
MATH 797AP ASYMPTOTIC FAMILIES

NUMBER FIELDS HOMEWORK PROBLEMS

FARSHID HAJIR
FEBRUARY 26, 2014 – 11 : 09

NOTE: Unless otherwise stated, K and F are fields of characteristic 0.

1. A polynomial f(x) ∈ Z[x] is primitive if the greatest common divisor of its
coefficients is 1. Prove Gauss’s Lemma: If f(x), g(x) ∈ Z[x] are primitive, then
f(x)g(x) is primitive.

[Hint: Fill in all the details for the following idea: Write f(x) =
∑n
i=0 aix

n−i

and g(x) =
∑m
j=0 bjx

m−j . Suppose p is a prime and i, j are the smallest indices

satisfying p 6 |ai and p 6 |bj . Consider the coefficient xi+j in f(x)g(x).]

2. Recall that if K is a field containing Q, an element α ∈ K is called an
algebraic number if and only if there exists g(x) ∈ Q[x] such that g(α) = 0. If α is
an algebraic number, we let Irrα(x;Q) = Irrα(x) be the monic polynomial in Q[x]
of least degree having α as a root. An algebraic number α is called an algebraic
integer if there exists a monic polynomial in Z[x] having α as a root.

(a) Use Gauss’ Lemma to prove that if α is an algebraic integer, then Irrα(x) ∈
Z[x].

(b) Prove that an algebraic number α is an algebraic integer if and only if
Irrα(x) ∈ Z[x].

3. (a) Suppose all roots in C of a monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ Q[x]

have absolute value 1. Show that |ar| ≤
(
n
r

)
for 0 ≤ r ≤ n− 1.

(b) Show that for a fixed positive integer n, there are only finitely many algebraic
integers of degree n whose minimal polynomial has all of its roots in C on the unit
circle. [Hint: think about Problem 2.]

(c) Show that if the minimal polynomial of an algebraic integer α has all its
roots on the unit circle, then αk = 1 for some integer k. This is a famous theorem
of Leopold Kronecker. [Hint: can the sequence of powers of α be non-repeating?]

4. Let α =
√

5 +
√

13. Show that α is an algebraic integer. Show that 2|α in the
sense that α/2 is also an algebraic integer. Show that 4 6 |α.

5. Let α be an algebraic number. Show that there exists an integer m such that
mα is an algebraic integer.
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6. Suppose α, β, γ ∈ K where K is an algebraic number field. Suppose α, β are
algebraic integers and γ satisfies x2 + αx + β = 0. Show that γ is an algebraic
integer. Can you generalize this result?

7. Suppose f(x) = x2 + mx + n ∈ Z[x] is irreducible. Suppose K is a field of
degree 2 over Q and containing an element α such that f(α) = 0. (For instance
K = Q[x]/(f) and α = x + (f) or K = Q(α) and α is given by the quadratic
formula, but no matter). Let Q[α] = {g(α) | g(x) ∈ Q[x]} be the set consisting of
all Q-polynomial expressions in α. Let Q(α) be the fraction field of Q[α], i.e. the
smallest subfield of K that contains Q[α]. Let df = m2 − 4n be the discriminant
of f and suppose df = dk2 where d is square-free, meaning the only square that
divides it is 1. Show that

(i) Q[α] is a subring of K;
(ii) Q[α] = Q(α);
(iii) Q[α] = Q[β], where β = (2α+m)/k satisfies β2 = d.

8. Staying with the situation of the preceding problem, let us assume α =
(−m +

√
df )/2 ∈ C so that β =

√
d. Let OK ⊆ Q(α) be the set of algebraic

integers in K = Q(α).

(i) Suppose d ≡ 2, 3 mod 4. Show that OK = [1,
√
d]Z.

Notation: Whenever γ1, . . . , γt are elements of a field F and R is a subring of
F , we let [γ1, . . . , γt]R be the set of all R-linear combinations

∑t
i=1 riγi.

(ii) if d ≡ 1 mod 4, show that OK = [1, 1+
√
d

2 ]Z. [Hint: don’t forget the useful
criterion of problem 2].

(iii) Show that in either case, OK = [1, d+
√
d

2 ]Z.

