MATH 797AP ASYMPTOTIC FAMILIES NUMBER FIELDS HOMEWORK PROBLEMS

FARSHID HAJIR FEBRUARY 26, 2014 – 11:09

NOTE: Unless otherwise stated, K and F are fields of characteristic 0.

1. A polynomial $f(x) \in \mathbb{Z}[x]$ is primitive if the greatest common divisor of its coefficients is 1. Prove Gauss's Lemma: If $f(x), g(x) \in \mathbb{Z}[x]$ are primitive, then f(x)g(x) is primitive.

[Hint: Fill in all the details for the following idea: Write $f(x) = \sum_{i=0}^{n} a_i x^{n-i}$ and $g(x) = \sum_{j=0}^{m} b_j x^{m-j}$. Suppose p is a prime and i, j are the smallest indices satisfying $p \not|a_i$ and $p \not|b_j$. Consider the coefficient x^{i+j} in f(x)g(x).]

2. Recall that if K is a field containing \mathbb{Q} , an element $\alpha \in K$ is called an *algebraic number* if and only if there exists $g(x) \in \mathbb{Q}[x]$ such that $g(\alpha) = 0$. If α is an algebraic number, we let $\operatorname{Irr}_{\alpha}(x;\mathbb{Q}) = \operatorname{Irr}_{\alpha}(x)$ be the monic polynomial in $\mathbb{Q}[x]$ of least degree having α as a root. An algebraic number α is called an *algebraic integer* if there exists a **monic** polynomial in $\mathbb{Z}[x]$ having α as a root.

(a) Use Gauss' Lemma to prove that if α is an algebraic integer, then $\operatorname{Irr}_{\alpha}(x) \in \mathbb{Z}[x]$.

(b) Prove that an algebraic number α is an algebraic integer if and only if $\operatorname{Irr}_{\alpha}(x) \in \mathbb{Z}[x]$.

3. (a) Suppose all roots in \mathbb{C} of a monic polynomial

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} \in \mathbb{Q}[x]$$

have absolute value 1. Show that $|a_r| \leq \binom{n}{r}$ for $0 \leq r \leq n-1$.

(b) Show that for a fixed positive integer n, there are only finitely many algebraic integers of degree n whose minimal polynomial has all of its roots in \mathbb{C} on the unit circle. [Hint: think about Problem 2.]

(c) Show that if the minimal polynomial of an algebraic integer α has all its roots on the unit circle, then $\alpha^k = 1$ for some integer k. This is a famous theorem of Leopold Kronecker. [Hint: can the sequence of powers of α be non-repeating?]

4. Let $\alpha = \sqrt{5} + \sqrt{13}$. Show that α is an algebraic integer. Show that $2|\alpha$ in the sense that $\alpha/2$ is also an algebraic integer. Show that $4 \not| \alpha$.

5. Let α be an algebraic number. Show that there exists an integer m such that $m\alpha$ is an algebraic integer.

6. Suppose $\alpha, \beta, \gamma \in K$ where K is an algebraic number field. Suppose α, β are algebraic integers and γ satisfies $x^2 + \alpha x + \beta = 0$. Show that γ is an algebraic integer. Can you generalize this result?

7. Suppose $f(x) = x^2 + mx + n \in \mathbb{Z}[x]$ is irreducible. Suppose K is a field of degree 2 over \mathbb{Q} and containing an element α such that $f(\alpha) = 0$. (For instance $K = \mathbb{Q}[x]/(f)$ and $\alpha = x + (f)$ or $K = \mathbb{Q}(\alpha)$ and α is given by the quadratic formula, but no matter). Let $\mathbb{Q}[\alpha] = \{g(\alpha) \mid g(x) \in \mathbb{Q}[x]\}$ be the set consisting of all \mathbb{Q} -polynomial expressions in α . Let $\mathbb{Q}(\alpha)$ be the fraction field of $\mathbb{Q}[\alpha]$, i.e. the smallest subfield of K that contains $\mathbb{Q}[\alpha]$. Let $d_f = m^2 - 4n$ be the discriminant of f and suppose $d_f = dk^2$ where d is square-free, meaning the only square that divides it is 1. Show that

(i) Q[α] is a subring of K;
(ii) Q[α] = Q(α);
(iii) Q[α] = Q[β], where β = (2α + m)/k satisfies β² = d.

