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Fix a prime p, a number field K, and a finite set S of places of K
none of which has residue characteristic p. Fix an algebraic closure K
of K and let KS be the maximal p-extension of K inside K which is
unramified outside S; it is the compositum of all finite p-power degree
extensions of K unramified outside S. We assume that real places of
K not contained in S do not complexify in the extension KS/K. Put
GK,S = Gal(KS/K) for its (pro-p) Galois group. Very little is known
about this “tame arithmetic fundamental group.” Before Shafarevich’s
pioneering work [Sh], a few examples where it was possible to determine
GK,S explicitly (and show that it was finite), were known, and it was in
fact generally believed that all such GK,S are finite. That this is not so
was first demonstrated in [GS] by Golod and Shafarevich.

As was noted by Artin and Shafarevich, the mere existence of infinite
GK,S (with S finite) has an arithmetic application to the estimation of
discriminants because the discriminants of successive fields in a tamely
and finitely ramified tower grow as slowly as possible. For a more detailed
discussion of this topic (and the analogy with curves over finite fields
with many rational points) see, for example, [HM1] and the references
therein.
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Infinite GK,S satisfy a number of interesting group-theoretic properties
(stemming from class field theory) which we will discuss below, but little
attention was focussed on the group-theoretical structure of these infinite
groups in the decades following their discovery. In the 1990s, through an
important and influential work of Fontaine and Mazur [FM] on p-adic
Galois representations, to this list of properties was added a conjectural
one. This development is concurrent with a revitalization of the study
of tame arithmetic fundamental groups.

In this brief survey, I sketch two recent contributions to this subject,
the first, due to Khare, Larsen, and Ramakrishna concerning the case
where S is infinite, and the second, due to Boston, suggesting a purely
group-theoretical approach to the Fontaine-Mazur conjecture. I would
like to thank all of these researchers for making preprints of their work
available; it should be clear that the present article is merely a summary
of some of their beautiful ideas. I am grateful to R. Ramkrishna and
N. Boston for helpful remarks on earlier drafts of this article. Finally, I
would like to thank Y. Aubry, G. Lachaud and M. Tsfasman (the orga-
nizers of AGCT-9), as well as the staff of CIRM at Luminy, for making
possible a wonderful conference and inviting me to it.

1. The Tame Fontaine-Mazur Conjecture

The main thrust of attempts over the last forty years to understand
the absolute Galois group Gal(Q/Q) has rested on its action on p-adic
vector spaces arising from étale cohomology groups attached to geomet-
ric/analytic objects (varieties/modular forms) defined over number fields,
and especially on the identification of cases where the geometric and
modular ones coincide. Tremendous progress in this direction has been
achieved recently, the developments leading to and resulting from the
proof of Fermat’s Problem comprising the most striking examples. The
p-adic Galois representations arising via étale cohomology have long been
suspected (and are now known [Ts]) to share two unique features, one
local, the other global. The local one is that at primes dividing p, the re-
striction to the decomposition group satisfies a technical condition called
potential semi-stability [F]. The global condition, namely that repre-
sentations arising from geometry are unramified outside a finite set of
primes S, is more easily grasped and has been known practically from
the beginning of the subject. More precisely, outside the primes dividing



TAME PRO-p GALOIS GROUPS: A SURVEY OF RECENT WORK 3

pN where N is the conductor (level) of the variety (modular form), the
geometric p-adic representations are always unramified.

A fairly recent conjecture of Fontaine and Mazur [FM, Conj. 1] asserts
that this local/global pair of properties in fact characterize representa-
tions arising from étale cohomology.

Conjecture 1.1 (Fontaine-Mazur). — Suppose ρ : Gal(K/K) →
GLn(Qp) is a continuous irreducible representation which satisfies

i) for every K-prime p of residue characteristic p, the restriction of ρ
to a decomposition group at p is potentially semi-stable,

ii) ρ is unramified outside a finite set S of primes of K.

Then ρ is (Tate-twist of) a subquotient of the action of Gal(K/K) on
the étale cohomology of some smooth projective variety over K.

The study of this conjecture, indeed of the entire subject of p-adic Ga-
lois representations, is governed by a “tame-wild dichotomy.” In particu-
lar, the state of our knowledge and available tools and examples are quite
rich (poor) depending on whether the set S where the representation is
ramified contains (wild case) or does not contain (tame case) places of
residue characteristic p. This is so largely because representations arising
from étale cohomology are typically wild; for recent advances regarding
Conjecture 1.1 “on the wild side,” see Taylor [T] and Kisin [Ki] (as well
as the corresponding “Featured” Math Reviews).