9. Let ω = e2πi/3. What is the quickest way to show that ω is an algebraic
integer? Now determine Irrω(x).

10. Prove or disprove: if α is an algebraic number, with minimal polynomial
Irrα(x), then Irrα(x) does not have repeated roots (in C).

11. Let α be an algebraic number of degree n over Q, i.e. Irrα(x;Q) has degree
n. Suppose f, g ∈ Q[x] are polynomials of degree strictly less than n such that
f(α) = g(α). Show that f = g.

12. (Continuation of Problem 8): a) If K/Q is a quadratic extension, then

K = Q(
√
d) for a unique square-free integer d.

b) If d ≡ 2, 3 mod 4, let D = 4d, otherwise let D = d. Show that the discriminant
of K is D.

c) Show that if K/Q is a quadratic field, then |discK | > 1. [Remark: Later we
will see that if K/Q has degree n > 1, then |discK | > 1. The latter was conjectured
by Kronecker in 1881 and proved by Minkowski in 1890.]

13. Suppose R is a commutative ring with unit, and z1, . . . , zn ∈ R. Show that
the Vandermonde matrix

V (z1, . . . , zn) :=
(
zj−1i

)
1≤i,j≤n
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has determinant

detV (z1, . . . , zn) =
∏

1≤i<j≤n

(zi − zj).

14. [“Existence of primitive element”] Let F be a field of characteristic 0. Let
K/F be a finite extension. Show that there exists θ ∈ K such that K = F (θ).

[Hint: here is one way you could proceed; you may use the fact that there are
n = [K : F ] distinct embeddings of K into F , where F is an algebraically closed
field F containing F . Call these σi, 1 ≤ i ≤ n. For i 6= j, consider the subset
Vij := {α ∈ K | σi(α) = σj(α)}. Use linear algebra and the fact that K is infinite
to prove that the union of the Vij (i 6= j of course!) is not all of K. ]

15. Suppose F is a characteristic 0 field, A is a subring of F which is integrally
closed in F and K/F is a finite extension of degree n. Let B be the integral closure
of A in B. Suppose we have n elements η1, . . . , ηn belonging to B which form a
basis for K/F and put d = discK/F (η1, . . . , ηn). Recall we have proved in class that
d 6= 0.

(a) Show that

dB ⊆ [η1, . . . , ηn]A.

(b) Show that if F = Q and A = Z so that B = OK , for every α ∈ OK , there
exists (c1, . . . , cn) ∈ Zn satisfying d|c2j (j = 1, . . . , n) such that

α =
c1η1 + · · ·+ cnηn

d
.

[Hint: Given ξ ∈ B, write ξ =
∑n
j=1 xjηj with x1, . . . , xn ∈ F . Now consider

the linear system (for i = 1, . . . , n)

TrK/F (αηi) =

n∑
j=1

TrK/F (ηiηj)xj .

Now use the fact that the left hand side is in A together with Cramer’s Rule ! (I bet
you never thought you’d use Cramer’s Rule in a graduate course; those of you who
took algebraic groups might already appreciate the wonders of this undervalued
result).

16. Let K,F,A,B be as in 15) but assume in addition that A is a PID. Suppose
M is a non-zero finitely generated B-submodule of K. Show that M is a free
A-module of rank [K : F ].

Hint: we essentially proved this in class for M = B. The strategy is basically
the same, though you might use 15) instead of the dual basis approach we used in
class.

17. Suppose K = F (θ) where f(x) = Irrθ(x;F ) has degree n. Show that

discK/F (1, θ, . . . , θn−1) = (−1)n(n−1)/2NK/F (f ′(θ)).

18. Use 17) to prove the (should-be) well-known formula for the discriminant of
the trinomial f(x) = xn + ax+ b:

disc(xn + ax+ b) = (−1)n(n−1)/2
(
nnbn−1 + (−1)n−1(n− 1)n−1an

)
.
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19. Let K = Q(θ) where θ3 = 2. Show that [1, θ, θ2]Z = OK . Use this to
calculate discK .

20. Let K = Q(θ) where θ3 = θ + 4. [check that f(x) = x3 − x − 4 is irre-
ducible. Show that [1, θ, (θ + θ2)/2]Z = OK . Use this to calculate discK . What is
discK/discf? Does this agree with the relationship between the power basis [1, θ, θ2]
and the integral basis you found?

