, 1, 1),

(−1, 1,−1) and (1, 1,−1) traversed in the order listed,

(c)

˛
C

F · r where F = zŷı + xz̂ + xyk̂ and C is the curve consisting of the portion of the

helix r(t) = cos t̂ı + sin t̂ + tk̂ with −π ≤ t ≤ π together with the line segment from
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r(π) to r(−π). Verify with Stokes-Kelvin using the surface σ(u, v) =
Ä
u(1 + cos v) −

1
ä

ı̂ + u sin v ̂ + vk̂, 0 ≤ u ≤ 1, −π ≤ v ≤ π.

(6) Let 0 < a < b be constants, and recall that one may parameterize a torus by

r(u, v) =
Ä
a cos(u)+b

ä
ûr(v)+a sin(u) k̂ =

Ä
a cos(u)+b

ä
cos(v) ı̂+

Ä
a cos(u)+b

ä
sin(v) ̂+a sin(u) k̂ .

(a) By constructing an appropriate vector field expressed in cylindrical coordinates, which
restricts to a normal field along the torus, calculate the surface area of the torus via a
triple integral over the region enclosed by the torus.

(b) Similarly, use a surface integral to calculate the volume enclosed by the torus.

(c) Construct coordinates and a frame for R3 well defined on the complement of the z-axis
and the circle r = b, z = 0, such every point r not on either the z-axis or the circle
r = b, z = 0 lies on a unique torus, and the frame vectors at such a position r consist
of two tangent vectors to the torus containing r and an outward normal to the torus
at r.

(d) Use your choice of methods to calculate expressions for the gradient, divergence, and
curl operators with respect to these toroidal coordinates on R3.

(e) Repeat the surface area and volume calculations in parts (a) and (b) using the expres-
sions found in part (c).

(7) Recall that the vector projection operator proju(v) = v·u
u·uu = (v · û)û is in fact independent

of the length of u, and depends only on the line `u = {tu : t ∈ R} which u spans. Given
a surface S, let `ν(r) denote the normal line through the point with position r on S, and
for any vector v and point r on S, write projν(r)(v) for the projection of v onto the line

`ν(r). Then define the vector valued net flux of a vector field F through a surface S to be
the vector-valued surface integral¨

S
projν(r)F(r) dAS ,

provided the necessary limiting vector exists. Similarly, define gross scalar flux to be¨
S
‖projν(r)F(r)‖ dAS .

(a) Show by explicit examples justified through computation that for an orientable surface
S it is possible for the vector valued net flux to be non-zero while the usual scalar
flux is zero, and that for a different vector field with the same surface S the vector
valued net flux may be zero while the scalar flux may be nonzero. What must hold
(geometrically) about a particular vector field and surface pair for the gross scalar flux
to be zero?

(b) Argue that the notions of vector valued net flux and gross flux are well defined for a
non-orientable surface, meaning that the results are independent of any choices in local
patches and normal vectors used in the process of computation.

(c) Set up integrals to compute the vector valued net flux and the gross flux of the constant

vector field k̂ through the Möbius band given in example 2.29. Use a computer system
and a preferred numerical method to approximate these integrals. Are the results what
you might expect by symmetry considerations?

The above problem is unique (in that it is not inspired by problems I’ve seen or found any-
where else), and uniquely useless to most engineering, computer science, and other STEM
majors.
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(8) Let F be a C1(D,R3) vector field on some domain D and suppose C1 and C2 are two simple
closed curves in D which do not intersect each other. Show that if there exists a smooth
oriented surface S whose boundary consists of these two curves, and such that ∇× F = 0
at every point along S then ˛

C1
F · dr =

˛
C2

F · dr .

(9) Let f and g be scalar fields on a domain D ⊆ R3 which are continuously differentiable to
the second order, and suppose the surface S bounds a region E where S and E satisfy the
hypotheses of the divergence theorem. Show the following:

(a)

˚
E
f∇2g dV =

‹
S
f∇g · n̂ dAS −

˚
E
∇f · ∇g dV,

(b)

˚
E
f∇2g − g∇2f dV =

‹
S

(f∇g − g∇f) · n̂ dAS ,

These are known as Green’s first and second formulae respectively. He also has a third
formula; you should look it up and try to prove it!
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between k̂ and û%. Since these competing angles are complementary, to recover the more
common coordinate convention, merely swap sinϕ and cosϕ in the coordinate expressions. 19
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17 The spherical frame element û% as a vector field on R3 − {0}. 39
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20 The vector field H(x, y) = ı̂ + xŷ has divergence ∇ · H(x, y) = x. The background
color indicates the magnitude of the scalar field ∇ ·H(x, y) = x, with warmer colors
corresponding to larger values. Note that for x < 0, the field tends to have more net flow
“inwards” in any given neighborhood, while for x > 0 the field tends to have more net flow
“outwards” from any given neighborhood. 42
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