Since tame representations are automatically potentially semi-stable
(by a theorem of Grothendieck [ST, Appendix]), a consequence of the
Fontaine-Mazur conjecture (when we assume some standard conjectures
in algebraic geometry – see Kisin-Wortmann [KW] for more details) is
the following (cf. [FM, Conj. 5a]).

Conjecture 1.2 (Tame Fontaine-Mazur). — If ρ is a p-adic repre-
sentation of Gal(K/K) unramified outside S where

i) S contains no primes dividing p, and
ii) S is finite,

then the image of ρ is finite.

Some preliminary evidence for Conjecture 1.2 exists (Boston [B1], Ha-
jir [H1], Wingberg [W]). In Section 3, we will describe a new purely
group-theoretical approach to this conjecture for K = Q due to Boston.
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2. A result of Khare, Larsen, and Ramakrishna

One-dimensional p-adic representation with finite image are well-
understood, thanks to class field theory; the study of those with infinite
image, which is essentially the study of Zp-extensions, was pioneered by
Iwasawa in the 1960’s. One knows, for example, that a Zp-extension, is
unramified at primes of residue characteristic different from p; moreover,
since Zp is abelian, a Zp-extension cannot be everywhere unramified (by
the finiteness of the class number). Thus, condition i) cannot be dropped
from Conjecture 1.2, and moreover condition ii) holds automatically for
1-dimensional representations.

Fontaine and Mazur ask in [FM, p. 44] whether condition ii) of Conjec-
ture 1.1 holds automatically for every semi-simple n-dimensional p-adic
representation. The answer to this question for n = 2 was shown to be
negative by Ramakrishna [R1]. In that paper he also constructed, under
GRH, an irreducible 2-dimensional representation ramified at infinitely
many primes but potentially semistable at p. In [KR], Khare and Ra-
makrishna gave such a construction unconditionally; in so doing, they
showed that the two conditions i) and ii) in Conjecture 1.1 are indepen-
dent. We should mention also that in [KR], Khare and Rajan showed
that the set of primes ramified in a semi-simple representation is always
of density 0.

The next natural question along the same lines is whether condition
ii) in Conjecture 1.2 is necessary. We say a representation is deeply
ramified at a prime if it does not vanish on any of the corresponding
higher ramification groups of finite index (in the upper numbering, say).
The question on the necessity of condition ii) in Conjecture 1.2 can be
rephrased as follows.

Question 2.1. — Is there a p-adic representation ramified at infinitely
many primes of a number field K but not deeply ramified at p?

In a recent preprint, Khare, Larsen, and Ramakrishna [KLR] give a
positive answer to the above question, at least for n = 2, p ≥ 7. I hasten
to point out that this is but one small application of their striking main
theorem, an existence theorem for 2-dimensional p-adic representations,
which under mild hypotheses, allows one to fix the characteristic polyno-
mial of Frobenius at a density 1 set of primes, at the cost of introducing
ramification at an infinite (density 0) set of primes. For more details, the
reader is referred to the preprint [KLR].
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Theorem 2.2 (Khare-Larsen-Ramakrishna). — Suppose ρ :
Gal(Q/Q) → SL2(Z/pZ) is a surjective residual representation un-
ramified at p ≥ 7. Then there exists a surjective characteristic 0 lift

ρ : Gal(Q/Q) → SL2(Zp) of ρ such that, letting K = Qker ρ ⊂ L = Qker ρ

be the fields cut out by ρ and ρ respectively, there are infinitely many
K-primes which ramify tamely in L/K whereas all the K-primes of
residue characteristic p split completely in L/K.

One interpretation of this theorem is that Conjectures 1.1 and 1.2 are
“taut,” you can drop neither the local condition i) nor the global one
ii). Let us put it another way: The Fontaine-Mazur Conjecture does not
reduce in a simple way to a local problem.

