
UMASS AMHERST MATH 455, F. HAJIR

SOME PROBLEMS FROM HOMEWORKS 1 AND 2

Here I post some rather extended hints to selected problems from HW 1 and 2 as an aide
to you. If you find errors and or points that are unclear, feel free to email me.

1.1.2:2. If G has one vertex and no edges, then its degree sequence is just 0: this case is
(tacitly) excluded from the statement of the problem. If a connected component of G has a
repetition in its degree sequence, then so does G; also if the graph has more than one degree
0 vertex, then the degree sequence has a repetition. Thus, it suffices to consider the case
where G is connected and has more than one vertex. If the vertices of G are v1, . . . , vn, then
for each j, deg(vj) is an element of {1, 2, 3, . . . , n− 1}. This is because none of the vertices
is isolated and of course any vj can be adjacent to at most n− 1 other vertices. But now we
have n vertices (pigeons) being placed in n− 1 boxes, so by the Pigeonhole principle, there
must be a repetition.

1.1.2:3. (a) There are no paths of length 5 or more since there are only 5 vertices. It’s
helpful to organize the counting by length of path. There is just one path of length 0, namely
c. There are 4 paths of length 1, namely xc where x is either a, b, d, or e. Choosing a path
of length 2 means choosing x, y a pair of distince vertices not equal to c. There are 4 · 3 such
choices. Note that we are in K5 here so every potential edge is an actual edge, making life
easier. The total number of paths ending in c is 1 + 4 + 12 + 24 + 24 = 65.

1.1.2:5. (a) Suppose δ(G) ≥ k. Prove that G has a path of length at least k.
Let v0 be a vertex of G. Since deg(v0) ≥ k, we can choose v1 ∈ N(v0). There are at least

k − 1 ways to choose v2 in N(v1) but not equal to v0. Continuing in this manner, if vj is
chosen (for any 0 ≤ j ≤ k − 1 ), there are at least k − j ways to choose vj+1 in N(vj) but
not equal to v0, v1, . . . , vj. Thus, we have found a path v0v1 . . . vk, of length k.

5(b) Suppose δ(G) ≥ k ≥ 2.
Idea: To make a long cycle, we make as long a path as possible, and we try to close it up

by hoping that the final vertex of the long walk is adjacent to one of the vertices in the early
portion of the walk.

Let P be a path in G of longest length. Say P has length ` and is v0v1 . . . v`. Let
W = {v0, v1, . . . , v`}. Note that W has size `+ 1. Consider the neighborhood of v`.

We claim that N(v`) ⊆ W . If this were false, then there would exists a vertex u in G but
not in W such that v`u is an edge. This would mean that v0v1 . . . v`u would be a path of
length `+ 1, contradicting the fact that P was chosen to be a path of maximal length.

So, every neighbor of v` occurs in the list v0, v1, . . . , v`−1. Let r ≥ 0 be the smallest
integer such that vr is a neighbor of v`. Thus, all the neighbors of v` occur in the list
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vr, vr+1, vr+2, . . . , v`−1. Since deg(v`) ≥ k, that means the path vrvr+1vr+2 . . . v` has length
at least k. Therefore the cycle vrvr+1vr+2 . . . v`vr has length at least k + 1.

1.1.2: 6. Let P (k) be the statment: If W is a closed walk of odd length 2k + 1, then W
contains an odd cycle. We want to prove P (k) is true for all k ≥ 1.

We will use strong (or complete) induction. Accordingly, we will check the base case P (1)
and then show that for all r ≥ 1, if P (1), P (2), . . . , P (r) all hold, then P (r + 1) also holds.

To prove P (1), we have to show a walk of length 3 has an odd cycle. Say W : wxyw is a
closed walk of length 3. Since there are no loops allowed, we must have w 6= x, x 6= y, y 6= w.
In other words, x, y, w are three distinct vertices, so W itself is an odd cycle.

