MATH 797AP HOMEWORK PROBLEMS

FARSHID HAJIR

(1) (a) Prove or Disprove: If q is a prime number, then a subset \mathcal{C} of \mathbf{F}_{q}^{n} is a linear code if and only if \mathcal{C} is non-empty and closed under addition.

(b) Prove or Disprove: If $q = p^f$ with p a prime and f > 1, then a subset C of \mathbf{F}_q^n is a linear code if and only if C is non-empty and closed under addition.

- (2) Suppose k, n are integers satisfying $0 \le k \le n$.
 - (a) Give a formula for the number $S_q(n)$ of subspaces of \mathbf{F}_q^n .
 - (b) Give a formula for the number $S_q(n,k)$ of k-dimensional subspaces of \mathbf{F}_q^n .

(c) If you answered (a) before you answered (b), now take the sum of your formula for (b) over all k to get another answer for (a) and see if they seem to match. If you didn't answer (a) yet, now you have!

(d) Compute the total number $N_q(n,k)$ of all codes of length n over \mathbf{F}_q of size q^k , not just the linear ones. How does this number compare with the number you computed in (b)? What percentage of codes of length n and size q^k are linear?

- (3) Show that the Hamming metric d_H is a metric on \mathbf{F}_q^n in the sense that for all $v, v', v'' \in \mathbf{F}_q^n$,
 - (a) $d_H(v, v') = 0$ if and only if v = v';

(b) $d_H(v,v') = d_H(v',v);$ (c) $d_H(v,v') + d_H(v',v'') \ge d_H(v,v'').$

(4) (a) Suppose C is a code of length n and σ is a permutation on n letters, i.e. an element of the symmetric group S_n . Let $\widehat{\mathcal{C}} = \mathcal{C}^{\sigma}$ be the code obtained by applying σ to all the words in \mathcal{C} . Show that \mathcal{C}^{σ} has the same dimension and minimum distance as \mathcal{C} .

(b) Consider the proposal that we say two linear codes of length n over \mathbf{F}_q are isomorphic as codes if and only if they are isomorphic as vector spaces. Is this a good proposal? Discuss.

(c) Now consider the proposal that we say two linear codes, $\mathcal{C}, \mathcal{C}'$ of length *n* over \mathbf{F}_q are isomorphic as codes if and only if there exists a permutation $\sigma \in S_n$ such that $\mathcal{C}' = \mathcal{C}^{\sigma}$. Is this a good proposal? Discuss. Can you think of a better notion of code isomorphism?

(5) (a) Show that if $G = [I_k \mid A]$ is a systematic $k \times n$ generator matrix for a linear code \mathcal{C} (so that A is a $k \times (n-k)$ matrix), then $H = [-A^T | I_{n-k}]$ is a parity check matrix for \mathcal{C} . Here I_j is of course the $j \times j$ identity matrix for every positive integer j and A^T is the transpose of A. State and prove a similar statement starting from the parity check matrix which "ends with" an identity matrix.

(b) If the generator matrix G of a code \mathcal{C} is not systematic, show that some permutation of the columns of G yields a systematic generator matrix for a code \mathcal{C} . Can you then use (a) to describe a procedure for computing the parity check matrix for a code given by a not-necessarily-systematic generator matrix?

- (6) Go to the library (and/or bookstore, and/or catalogue of online library materials) and find a book on Coding Theory. Read the first chapter or two of your chosen book.
- (7) Let \mathcal{C} be a binary linear code of length n. (a) Show that the proportion of codewords of even weight to all codewords is either 1 or 1/2.

(b) Assume for the moment that $n \ge 17$. Show that the proportion of codewords whose 17th coordinate is 0 to all codewords is either 1 or 1/2.

(c) Generalize (b).

(d) Suppose G is an abelian group (under an operation +) with a subset A satisfying (i) If $a, a' \in A$, then $a - a' \in A$; (ii) if $b, b' \notin A$, then $b - b' \in A$; (iii) if $a \in A, b \notin A$, then $a + b \notin A$. Show that either A = G or A is a subgroup of G of index 2.

(e) Explain how one can prove (a), (b), (c) using (d).

(8) Let C be an $[n, k]_q$ -code. Show that the number of distinct generator matrices for C is the same as the size of the group of $k \times k$ invertible matrices over \mathbf{F}_q , which is

$$|GL_k(\mathbf{F}_q)| = \prod_{i=0,k} (q^k - q^i).$$

- (9) Consider *puncturing* an $[n, k, d]_q$ -code C by choosing a column index $1 \le j \le n$ and punching that column out, meaning letting C_j be the length n-1 code obtained by removing the *j*th coordinate from each codeword.
 - (a) Show that C_j in an $[n, k_j, d_j]_q$ -code where $k_j \ge k-1$ and $d_j \ge d-1$.
 - (b) Show that there are at least n k indices j for which $k_j = k$.

(10) This is a guided problem for establishing the *Plotkin Bound*.

(a) Consider a map $T: \mathbf{F}_q^k \to \mathbf{F}_q$ defined by $T(x_1, \ldots, x_k) = \sum_{i=0}^k a_i x_i$, where (a_1, a_2, \ldots, a_k) is a fixed *non-zero* vector in \mathbf{F}_q^k . Show that this this is a surjective map with fibers of uniform size q^{k-1} . (b) Suppose \mathcal{C} is an $[n, k, d]_q$ -code and let B be a $q^k \times n$ matrix whose rows are the distinct

codewords of C (in some arbitrary order). Show that for each column of B, either the entire column is 0 or each element of \mathbf{F}_q appears in it q^{k-1} times.

(c) Prove the Plotkin Bound: If C is an $[n, k, d]_q$ -code, then

$$d \le \frac{n(q-1)q^{k-1}}{q^k - 1}.$$

Hint: Compute the average weight of the non-zero codewords of C; be sneaky. Now, even more sneakily, compare the minimum distance of the code with the average you just computed.

(d) Does the Simplex Code attain the Plotkin bound? Prove or disprove.