In an attempt to flesh out a little the meaning of the above, admittedly
vague, statement, let us recall a theorem of Sen [S]. Suppose F is a finite
extension of Qp and E/F is a totally ramified infinite extension with p-
adic Lie Galois group Gal(E/F ). Then E/F is deeply ramified, i.e. the
filtration of Gal(E/F ) by (upper-numbering) higher ramification groups
does not stop after finitely many steps; when this is not so, we call
the ramification “shallow.” In particular, tame ramification is always
shallow.

Now, suppose the answer to Question 2.1 were negative. Then, Con-
jecture 1.2 would have reduced to the following problem (a global version
of Sen’s Theorem): Suppose K is a number field, and L/K is an infinite
extension with p-adic Lie Galois group. Show that for some prime P of L
of residue characteristic p, the local extension LP/Kp is deeply ramified.
The Khare-Larsen-Ramakrishna Theorem shows that to the hypotheses
of this problem, one must add that L/K is ramified at only a finite set of
primes. Exactly how this global (tame) property would force deep (wild)
ramification is not at all clear.

Let us approach the above discussion on a slightly different tack, from
which one may catch a glimpse of a pheonomenon possibly responsible for
the global-local interaction at play. The root discriminant of a number
field is defined to be the nth root of the absolute value of its discriminant,
where n is the degree of the number field. Let K be a number field and L
an infinite extension of it. We say L/K is asymptotically good if there is
no infinite sequence of distinct intermediate subfields of L/K with root
discriminant tending to infinity, otherwise we call L/K asymptotically
bad.
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If L/K is ramified at infinitely many primes (“horizontally infinitely
ramified”), then it is asymptotically bad. Similarly, if L/K is deeply ram-
ified at some prime (“vertically infinitely ramified”), then it is asymptot-
ically bad also. On the other hand, if the ramification is horizontally and
vertically finite, then the extension is asymptotically good; for a precise
bound, see [HM2, Theorem 4.2]. Since a shallow p-adic representation
is potentially tame (essentially by Sen’s theorem, see [HM2, §7]), we
obtain an alternate description of Conjecture 1.2.

Theorem 2.3 (Hajir-Maire [HM2]). — The Tame Fontaine-Mazur
Conjecture holds if and only if infinite p-adic Lie extensions of number
fields are always asymptotically bad.

Given a number field K and a p-adic Galois representation ρ of
Gal(K/K) with infinite image, the Tame Fontaine-Mazur Conjecture
asserts that ρ is either vertically or horizontally infinitely ramified. The
above Theorem unifies these two notions of “infinitely ramified” under
one umbrella: that of the rate of growth of the root discriminant. This
reinterpretation suggests that it might prove profitable to study the
problem analytically via the zeta and L-functions whose functional equa-
tions capture subtle information about the growth of root discriminants
in the tower cut out by ρ.

3. Boston’s experiment

Throughout this section, we assume S is finite and contains no primes
of residue characteristic p. Then GK,S is a finitely generated profinite
group. To see this, recall that by the Burnside Basis Theorem, the min-
imal number of generators of a pro-p group G is the same as that of its
maximal abelian quotient Gab. By class field theory, Gab

K,S is canonically
isomorphic to the p-Sylow subgroup of the ray class group of K mod-
ulo PS :=

∏
p∈S p, hence finite. Moreover, if H is an open (equivalently

finite-index) subgroup of GK,S, and K ′ = KH
S is its corresponding fixed

field, then H = GK′,S′ where S ′ is the set of places of K ′ lying over
those in S (since KS = K ′S′). Thus, GK,S satisfies the property Boston
calls fifa (“Finite Index → Finite Abelianization”), which is also called
fab elsewhere in the literature: every subgroup of finite index has finite
abelianization.
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In a remarkable computer experiment, Boston [B2] has determined for
the first time, albeit conjecturally, a family of examples of infinite GK,S

admitting an explicit presentation in terms of generators and relations.
Prior to his work, the information available on infinite tame fundamental
groups was always fragmentary and circumstantial. To my knowledge,
no one had even written down a guess for what a single specific such
group might be.

As discussed earlier, by contrast, the study of p-adic Galois represen-
tations ramified at primes of residue characteristic p, many of which arise
from algebraic geometry and modular forms, has been at the forefront
of the advance of knowledge in algebaric number theory. Boston’s work,
therefore, has the potential of opening a vista in a part of the subject
where the standard methods are predicted (by the Fontaine-Mazur Con-
jecture) to play a minor role. As such, it is a psychological as well as
scientific breaktrough, in the sense that it renders tangible certain ob-
jects that in all previous experience had seemed visible only hazily and
from a remote distance. This is especially so, as the glimpses provided by
Boston’s experiment point the way to connections with a circle of ideas
where exciting new developments are taking place, namely quantum field
theory, multi-zeta values, and the fundamental group of P1 − {0, 1,∞}.