Now suppose P (1), P (2), . . . , P (r) all hold, for some r ≥ 1. Take W : w1w2 . . . w2r+3w1 to
be a closed walk of length 2(r+1)+1 = 2r+3. If W is a cycle itself, there is nothing further
to do, so we may assume the list w1, w2, . . . , w2r+3 has a repetition somewhere. Thus, for
some integer i ≥ 1 and k ≥ 2, we have wi = wi+k. Note that k is not 1 because there are
no loops. We then have that wiwi+1 . . . wi+kwi is a close walk withtin W , of length k. Also,
wi+k+1wi+k+2 . . . w2r+2w1w2 . . . wi−1 is a closed walk within W of length ` = 2r+3−k. Since
2r + 3 is odd and equals ` + k, we must have either ` or k is odd. Thus, we have shown
that W contains a closed odd walk W ′ of length less than 2r+ 3. Since P (1), P (2), . . . , P (r)
are hold by the induction hypothesis, we have shown that W ′ contains an odd cycle. Since
W ′ is contained in W , this odd cycle is also contained in W . We are now done by complete
induction.

1.1.2:10. Leaving aside the trivial graph with one vertex, we suppose n ≥ 2. The graph
G can’t have any vertices of degree 0, else it would not be connected. Let r be the number
of degree one vertices in G. Thus, there are n− r vertices of degree 2 or higher. Adding up
all the degrees and applying the first theorem of graph theory, we have

2|E| =
∑
v∈V

deg(v) ≥ r + 2(n− r).

In other words, |E| > n− r/2. We proceed by contradiction. Suppose |E| < n− 1¿ Then

n− r/2 ≤ |E| < n− 1⇒ 2 < r.

In other words, there are at least 3 vertices of degree 1. This means at least one of the connect
components of G is an isolated edge, which implies that G is not connected, a contradiction.
Thus, we must have |E| ≥ n− 1.

1.1.2: 15 (a) κ(G) ≤ δ(G).
All we have to do is to show that we can disconnect the graph with δ(G) vertex deletions.

Let v be a vertex of minimal degree, i.e. deg(v) = δ(G). If we remove the deg(v) vertices in
N(v), then v becomes isolated from the rest of the graph, making the graph disconnected.
This argument works as long as the graph is not composed only of v and its neighbors! So
what do we do in the latter case? Well, in that case, since v has minimal degree, the deg(v)
vertices in N(v) must all have degree at least deg(v). But there is a total of deg(v) + 1
vertices all together, so every vertx must be connected to every other vertex, i.e. G is a
complete graph. For the complete graph, κ is by definition the same as δ, so we are done.
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(b) If δ(G) = n− 1, then G is complete, so by definition, κ and δ are both n− 1 in that
case.

Now suppose δ(G) = n− 2. We already know from (a) that κ(G) ≤ n− 2, so we have to
show that we cannot disconnect G with fewer than n− 2 vertex deletions.

Let P (n) be the statement: If a graph G on n vertices satisfies δ(G) ≤ n − 1, then
κ(G) = δ(G).

If n = 3, it is easy to see that if δ(G) = 1, then the graph is two sides of a triangle, for
which κ(G) = 1, so that establishes the base case P (3).

Now suppose P (3), P (4), . . . , P (r− 1) are all true for some r ≥ 4. We want to show these
imply P (r). If G is a graph on r vertices with minimal degree r − 1, then G is complete,
so its κ and δ coincide. If the minimal degree is r − 2, suppose we remove k vertices, where
1 ≤ k ≤ r − 3 to get a graph H. In the graph H, each vertex has been deprived of at most
k edges, so H has r − k vertices and δ(H) is either r − k − 1 or r − k − 2. Another way
to say this is: In the graph G, every vertex was adjacent either to all other vertices, or to
all other vertices except one. After deleting k vertices, it is still the case that every vertex
is adjacent either to all remaining vertices, or all remaining vertices except one. Either way
you say it, H is a graph on j vertices with 3 ≤ j ≤ r − 1 such that δ(H) ≥ |H| − 2. Thus,
by the induction hypothesis, H is connected. Thus, we cannot disconnect G by fewer than
r − 2 vertex deletions, proving P (r). By strong induction, we are done.

1.1.2:16
(a) Suppose v is any vertex. Let X = N(v) ∪ {v} and W = V −X. We have

|X| ≥ 1 + (n− 1)/2 and |W | = |V | − |X| ≤ n− (n+ 1)/2 ≤ (n− 1)/2.

If W is empty, then G is connected because there is a path of length at most 2 from any
vertex to any other (by passing through v).

If W is not empty, pick w ∈ W . Since deg(w) ≥ (n − 1)/2, and W − {w} has size at
most (n − 1)/2 − 1, there must exist x ∈ X such that xw is an edge. We have shown that
for every w not adjacent to v, there exists x ∈ N(v) ∩N(w). Thus we have shown for every
pair of vertices v, w, either vw is an edge, or there is a walk vxw from v to w. Thus, G is
connected.