8. Staying with the situation of the preceding problem, let us assume $\alpha = (-m + \sqrt{d_f})/2 \in \mathbb{C}$ so that $\beta = \sqrt{d}$. Let $\mathcal{O}_K \subseteq \mathbb{Q}(\alpha)$ be the set of algebraic integers in $K = \mathbb{Q}(\alpha)$.

(i) Suppose $d \equiv 2, 3 \mod 4$. Show that $\mathcal{O}_K = [1, \sqrt{d}]_{\mathbb{Z}}$.

Notation: Whenever $\gamma_1, \ldots, \gamma_t$ are elements of a field F and R is a subring of F, we let $[\gamma_1, \ldots, \gamma_t]_R$ be the set of all \mathbb{R} -linear combinations $\sum_{i=1}^t r_i \gamma_i$.

(ii) if $d \equiv 1 \mod 4$, show that $\mathcal{O}_K = [1, \frac{1+\sqrt{d}}{2}]_{\mathbb{Z}}$. [Hint: don't forget the useful criterion of problem 2].

(iii) Show that in either case, $\mathcal{O}_K = [1, \frac{d+\sqrt{d}}{2}]_{\mathbb{Z}}$.

9. Let $\omega = e^{2\pi i/3}$. What is the quickest way to show that ω is an algebraic integer? Now determine $\operatorname{Irr}_{\omega}(x)$.

10. Prove or disprove: if α is an algebraic number, with minimal polynomial $\operatorname{Irr}_{\alpha}(x)$, then $\operatorname{Irr}_{\alpha}(x)$ does not have repeated roots (in \mathbb{C}).

11. Let α be an algebraic number of degree n over \mathbb{Q} , i.e. $\operatorname{Irr}_{\alpha}(x; \mathbb{Q})$ has degree n. Suppose $f, g \in \mathbb{Q}[x]$ are polynomials of degree strictly less than n such that $f(\alpha) = g(\alpha)$. Show that f = g.

12. (Continuation of Problem 8): a) If K/\mathbb{Q} is a quadratic extension, then $K = \mathbb{Q}(\sqrt{d})$ for a unique square-free integer d.

b) If $d \equiv 2, 3 \mod 4$, let D = 4d, otherwise let D = d. Show that the discriminant of K is D.

c) Show that if K/\mathbb{Q} is a quadratic field, then $|\operatorname{disc}_K| > 1$. [Remark: Later we will see that if K/\mathbb{Q} has degree n > 1, then $|\operatorname{disc}_K| > 1$. The latter was conjectured by Kronecker in 1881 and proved by Minkowski in 1890.]

13. Suppose R is a commutative ring with unit, and $z_1, \ldots, z_n \in R$. Show that the Vandermonde matrix

$$V(z_1,\ldots,z_n):=\left(z_i^{j-1}\right)_{1\leq i,j\leq n}$$

has determinant

$$\det V(z_1,\ldots,z_n) = \prod_{1 \le i < j \le n} (z_i - z_j).$$

14. ["Existence of primitive element"] Let F be a field of characteristic 0. Let K/F be a finite extension. Show that there exists $\theta \in K$ such that $K = F(\theta)$.

[Hint: here is one way you could proceed; you may use the fact that there are n = [K : F] distinct embeddings of K into \overline{F} , where F is an algebraically closed field F containing F. Call these σ_i , $1 \le i \le n$. For $i \ne j$, consider the subset $V_{ij} := \{\alpha \in K \mid \sigma_i(\alpha) = \sigma_j(\alpha)\}$. Use linear algebra and the fact that K is infinite to prove that the union of the V_{ij} $(i \ne j$ of course!) is not all of K.

15. Suppose F is a characteristic 0 field, A is a subring of F which is integrally closed in F and K/F is a finite extension of degree n. Let B be the integral closure of A in B. Suppose we have n elements η_1, \ldots, η_n belonging to B which form a basis for K/F and put $d = \operatorname{disc}_{K/F}(\eta_1, \ldots, \eta_n)$. Recall we have proved in class that $d \neq 0$.

