
UMASS AMHERST MATH 411 SECTION 2, FALL 2009, F. HAJIR

PROBLEM SET 5

Let us recap a bit what we have been doing lately. Our focus has been not on a group G
alone, but on the more refined structure H ≤ G where G is a group and H is a subgroup of
G. We have proved the Theorem of Lagrange, to the effect that |H| divides |G| (assuming
the latter is finite of course!), by introducing an associated set G/H called the set of left
cosets of H in G. We have shown that the left cosets of H in G [which are simply the
“translates” of H by elements of G, i.e. subsets of G of the form gH where g ∈ G1] give a
non-overlapping covering of G, i.e. a partition. Since the left cosets of H all have the same
size as H, this means that G breaks up into |G/H| subsets each of size |H|, giving us the
fundamental identity

|G/H| = |G|
|H|

, or |G| = |G/H||H|.

Recall that the notions of equivalence relation on a set and a partition of that set are
essentially the same notion. Since the left cosets of H give a partition of G, they are simply
the equivalence classes under an equivalence relation on G called left-coset-H equivalence
given as follows: If a, b ∈ G, we write a ∼H b if and only if aH = bH. There are a number of
equivalent ways of writing aH = bH and all of them are useful depending on the situation
you happen to be working in. I find it best to get familiar with all the different ways of
expressing the equality of two cosets and one of the problems in this homework set will help
you do that.

The process of going from a set G with an equivalence relation ∼ on it to a new set G/ ∼,
the set of equivalence classes of elements of G is an extremely important one in mathematics.

You might recall my phrase that “You must worship the definitions.” You may also have
noticed how much time we have already spent on defining what a group is, what a subgroup
is, the kernel, the image, homomorphism, etc. All of these ideas crystallize and come into
play now when we define a “Quotient Group.” In mathematics, the objects we study are
not as crucial as the mappings between the objects. This is one of the important themes that
emerged in twentieth century mathematics. Given an object (say a vector space – if you
recall what that is from M235 – or a group G), a major question is: What are the objects Γ
of the same type (vector space, group, etc.) that are related to our given G in the sense that
there is a non-trivial map (or “morphism”) from G to Γ or from Γ to G? Here, the term
“morphism” expresses the need that the “relations” we are looking for have to respect the
internal structure of the objects in questions. For instance, if we are working with vector
spaces, we would want this map to preserve the vector space operations, i.e. we want it to
be a “linear transformation,” (it is then given by some matrix once we choose bases for the
source and target). If we are working with groups, then we want the map to be a group
homomorphism.

1Recall that gH = {gh|h ∈ H}.
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For example, suppose G is a group, and we ask: What are the groups J that admit
an injective homomorphism φ : J ↪→ G? Recall that the image of a homomorphism is
always a subgroup of the target group, so φ(J) is a subgroup of G and it is isomorphic
to J . (Why is J isomorphic to φ(J)? ) Thus, an injective homomorphism φ : J ↪→ G
gives rise to a subgroup φ(J) ≤ G. On the other hand, if H ≤ G is a subgroup, then the
identity map gives an injective homomorphism from H to G! (Make sure you understand
the latter statement). In other words, the knowledge of all subgroups of G is tantamount to
the knowledge of all injective homomorphisms J ↪→ G. Clearly, if we want to understand a
group G, then understanding its subgroups is very important, in the same way that if you
want to understand the architecture of a building then you need to become familiar with the
design of each of its floors.

Note that focussing on a subgroup H of a group G isolates certain elements of the group
(those in H); in a sense, one does it by becoming blind to the elements of G not in H. As
we said above, this process is like entering the building and trying to understand it from
within. Accompanying this process of restricting attention to a subgroup H of a group G ,
there is a “dual” and equally important process for understanding a group G; it is to ignore
completely what is happening inside H and try to see the structure of what is happending
“outside H” so to speak. Going back to the building analogy, this process is akin to leaving
the building and going outside to look at the shadows it throws on the ground. The shadow
of a building can be highly revealing: for instance you might learn how many floors the
building has from its shadow, whereas if you are studying the design of a particular floor,
you wouldn’t necessarily know how many such floors there are in the building.

So, getting back to mathematics, what precisely is this “process of completely ignoring
what is happening inside H and trying to see the structure of what is happending outside
H” that we talked about in the previous paragraph? It is the process of understanding the
Quotients of G. I will now proceed with defining what this means.

Definition 0.1. Suppose G is a group. A group Q is called a homomorphic image of G if
there exists a surjective homomorphism G � Q.

Quotients of G are like shadows of it. By studying enough of its shadows, one can learn
a great deal about a group. Let us note first that every group G has at least two quotients,
namely G itself (use the identity isomorphism) and the trivial quotient {e} (use the trivial
map). (Are you having dejà vu? If you are not, then you should review your notes about
subgroups; hint, hint.) Some groups have no other shadows except for the one-element group
and the group itself. You might be tempted to call such groups “prime” groups via analogy
with prime numbers (why?). The term that is actually used is “simple,” which is pretty
funny because understanding simple groups is in fact a very complex task; why? because
simple groups are, so-to-speak, “shadowless” groups, so it’s hard to understand them.

Definition 0.2. A group G is called simple if its only quotients are G and {e}.