3.1. Boston’s experiment begins by restricting attention to the simplest
base field, namely Q, and taking stock of all group-theoretical facts that
we know about tame GQ,S with S finite. We have already mentioned
that it has property fifa. By localizing at the ramifying primes, and
using the fact that the ring of integers of our base has finite unit group
{±1}, one can show that GQ,S has p-deficiency 0, meaning it has a pro-p
presentation with d generators and d relations, where S = {∞, p1, . . . , pd}
consists of d distinct finite primes as well as the archimedean prime ∞
(which we include for convenience if p = 2). The triviality of the unit
group modulo torsion as well as that of the class group make this a
most favorable situation since we know, in a sense, where all the global
relations originate. Namely we have one global relation coming from the
local relation at each ramified prime. What these global relations exactly
are we do not know (at the outset), of course. More details will be given
momentarily in the proof of Theorem 3.2 below.

Boston observes that the presentation of GQ,S dating back to [Sh] and
[Ko] (see also [Fr]) can be written in a more pleasant form, motivating
the following definition and ensuing theorem.
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Definition 3.1. — Suppose m = (m1, . . . ,md) = (pr1 , . . . , prd) is a d-
tuple of positive powers of p. We say a pro-p group G has a Boston
presentation of type m if it is isomorphic to

Γ(α;m) := 〈x1, . . . , xd : xαi
i = x1+mi

i , 1 ≤ i ≤ d〉p,
for some d-tuple α = (α1, . . . , αd) of words in the free pro-p group on
x1, . . . , xd. If, in addition, G is fifa (every subgroup of finite index has
finite abelianization), then we say G is an NT-group.

Remark. The index p decorating the above presentation is a reminder
that this presentation takes place in the category of pro-p groups. In
other words, our group is the quotient of F pro-p

d , the free pro-p group
on d generators x1, . . . , xd, by the closed normal subgroup generated by
relations xαi

i = x1+mi
i ; here we are using the conjugation notation xα =

α−1xα. Note that the maximal abelian quotient of Γ(α,m) is Z/m1 ×
· · · × Z/md.

Theorem 3.2. — Let p1, . . . , pd be d distinct primes congruent to 1
modulo p. Put S = {∞, p1, . . . , pd}. Let m = (m1, . . . ,md), where mi is
the highest power of p dividing pi − 1. For p = 2, we assume that each
mi ≥ 4. Then GQ,S is an NT-group of type m.

Démonstration. — By [Ko, §11], GQ,S has a presentation of the form

(1) 〈s1, . . . , sd : sδii = spii , 1 ≤ i ≤ d〉p.

The relation sδii = spii says that conjugation by δi has the same effect on
si as raising it to the pith power, so conjugation by a power of δi raises
si to that power of pi, i.e.

(2) δ−ni siδi = s
pni
i .

Our assumptions on pi imply that it generates the same subgroup of Z×p
as 1+mi. Therefore, there is some νi ∈ Zp such that pνii = 1+mi. By (2),
when we let αi = δνii , we obtain the desired shape for the relations.

3.2. Theorem 3.2 is the starting point of Boston’s experiment, which is
predicated on (a) the daring assumption (or hope) that GQ,S admits a
presentation Γ(α,m) where α consists of relatively short words in the
free group, as well as (b) the equally important insight that this type of
presentation and the property of being fifa together may go rather far
toward characterizing a pro-2 group!
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To maximize the range of computations, we take K = Q, p = 2,
S = {∞, p1, . . . , pd}, where the pi are distinct odd primes. We look for
the simplest situation where GQ,S is infinite and seek to learn what kind
of group we get in that case. If d = 1, i.e. S = {∞, p1}, then GQ,S is
cyclic, hence finite, so we take d = 2, S = {∞, p1, p2}.

That NT-groups of type (2, 2) are finite follows from a classic result of
Taussky-Todd, so one of our ramifying primes, say p1, should be taken
1 modulo 4. If p2 ≡ 3 (mod 4), then GQ,S is of type (2, 4); a separate
experiment using his method with Leedham-Green [BL] leads Boston to
suspect that NT-groups of type (2, 4) are always finite. This brings us
to NT-groups of type (4, 4), which correspond to the choice

(3) p1 ≡ p2 ≡ 5 (mod 8).

