MATH 621 COMPLEX ANALYSIS, SAMPLE FINAL EXAM

FARSHID HAJIR APRIL 28, 2011 – 11:47

You may use any theorem we proved in class, or from the book, that you can state precisely. Unless otherwise stated, $\log z$ denotes the principal branch (i.e. standard) logarithm and $z^{1/2} = e^{\log(z)/2}$ is the principal (i.e. standard) branch of the square root of z.

1. Let n be a positive integer, and $0 < \alpha < \pi$. Prove that $\frac{1}{2\pi i} \int_C \frac{z}{1 - 2z \cos \alpha + z^2} dz = 1.$

where C is the circle |z| = 2 traversed once counterclockwise.

2. For an integer m, define

$$F(m) = \frac{1}{2\pi i} \int_C \frac{z^{m-1}}{z^7 - 1} dz.$$

Compute F(14) and F(13).

3. (a) State and prove the Schwarz Lemma.

(b) Let f be holomorphic on the right half plane $\{z \in \mathbb{C} \mid \Re(z) > 0\}$ and suppose $|f| \leq 1$. Suppose also that f(1) = 0. Determine, with proof, the largest possible value of |f'(1)|.

4. (a) State, but do not prove, Morera's Theorem.

(b) Prove that if f is holomorphic on $\{z \in \mathbb{C} \mid \text{Im}(z) \neq 0\}$ and has a continuous extension to all of \mathbb{C} , then f extends to an entire function.

5. Prove that an entire function f is a polynomial if and only if it has $\lim_{z\to\infty} |f(z)| = \infty$.

6. How many zeros (counting multiplicities) does the function

$$f(z) = 5z^{10} - e^{z}$$

have inside the unit disc? Are these all simple zeros of f? Explain.

7. Define the open disc Ω and open right-half plane H has follows:

$$\Omega = \{ z \in \mathbb{C} : |z - 1| < 1 \}, \qquad H = \{ z \in \mathbb{C} : \Re(z) > 1 \}.$$

(a) Write down explicitly a conformal map (holomorphic bijection) f from Ω onto H with the additional property that $f(2) = \infty$.

(b) Write down explicitly a harmonic function $\boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})$ on the disc

$$\Omega = \{ (x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 \le 1 \}$$

(now thought of as a subset of $\mathbb{R}^2)$ which takes the constant value 1 on the boundary of $\Omega.$

8. Determine the singularities of $f(z) = \cot(z)/z$ inside \mathcal{D} , For each such singularity, compute the principal part of the Laurent expansion of f there.