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Here is some clarification for the proof of Theorem 5.3 from Chapter 2 of Stein-
Shekarchi.

Theorem 0.1. If f1, f2, f3, . . . is a sequence of functions holomorphic on an open
set Ω ⊆ C which converge to a function f on Ω and if this convergence is uniform
on all compact subsets of Ω, then

(1) the function f is holomorphic on Ω, and
(2) the sequence of derivatives f ′n converges uniformly to f ′ on all compact sub-

sets of Ω.

Proof of (2). . This theorem was apparently first given by Weierstrass, not Hur-
witz, as I mistakenly said in class. The proof of (1) using Morera from the book or
lecture is straightforward. Here is a fussy elaboration of the proof given in Stein-
Shekarchi. Let Γ be a compact subset of Ω. Since Γ is compact and Ω is open,
there exists a chain of sets

Γ ( Ω′ ( Γ′ ( Ω,

with Ω′ open and Γ′ compact. (Easy verification left to the reader). Now there
exists δ > 0 such that

Γ′ ⊂ Ω′δ, where Ω′δ := {z ∈ Ω′ | Dδ(z) ⊂ Ω′}.
We will now show that f ′n → f ′ uniformly on Ω′δ, which is all we need do since
Γ ⊂ Ω′δ.
Claim. If F (z) is holomorphic on Ω (or even just on Ω′), then

sup
z∈Ω′

δ

|F (z)| ≤ 1
δ

sup
ζ∈Ω′

|F (ζ)|.

Note that although Ω′δ and Ω′ are not compact, they are both contained in the
compact set Γ′, hence the two sup’s above are well-defined real numbers.

To prove the claim, we apply Cauchy’s formula just as in the book and lecture:
For all z ∈ Ω′δ, Dδ(z) ⊂ Ω′, so Cδ(z) ⊂ Ω′, giving us

|F ′(z)| =

∣∣∣∣∣ 1
2πi

∫
Cδ(z)

F (ζ)
ζ − z

dz

∣∣∣∣∣
≤ 1

2π
sup
z∈Ω′

|F (z)|2πδ

δ2

≤ 1
δ

sup
z∈Ω′

|F (z)|,

verifying the claim.
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Now suppose ε > 0 is given. Since fn → f uniformly on Γ′ 1 there exists an
integer N such that

|fn(z)− f(z)| < δε/2 for all z ∈ Γ′ and all n ≥ N.

Then, for n ≥ N and z ∈ Ω′δ, we apply the claim to F (z) := fn(z)− f(z) and find
that

|F ′(z)| = |f ′n(z)− f ′(z)| ≤ 1
δ

sup
z∈Ω′

|fn(z)− f(z)|

≤ 1
δ

sup
z∈Γ′

|fn(z)− f(z)|

≤ 1
δ

δε

2
< ε.

We have shown that f ′n → f ′ uniformly on Ω′δ. �

The most common application of the above theorem is contained in:

Corollary 0.2. If the functions e0(z), e1(z), e2(z), . . . are holomorphic on the open
set Ω and the series

∑
n≥0 en(z) converges to a function f on Ω and it does so

uniformly on compact subsets of Ω, then f is holomorphic on Ω and f ′(z) =∑
n≥0 e′n(z) for z ∈ Ω.

Later, after we prove the Maximum Modulus and Argument Principles, we’ll be
able to obtain the following theorems.

Theorem 0.3. If en(z) are holomorphic on |z| < R and f(z) =
∑

n en(z) converges
uniformly on the circles Cr(0) for all 0 < r < R, then f is holomorphic on |z| < R.

The proof follows from the Corollary once we invoke the maximum modulus
principle.

Theorem 0.4 (Hurwitz). If fn are holomorphic and non-vanishing on Ω and con-
verge uniformly to f on compact subsets of Ω, then f is either identically zero or
non-vanishing on Ω.

We’ll be able to deduce this Hurwitz from Weierstrass after we prove the Argu-
ment Principle.

Alternative Hint for Exercise 2 from Chapter 2 of Stein-Shekarchi.
To evaluate I =

∫∞
0

sin(x)/xdx, we can note that

I =
1
2i

lim
ε→0

(∫ −ε

∞

eix

x
dx +

∫ ∞

ε

eix

x
dx

)
.

Now we integrate eiz/z over the indented semi-circle, consisting of a radius R semi-
circle in the upper half plane and the real axis between −R and R with the exception
of a radius ε circular “bump” around the origin. The integral over the radius R
semi-cirlce goes to 0 as R goes to 0, as you can bound its modulus from above by∫ π

0

e−R sin(θ)dθ = 2
∫ π/2

0

e−R sin θdθ.

1Note that we are using the uniform convergence of fn on the larger set Γ′ to deduce the

uniform convergence of f ′
n on the proper subset Γ.
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For 0 ≤ θ ≤ π/2, there exists a constant C > 0 such that sin(θ) ≥ Cθ, so that the
integral above is bounded above by

2
∫ π/2

0

e−RCθdθ,

which you can evaluate explicitly. For the integral on the circle of radius ε, eiz/z =
1/z + G(z) where G(z) is holomorphic at 0. Since G(z) is bounded by a constant,
say B, near z = 0, we get for all sufficiently small ε > 0,∣∣∣∣∣

∫
Cε

eiz/zdz −
∫

Cεdz/z

dz/z

∣∣∣∣∣ < Bπε

so upon letting ε → 0, we get what we want.