Boston uses the software package magma to perform the calculations
to be described presently. Perhaps we should note here that, in practice,
one works in magma with the discrete free group and considers only those
subgroups with core of 2-power index – these correspond to subgroups
of the pro-2 completion of the free discrete group. (The core of H in G
is the intersection of all G-conjugates of H).

Given a finite presentation for a group G and a small positive integer n
(say less than 5), magma can compute the list of all subgroups H of G of
index 2n and determine for each whether the maximal abelian pro-2 quo-
tient of H is finite or not. We are most interested in infinite fundamental
groups so would like to eliminate those groups G = Γ(α1, α2; 4, 4) which
are finite. To this end, consider the “2-central series” of G, Pn(G) = Pn,
defined as follows. Let P0 = G, and for n ≥ 0, put Pn+1 = P 2

n [Pn, G];
here P 2

n and [Pn, G] are, respectively, the closed sugbroup generated by
the squares of elements of Pn, respectively commutators of Pn and G. For
later reference, also define the graded F2-Lie algebra g = ⊕n≥0Pn/Pn+1

with the natural bracket coming from the commutator. The maximal
2-class n quotient of G is Qn = G/Pn(G). If Qn is strictly smaller than
Qn+1 for n < 64, we consider it a good bet (for α1, α2 of short length) that
Γ(α1, α2; 4, 4) is probably infinite. (In any given case, we have number-
theoretic as well as group-theoretic criteria which we can hope to apply
to verify the infinitude of the groups in question.)

Boston thus sets up algorithm IFF(L,C,D), an “infinite/fifa filter,”
with parameters L,C,D (for length, class, and depth) as follows. We let
α1, α2 run over all words in F pro-2

2 of length at most L, and discard any
G = Γ(α1, α2; 4, 4) for which either
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i) [infinite] |Pn(G))| = |Pn+1(G)| for some n ≤ C,
ii) [fifa] G has some subgroup of index 2n, n ≤ D, with infinite abelian

pro-2 quotient.

In practice, memory constraints and the complexity of calculations allows
only small values of L,C,D, so what has been described is a simplification
of the process Boston actually employed, which involves using low values
of L,C,D at first, (say L = 10, C = 7, D = 3), then running the
remaining candidates into a similar filter with slightly higher values of C
and D, and so on. Happily, this process eliminated in a single overnight
calculation a huge number (but, even more happily, not all!) of some
15,000 candidates. There remained 92 groups (all of large 2-class and
satisfying fifa to a large depth). Here appeared the first surprise:
All of the survivors of the infinite-fifa filter turned out to be extremely
similar to each other, which similarity is most succinctly and elegantly
expressed in the fact that they all (appear) to have the same Lie algebra
g! We will elaborate more on this a little later.

Now let us move on to the second surprise. magma has a facility
for replacing a given presentation of a group by a simpler one. When
Boston ran this for the survivors of his filter, he found that they all admit
a presentation of type Γ(α, 1; 4, 4)! (Here, “1” is the identity element of
F pro-p
2 ). In other words, Boston obtained in every case a presentation

(4) G ∼= 〈x, y : xϕ = x5, y4 = 1〉2,

for ϕ ∈ F , a certain subset of the free pro-2 group on 2 generators.
This was yet another pleasant discovery since one expected every tame
fundamental group to have non-trivial torsion; in particular, since every
open subgroup is a tame fundamental group, the expectation is that tame
fundamental groups are “torsion-riddled”, i.e. every open subgroup has
non-trivial torsion (another conjecture of Boston).

The shortest elements in F have length 6 (48 of them), including
y2xyxy and y2xyx−1y−1. There are 28 of length 7, 26 · 3 · 5 of length
8, 26 · 32 · 5 of length 9, and 28 · 5 · 7 of length 10. In all of these
cases, the three index 2 subgroups of the group (4) all have abelianiza-
tion Z/2 × Z/4 × Z/4. Moreover, in all these cases one can show that
G is infinite, for there is an index 4 subgroup H with generator- and
relation-rank both equal to 4, so the Golod-Shafarevich bound (r > d2/4
for a finite p-group) applies.
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An important problem is to understand the class F of elements which
appear in torsion-presentations of NT-groups of type [4, 4] (and more
general ones). In particular, we may ask

Question 3.3. — For a fixed type m = (m1, . . . ,md), is there a class
Fd of elements of (F pro-p

d )d−1 such that every infinite NT-group G of type
m has a presentation of type

G ≈ Γ(α1, . . . , αd−1, 1;m)

with (α1, . . . , αd−1) ∈ Fd?