21. Suppose A is a subring of an integral domain B and that B is integral over
A, i.e. every element of B satisfies a monic polynomial with coefficients in A. Show
that A is a field if and only if B is.

22. Let A be a domain. Show that if A is integrally closed (in its fraction field)
then so is the polynomial ring A[x].

23. In the polynomial ring A = Q[x, y], let p be the principal ideal p = (y2−x3).
Show that p is a prime ideal but A/p is not integrally closed. [Remark. The
existence of such a prime ideal is related to the geometric fact that the curve
y2 − x3 = 0 has a singularity at (0, 0), i.e. both partials of y2 − x3 at that point
vanish. To learn more about this mysterious remark, you should take algebraic
geometry next term with Tom Weston.]

24. (a) Prove that a finite integral domain is always a field.
(b) Prove that a PID is always integrally closed.

25. Consider a degree n polynomial f ∈ Z[x] which is monic and irreducible.
Let θ be a root of f .

(a) Suppose f ′(r) = 0 for some r ∈ Z. Prove that f(r) divides disc(1, θ, . . . , θn−1).
[Hint: what could Gauss tell you about f(x)/(x− r)?]

(b) If f ′(r) = 0 for some r ∈ Q (as opposed to r ∈ Z), could you say anything
about disc(1, θ, . . . , θn−1)?

(c) Suppose there exist g, h ∈ Z[x] such that g, h both split completely into linear
factors over Q and such that

g(x)f ′(x) = h(x) + f(x)e(x)

for some polynomial e ∈ Z[x]. Describe a simple procedure for calculating the
discriminant disc(1, θ, . . . , θn−1).

26. Prove the irreducibility criterion of Eisenstein: Let R be a PID with field of
fractions F , p a prime element of R, and suppose f(x) = xn+an−1x

n−1+ · · ·+a0 ∈
R[x] satisfies: i) p|ai for 0 ≤ i ≤ n−1, and ii) p2 6 |a0. Then f is irreducible over F .

27. Suppose p is an odd prime number. Let Φp(x) =
∑p−1
i=0 x

i be the p-cyclotomic
polynomial.

(a) Show that Φp(x) is irreducible over Q. [Hint: hit Φp(x+ 1) with Eisenstein;
why is this enough?]

(b) Let K = Q[x]/(Φp(x)); it is a number field of degree p − 1 by (a). Let ω =
x+ (Φp(x)) be a root in K of Φp(x). Compute disc(Φp(x)) = disc(1, ω, . . . , ωp−2).
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[Hint: Use 17; for calculating Φ′p(x), use the fact that Φp(x)(x − 1) = xp − 1; to
compute NK/Q(ω−1), ask yourself if there is an easy way to compute the constant
coefficient of the minimal polynomial of ω − 1 (or of 1− ω if you prefer).]

(c) Show that Z[ω] = Z[1− ω] and

disc(1, ω, . . . , ωp−2) = disc(1, 1− ω, . . . , (1− ω)p−2).

(d) Show that
p−1∏
k=1

(1− ωk) = p.

(e) Show that OK = Z[ω]; thus Ok admits a power basis even though its discrim-
inant is far from being square-free. [Hint: Suppose not; then there exists α ∈ OK
which is not in Z[1− ω]. Use (d) and 15 to obtain a contradiction.]

28.1 Let K be a number field with signature (r1, r2). What this means is that if
σ1, . . . , σn are the n = [K : Q] embeddings of K into C, then r1 of them have image
contained in R and 2r2 = n − r1 of them do not. Let discK be the discriminant
of K, i.e. discK/Q(ω1, . . . , ωn) where ω1, . . . , ωn is some integral basis for K/Q,
(i.e. for OK/Z).

a) Show that the sign of discK is (−1)r2 .
b) Prove Stickelberger’s Theorem: discK ≡ 0, 1 mod 4.

1I should probably be giving more of a hint for this problem, or I could just put this footnote

alerting you to the fact that this is a “starred” problem. If you get tired of butting heads with
Herr Dr Professor Stickelberger, you might consult your favorite book in algebraic number theory

for a hint; or try Googling him! Be sure to quote your sources!