(a) Show that

$$dB \subseteq [\eta_1, \ldots, \eta_n]_A.$$

(b) Show that if $F = \mathbb{Q}$ and $A = \mathbb{Z}$ so that $B = \mathcal{O}_K$, for every $\alpha \in \mathcal{O}_K$, there exists $(c_1, \ldots, c_n) \in \mathbb{Z}^n$ satisfying $d|c_i^2$ $(j = 1, \ldots, n)$ such that

$$\alpha = \frac{c_1\eta_1 + \dots + c_n\eta_n}{d}.$$

[Hint: Given $\xi \in B$, write $\xi = \sum_{j=1}^{n} x_j \eta_j$ with $x_1, \ldots, x_n \in F$. Now consider the linear system (for $i = 1, \ldots, n$)

$$\operatorname{Tr}_{K/F}(\alpha \eta_i) = \sum_{j=1}^n \operatorname{Tr}_{K/F}(\eta_i \eta_j) x_j.$$

Now use the fact that the left hand side is in A together with *Cramer's Rule !* (I bet you never thought you'd use Cramer's Rule in a graduate course; those of you who took algebraic groups might already appreciate the wonders of this undervalued result).

16. Let K, F, A, B be as in 15) but assume in addition that A is a PID. Suppose M is a non-zero finitely generated B-submodule of K. Show that M is a free A-module of rank [K : F].

Hint: we essentially proved this in class for M = B. The strategy is basically the same, though you might use 15) instead of the dual basis approach we used in class.

17. Suppose $K = F(\theta)$ where $f(x) = \operatorname{Irr}_{\theta}(x; F)$ has degree *n*. Show that $\operatorname{disc}_{K/F}(1, \theta, \dots, \theta^{n-1}) = (-1)^{n(n-1)/2} \mathbb{N}_{K/F}(f'(\theta)).$

18. Use 17) to prove the (should-be) well-known formula for the discriminant of the trinomial $f(x) = x^n + ax + b$:

$$\operatorname{disc}(x^{n} + ax + b) = (-1)^{n(n-1)/2} \left(n^{n} b^{n-1} + (-1)^{n-1} (n-1)^{n-1} a^{n} \right).$$

19. Let $K = \mathbb{Q}(\theta)$ where $\theta^3 = 2$. Show that $[1, \theta, \theta^2]_{\mathbb{Z}} = \mathcal{O}_K$. Use this to calculate disc_K.

20. Let $K = \mathbb{Q}(\theta)$ where $\theta^3 = \theta + 4$. [check that $f(x) = x^3 - x - 4$ is irreducible. Show that $[1, \theta, (\theta + \theta^2)/2]_{\mathbb{Z}} = \mathcal{O}_K$. Use this to calculate disc_K. What is disc_K/disc_f? Does this agree with the relationship between the power basis $[1, \theta, \theta^2]$ and the integral basis you found?

21. Suppose A is a subring of an integral domain B and that B is integral over A, i.e. every element of B satisfies a monic polynomial with coefficients in A. Show that A is a field if and only if B is.

22. Let A be a domain. Show that if A is integrally closed (in its fraction field) then so is the polynomial ring A[x].

23. In the polynomial ring $A = \mathbb{Q}[x, y]$, let \mathfrak{p} be the principal ideal $\mathfrak{p} = (y^2 - x^3)$. Show that \mathfrak{p} is a prime ideal but A/\mathfrak{p} is not integrally closed. [Remark. The existence of such a prime ideal is related to the geometric fact that the curve $y^2 - x^3 = 0$ has a singularity at (0, 0), i.e. both partials of $y^2 - x^3$ at that point vanish. To learn more about this mysterious remark, you should take algebraic geometry next term with Tom Weston.]

24. (a) Prove that a finite integral domain is always a field.

(b) Prove that a PID is always integrally closed.

