MATH 621 COMPLEX ANALYSIS, HOMEWORK 9

FARSHID HAJIR APRIL 11, 2011 – 15:34

Due date: Thursday April 21. It's a longer assignment, but you have ten days; don't procrastinate!

I. Stein-Shakarchi Chapter 8: 1,4,5,9,10,11,12,13,15,16

II.

1. (a) Determine all FLTs for which ∞ is a fixed point.

(b) Show that if φ is an FLT which fixes three distinct points on the Riemann sphere $\widetilde{\mathbb{C}}$, then φ is the identity.

Hint: First do the case where ∞ is a fixed point.

(c) In class we proved that if z_1, z_2, z_3 are three distinct points in \mathbb{C} as are w_1, w_2, w_3 , then there is an FLT φ that satisfies $\varphi(z_i) = w_i$. Prove the uniqueness of such a φ .

2. (a) Find the FLT which maps 1, i, -1 to i, -1, 1 in that order.

(b) Find the FLT which maps $0, 1, \infty$ to -1, 0, 1 in that order.

3. Verify that if $\varphi(z) = (az+b)/(cz+d)$ is an FLT, then $\varphi = \varphi_4 \circ \varphi_3 \circ \varphi_2 \circ \varphi_1$ where $\varphi_1(z) = z + d/c$, $\varphi_2(z) = 1/z$, $\varphi_3(z) = (bc - ad)z/c^2$ and $\varphi_4(z) = z + a/c$.

Hint: if you're feeling algebraically lazy, you could use 1. Does it actually save you any time?

4. Let $\varphi(z) = (z+1)/(z-1)$. Determine the image of the line $\Re(z) = c$ where c is a real number. Which c are "exceptional?"

5. Let f(z) = (z-1)/(z+1). What is the image under f of:

(a) the real line?

(b) the circle with center 0 and radius 2?

(c) the circle with center 0 and radius 1?

(d) the imaginary axis?

(e) Show that f maps $\{z : |z| > 1, |z - 1| < 2\}$ conformally to $\{z : 0 < \Re(z) < 1/2\}$.

6. Recall that the cross ratio of z_0, z_1, z_2, z_3 is defined to be

$$[z_0:z_1:z_2:z_3] := \frac{(z_0-z_1)(z_3-z_2)}{(z_0-z_2)(z_3-z_1)}.$$

(a) Let φ be an FLT and put $w_i = \varphi(z_i)$. Show that $[w_0 : w_1 : w_2 : w_3] = [z_0 : z_1 : z_2 : z_3]$. Hint: Use 3.

(b) Prove that four distinct points of \mathbb{C} lie on a straight line or on a circle if and only if their cross ratio is a real number.

7. Write down (explicitly) an automorphism of the unit disc that takes 1/2 to 1/3.

8. Find a conformal map of the set $\Omega = \{z : |z - 1| < \sqrt{2}, |z + 1| < \sqrt{2}\}$ onto the (open) first quadrant.

9. Is it possible to find a conformal map from the unit disc to the exterior of the unit disc $(\{z : |z| > 1\})$? What about the punctured unit disc (i.e. $\mathcal{D} - \{0\})$?