Now I want to remind you how we define a group law on G/H, assuming that H is a
normal subgroup of G. For aH, bH ∈ G/H, we define aH ∗ bH = abH. The most subtle
thing about this operation is its being well-defined. Once you check that, then it is very easy
to see that it satisfies the group axioms. To see a conceptual reason why this operation is
well-defined, see (6) in Problem 8.
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Definition 0.3. IfG is a group andH is a normal subgroup ofG, then the group (G/H, ∗, eH)
with the operation aH ∗ bH = abH is called a quotient of G.

Note that since H = {e} and H = G are always normal subgroups of G, G/G and G/{e}
are always quotients of G.

PROBLEM 1. Suppose H is a subgroup of a group G and a, b ∈ H. Show that the
following conditions are all equivalent.

(1) aH = bH
(2) a ∈ bH
(3) b ∈ aH
(4) b−1a ∈ H
(5) a−1b ∈ H
Hint: do this by “going in a cycle,” 1 implies 2, 2 implies 3, etc. 4 implies 5, and 5 implies

6. Then you are done!
NOTE: A VERY USEFUL FACT which follows from this is that for all a ∈ G,

aH = H ⇐⇒ a ∈ H.

PROBLEM 2. Suppose G is a group, and H is a normal subgroup of G. Show that the
operation G/H × G/H → G/H given by (aH, bH) 7→ abH is a well-defined operation. In
other words, prove that if a, b, a′, b′ ∈ G satisfy a′H = aH, and b′H = bH then a′b′H = abH.
Now show that this operation turns G/H into a group, and that the map G → G/H given
by g 7→ gH is a surjective group homomorphims with kernel H.

PROBLEM 3. Suppose ψ : G � Q is a surjective homomorphism, so Q is a homomorphic
image of G. Let H = ker(ψ) be the kernel of this map. Recall that H is a normal subgroup
of G [proof: if g ∈ G and h ∈ H, ψ(ghg−1) = ψ(g)ψ(h)ψ(g−1). But ψ(h) = e, so ψ(ghg−1) =
ψ(g)ψ(g)−1 = e. Thus, ghg−1 ∈ H, proving that H is normal in G. ] Since H is normal in
G, we can give (G/H, ∗, eH) a group structure via the operation aH ∗ bH = abH where the
identity is the coset H = eH. Define a map Ψ : G/H → Q by Ψ(gH) = ψ(g) for all g ∈ G.

(i) First show that Ψ : G/H → Q is a well-defined map.
(ii) Show that Ψ is a homomorphism.
(iii) Show that Ψ is bijective, concluding that G/H and Q are isomorphic.
Congratulations. You have just proven The First Isomorphism Theorem of Group Theory.

PROBLEM 4. Suppose G is a group and H is a normal subgroup of G. Show that there
is a surjective homomorphism G → G/H where the group structure on G/H is given by
aH ∗ bH = abH.

Note that the conclusion of PROBLEMS 3 and 4 is rather profound: together
they say that the quotients of G are precisely the homomorphic images of G.

PROBLEM 5. Show that a group G is simple if and only if its only normal subgroups
are {e} and G.
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PROBLEM 6. Suppose G is a finite group and Q is a homomorphic image of G. Show
that Q is also a finite group and that its order divides the order of G.

Definition 0.4. Recall that if G is a group and x ∈ G, then

〈x〉 = {xn|n ∈ Z}

is the subgroup generated by x. A group G is called cyclic if there exists x ∈ G such that
〈x〉 = G. In other words, G is cyclic if it can be generated by one element x, which is then
called a generator of G.

PROBLEM 7. Suppose G is a finite group. Show that G is a cyclic group if and only if
there exists x ∈ G such that ordG(x) = |G|.

PROBLEM 8. Suppose G is a group of prime order p.
(i) Show that G is a cyclic group. [take a non-trivial guy in G and ask him what his order

is].
(ii) Show that G is a simple group. [take a non-trivial subgroup H of G and ask her what

her order is].

PROBLEM 9. (a) Suppose G is a cyclic group and Q is a homomorphic image of G, i.e.
there is a surjective homomorphism f : G → Q. Show that Q is also a cyclic group. Hint:
You are looking for a generator of Q, right? Maybe G can “lend” you her generator...but
how do you get elements of G over to Q?

(b) Show that Z is a cyclic group. Hint: dont’ work too hard!
(c) Show that if G = Z and H = nZ for some positive integer n, then G/H = Z/nZ is a

cyclic group of order n. Hint: Use (a) and (b) and the canonical surjective homomorphism
from a group to its quotient group.

PROBLEM 10. Suppose G is a group and H is a subgroup of G. Show that the following
conditions are all equivalent. If any (hence all) of these conditions hold, we say that H is a
normal subgroup of G.

(1) for all g ∈ G and h ∈ H, ghg−1 ∈ H.
(2) for all g ∈ G, gHg−1 ⊆ H. 2

(3) for all g ∈ G, gHg−1 = H.
(4) for all g ∈ G, gH = Hg. (you’ve already done this one, but just do it again: it doesn’t

hurt, and it’s good to have it here as a reminder and a reference).
(5) for all a ∈ G and h1 ∈ H, there exists h2 ∈ H such that ah1 = h2a.
(6) for all a, b ∈ G, aHbH = abH where aHbH = {ah1bh2|h1, h2 ∈ H}.
(7) there exists a group Q and a surjective homomorphism ψ : G → Q with kernel

ker(ψ) = H.
Hint: You may want to do this by showing

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (1),

2Recall that gHg−1 = {ghg−1|h ∈ H}.
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instead of (1) if and only if (2) and then (2) if and only if (3) etc. which would require a lot
more writing.

5