(b) If n = 6, the disjoint union of two triangles show that one can have disconnected
graphs with δ(G) = (n− 2)/2. More generally, the disjoint union of two complete graphs on
(k + 1) vertices has n = 2k + 2 edges and minimal degree k = (n− 2)/2.

1.2.3:2. The degree of the top vertices is r2 and the degree of the bottom vertices is r1, so
for the graph to be regular, we must have all vertices of same degree, so r1 = r2.

1.1.3:6 Recall that Kr has
(
r
2

)
= r(r−1)/2 edges. Clearly Kr1,...,rk has n = r1+r2+ · · ·+rk

vertices. To count the number of edges, we can note that if we put in every single edge
between the vertices, that would amount to

(
n
2

)
vertices. Now we have to erase a bunch.

For each grouping, say the first r1 vertices, we have to remove all the edges that have both
endpoints in this grouping: that amounts to

(
r1
2

)
erasures. Continuing in this manner, we
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find the number of edges of our graph is(
r1 + r2 + · · ·+ rk

2

)
−

k∑
j=1

(
rj
2

)
.

1.1.3: 7(c) The number of edges of G is m = (r1 + · · · + rn)/2 by the First Theorem, so
that’s the number of vertices of L(G).

Each vertex vi of G is a meeting place for ri edges of G. A pair of such edges (call them
e and e′) meeting at vi (they form a “wedge” with summit vi) is responsible for creating an
edge in L(G) from the vertex that correponds to e to the vertex that corresponds to e′. Thus,
the number of edges “created” by the summit vi is the number of pairs of edges meeting at
vi. Since there are ri such edges, the number of pairs of such edges is

(
ri
2

)
. Thus, the total

number of edges in L(G) is
n∑

i=1

(
ri
2

)
.

1.2.1:4 Since x is peripheral, eccx = diam(G). Since d(x, y) = diam(G), ecc(y) ≥ diam(G).
But the diameter is the maximal eccentricity, so ecc(y) ≤ diam(G). Thus, ecc(y) = diam(G),
so y is peripheral.

1.2.1: 6 We note that if the eccentricity of every vertex is the same, then the graph is
self-centered. For a bipartite graph, the distance from v to w is 1 if v, w belong to the same
partite, and 2 otherwise. So the eccentricity of every vertex is 2. For a cylce graph on n
vertices, the eccentricity of every vertex is bn/2c. For the complete graph, the eccentricity
of every vertex is 1.

1.2.2: 6 The ij entry of A3 is the number of length 3 walks from vi to vj. If i = j, we’ve
seen that length 3 closed walks are cycles so we just count cycles of length 3 ending at each
vertex. There are 3 triangles but they can be traversed in two directions, so it’s 6 no matter
which vertex you pick. If i 6= j, the counting is still easy: by symmetry we can just do the
i = 1, j = 2 case to illustrate: 1212,1232,1242,1312,1342,1412,1432. So there are 7 paths.
Upshot: the diagonal entries of A3 are 6 and the others are 7.

1.2.2: 3 Walks of length 2 from vj to vj are vjvvj where v is in the neighbordhood of vj,
so there are deg(vj) such walks.

1.2.2: 5 The only paths from v1 to v5 have length 4 and 6 respectively. For any walk from
v1 to v5, once the repeated edges are eliminated, what remains must be a path of length
either 4 or 6. Since deletion of repeated edges come in pairs, the length of the original walk
is an even number plus 4 or 6 hence is even. Thus, no odd walk starting at v1 ends at v5 so
the 1,5 entry of A2k+1 is always 0.

For another proof, note that our graph is bipartite (the partition coming from the parity
of the index of our vertices). Note that a step of length 1 in any walk always changes the
parity of the index of the vertex. In other words, since our graph is bipartite, walks of odd
length always go from one partite to the other partite, thus the number of walks of odd
length from a vertex in one partite to another vertex in the same partite is always 0.
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1.1.2: 7 We compute S1, S2 etc and at each step, say k, look for a zero-less row. If none
exist, we compute Sk+1 etc. Say the smallest k for which we find a zeroless row in Sk is r.
Then r is the radius of G and the center of G are the ones corresponding to the zeroless
rows.
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