Summarizing some of the experimental findings so far, we have

Conjecture 3.4. — (a) There exists a subset F of the free pro-2 group
on 2 generators such that every infinite NT-group of type (4, 4) admits a
presentation Γ(ϕ, 1, ; 4, 4), i.e. of type (4), with ϕ ∈ F .

Moreover, for any such group G,
(b) the dimensions of graded pieces of G, namely log2 |Pn(G)/Pn+1(G)|,
is the sequence (5) to be described below.
(c) the index 2 subgroups of G all have abelianization Z/2× Z/4× Z/4.
(d) G has a subgroup of index 4 of generator rank and relation rank both
equal to 4.

3.3. To return to our original arithmetic problem, given a pair of primes
p1, p2, satisfying (3), we know that GQ,{∞,p1,p2} is NT of type (4, 4), so,
according to the results of the experiment, we expect that if it is infinite,
then it has a presentation (4) for some ϕ ∈ F . Given such a p1, p2, what
is a possible such ϕ? Already, given such a pair, it is not necessarily
easy to determine whether the corresponding tame fundamental group
will be infinite or not (we can definitely check that it is sometimes finite,
however).

We can begin to answer this question by comparing the abelian-
ization of subgroups of small index. Namely, if H is a subgroup of
index 2n in GQ,S, then Hab is isomorphic to the 2-part of the S-ray
class group of the degree 2n field fixed by H. Using class field theory,
one can show that the three quadratic extensions inside QS (namely
Q(
√
p1),Q(

√
p2),Q(

√
p1p2)) all have 2-ray class group mod S of type

Z/2 × Z/4 × Z/4 if and only if one of the primes (say p1) is a quartic
residue modulo the other but not vice versa. Given Conjecture 3.4,
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therefore, together with this bit of arithmetic input, we find a surpris-
ingly simple (conjectural) answer to our question about which prime
pairs give infinite GQ,{∞,p1,p2}.

Conjecture 3.5. — Given distinct primes p1, p2 ≡ 5 (mod 8), the
maximal 2-extension of Q unramified outside S = {∞, p1, p2} is infinite

if and only if

(
p1
p2

)
4

= −
(
p2
p1

)
4

. In this case, GQ,S is of type (4) for

some ϕ ∈ F .

Improvements of the Golod-Shafarevich bound due to Kuhnt [Ku] are
in fact strong enough to prove the “if part” of the first sentence in the
above conjecture. The “only if part” is theoretically susceptible to ver-
ification by the computational method of Boston and Leedham-Green,
though the calculations appear prohibitively long. The point that should
be emphasized is the remarkable fact that we arrived at this arithmetic
conjecture via a purely group-theoretical experiment!

Now, although the 92 survivors of IFF(10,63,4) are all rather sim-
ilar, some of them can be immediately eliminated as contenders for
identification with a GQ,S by pursuing further the abelianization of sub-
groups/class groups connection. Namely, the subgroup fixing the quartic
subfield of Q(ζp2) (recall our convention that p2 is not a fourth power
modulo p1) has abelianization (Z/4)4 (again by computing the 2-ray class
group modulo p1p2 of this field) and this eliminates a number of groups
of type (4) from consideration. Further winnowing of this sort by going
to degree 8 fields is also possible.

What emerges then is that, in this way, given a set S = {∞, p1, p2}
as in Conjecture 3.5, (examples of such prime pairs are (5, 61), (13, 29),
(29, 53), (37, 53)), we come up with a small list of candidate elements
ϕ ∈ F such that GQ,S is possibly isomorphic to (4). At the moment,
there is no way to be sure if a particular ϕ is the right one. But it is a
rather remarkable experience to make the purely group-theoretical and
“elementary” calculation of the abelianization of small-index subgroups
of a given group of type (4), then to do the highly non-trivial ray class
group calculations and observe the exact matchings that occur repeat-
edly.