25. Consider a degree n polynomial $f \in \mathbb{Z}[x]$ which is monic and irreducible. Let θ be a root of f.

(a) Suppose f'(r) = 0 for some $r \in \mathbb{Z}$. Prove that f(r) divides disc $(1, \theta, \dots, \theta^{n-1})$. [Hint: what could Gauss tell you about f(x)/(x-r)?]

(b) If f'(r) = 0 for some $r \in \mathbb{Q}$ (as opposed to $r \in \mathbb{Z}$), could you say anything about disc $(1, \theta, \dots, \theta^{n-1})$?

(c) Suppose there exist $g, h \in \mathbb{Z}[x]$ such that g, h both split completely into linear factors over \mathbb{Q} and such that

$$g(x)f'(x) = h(x) + f(x)e(x)$$

for some polynomial $e \in \mathbb{Z}[x]$. Describe a simple procedure for calculating the discriminant disc $(1, \theta, \ldots, \theta^{n-1})$.

26. Prove the irreducibility criterion of Eisenstein: Let R be a PID with field of fractions F, p a prime element of R, and suppose $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in R[x]$ satisfies: i) $p|a_i$ for $0 \le i \le n-1$, and ii) $p^2 \not|a_0$. Then f is irreducible over F.

27. Suppose p is an odd prime number. Let $\Phi_p(x) = \sum_{i=0}^{p-1} x^i$ be the p-cyclotomic polynomial.

(a) Show that $\Phi_p(x)$ is irreducible over \mathbb{Q} . [Hint: hit $\Phi_p(x+1)$ with Eisenstein; why is this enough?]

(b) Let $K = \mathbb{Q}[x]/(\Phi_p(x))$; it is a number field of degree p-1 by (a). Let $\omega = x + (\Phi_p(x))$ be a root in K of $\Phi_p(x)$. Compute disc $(\Phi_p(x)) = \text{disc}(1, \omega, \dots, \omega^{p-2})$.

[Hint: Use 17; for calculating $\Phi'_p(x)$, use the fact that $\Phi_p(x)(x-1) = x^p - 1$; to compute $\mathbb{N}K/\mathbb{Q}(\omega-1)$, ask yourself if there is an easy way to compute the constant coefficient of the minimal polynomial of $\omega - 1$ (or of $1 - \omega$ if you prefer).]

(c) Show that $\mathbb{Z}[\omega] = \mathbb{Z}[1 - \omega]$ and

$$\operatorname{disc}(1,\omega,\ldots,\omega^{p-2}) = \operatorname{disc}(1,1-\omega,\ldots,(1-\omega)^{p-2}).$$

(d) Show that

$$\prod_{k=1}^{p-1} (1-\omega^k) = p.$$

(e) Show that $\mathcal{O}_K = \mathbb{Z}[\omega]$; thus \mathcal{O}_k admits a power basis even though its discriminant is far from being square-free. [Hint: Suppose not; then there exists $\alpha \in \mathcal{O}_K$ which is not in $\mathbb{Z}[1-\omega]$. Use (d) and 15 to obtain a contradiction.]

28.¹ Let K be a number field with signature (r_1, r_2) . What this means is that if $\sigma_1, \ldots, \sigma_n$ are the $n = [K : \mathbb{Q}]$ embeddings of K into \mathbb{C} , then r_1 of them have image contained in \mathbb{R} and $2r_2 = n - r_1$ of them do not. Let disc_K be the discriminant of K, i.e. disc_{K/Q}($\omega_1, \ldots, \omega_n$) where $\omega_1, \ldots, \omega_n$ is some integral basis for K/\mathbb{Q} , (i.e. for \mathcal{O}_K/\mathbb{Z}).

a) Show that the sign of disc_K is $(-1)^{r_2}$.

b) Prove Stickelberger's Theorem: $\operatorname{disc}_K \equiv 0, 1 \mod 4$.

¹I should probably be giving more of a hint for this problem, or I could just put this footnote alerting you to the fact that this is a "starred" problem. If you get tired of butting heads with Herr Dr Professor Stickelberger, you might consult your favorite book in algebraic number theory for a hint; or try Googling him! Be sure to quote your sources!