MATH 621 COMPLEX ANALYSIS, SAMPLE MIDTERM EXAM/HOMEWORK 5

FARSHID HAJIR FEBRUARY 14, 2011 – 12:00

Part I. Stein-Shakarchi Chapter 2, pp. 64ff: 8, 9, 10, 12(a), 13. Extra Credit: 14.

For 13) One possible elaboration on the hint, which you may or may not find useful: Write \mathbb{C} as a countable union of compact sets K_1, K_2, \ldots Define for $n \ge 0$, Ω_n to be a certain subset of \mathbb{C} related to the condition given in the problem. Now compare where the Ω_n 's sit in relation to the K_{ν} 's keeping in mind basic notions of countability.

Part II.

1. Let

$$f(z) = \cos(\frac{1+z}{1-z}), |z| < 1,$$

be defined on the open unit disc \mathbb{D} . Let $Z_f = \{z \in \mathbb{D} \mid f(z) = 0\}$. Determine this set. Does it have any accumulation points?

Note:
$$\cos(z) = (e^{iz} + e^{-iz})/2.$$

- 2. Suppose γ is the unit circle traversed counterclockwise once.
- a) For integers $n \ge 0$, compute

$$\int_{\gamma} \frac{\cos(z)}{z^{n+1}} dz.$$

Can you do it for negative integers n also?

b) For non-negative integers n, evaluate

$$\int_{\gamma} \frac{\cos^n(z)}{z^3} dz.$$

Due February 24, 2011.