When witnessing the correspondence of the data from ray class groups
with that coming from abelianizations of finite index subgroups, I had
the distinct impression of experiencing a “reciprocity law,” in the same
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sense that the modularity of elliptic curves over Q is a reciprocity law:
Namely, on the modular side, one has “elementary” algorithms for cal-
culating a basis of eigenforms of fixed weight (2) and level (say N), and
on the arithmetic side, one has the more challenging arithmetic problem
of listing all elliptic curves over Q of conductor N .

Perhaps a more accurate analogy for describing Conjecture 3.4 is to
compare the information we would then have about the ray class groups
of conductor p1p2 in this infinite (non-abelian, tame) tower with the
celebrated result of Iwasawa specifying the growth of the p-rank of the
class groups of conductor 1 in (abelian, wild) Zp-extensions. In the tame
case, the presentation (4) would codify in one neat package (albeit in a
less explicit form than Iwasawa’s wonderful formula) a huge amount of
information about ray class groups of the stories of the tower.

3.4. While the arithmetic problem described in the previous paragraph
(of determining an exact presentation for even one pair p1, p2 as above)
is a subtle and interesting problem, we should not lose sight of the more
fundamental expectation that all of these groups have the same Lie al-
gebra over Fp, because practically any group-theoretical question we are
interested in is captured by the Lie algebra, including whether or not the
group has infinite analytic (p-adic Lie) quotients (Fontaine-Mazur). So,
let us now turn to perhaps the biggest and most exciting third surprise,
namely what emerges as a prime suspect for the common Lie algebra of
infinite NT-groups of type (4, 4).

First of all, the dimension of its graded pieces is given by the sequence

S : (log2 |Pn(G)/Pn+1(G)|)n,
which for each of the 92 survivors of IFF is computed to be
(5)
S : 3, 3, 3, 3, 2, 4, 4, 6, 6, 8, 8, 12, 12, 17, 17, 25, 25, 36, 54, 54, 79, 79, · · ·

When shorn of the repetitions, the sequence of S receives one hit from
the Neil Sloane Sequence Database [Sl]: It is A001461, which occurs in
a preprint [Br] of Broadhurst on multizeta values with connections to
knots and quantum field theory.

It is also combinatorial in nature, being the number of certain neck-
laces. For lack of space, we do not elaborate on this connection here,
but mention only that aperiodic binary necklaces of length n are in a
natural bijective correspondence with irreducible polynomials of degree
n over F2. It is highly suggestive that that there is an Fp- Lie algebra
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operating in the background in the theory of multizeta values, namely
the free Lie algebra with one generator in degree 1 and one in degree 2;
its graded pieces have the same dimensions as the observed dimensions
for the NT-groups of type (4, 4), namely (5). Another candidate is the
permutation group algebra of Cameron, see Gilbey [G].

3.5. A surprising outcome of Boston’s experiment is a purely group-
theoretical program for attacking Conjecture 1.2 for base field Q.
Namely, Step 1: for a fixed type m, there are only finitely many Lie
algebras which occur as the Fp-Lie algebra of NT-groups of type m;
and Step 2: the Lie algebra of an infinite NT-group has no analytic
quotients.

For the particular case of p = 2 and S = {∞, p1, p2}, there is a strong
possibility that GQ,S is torsion-riddled, which would immediately show
that it has no infinite analytic quotients. Boston conjectures, again based
on strong experimental evidence, that every group of type (4) is just-
infinite. See [B2] for more details on this and a number of other inter-
esting questions/conjectures.

3.6. In conclusion, Boston’s experiment has revealed that the group-
theoretical information stemming from algebraic number theory that we
have had about tame fundamental groups for the last forty years is per-
haps of sufficient strength to convert most problems of interest about
them (such as Fontaine-Mazur) into interesting problems purely in group
theory. It also demonstrates once again how numerical experimentation
combined with bold but carefully chosen assumptions can at times shed
light on previously impervious number-theoretical problems and open up
new avenues of research.

3.7. Note added in proof.— In their very striking recent work,
Labute [La] and Labute-Minac [La-Mi] confirm some of Boston’s pre-
dictions. In particular, for odd primes p, Labute gives examples of finite
sets S away from p such that the cohomological dimension of GQ,S is 2!
In particular, tame finitely ramified pro-p extensions of Q are not always
torsion-riddled as previously expected.
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